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LIMIT CYCLES OF DISCONTINUOUS PIECEWISE LINEAR

DIFFERENTIAL SYSTEMS WITH TWO ZONES SEPARATED

BY A PARABOLA

JAUME LLIBRE1 AND ROBSON A.T. SANTOS2

Abstract. We prove that if the unperturbed linear center ẋ = y, ẏ = −x

is at the vertex of the parabola y = x2, then perturbing this center by a
discontinuous piecewise linear differential system with two zones separated
by the parabola the perturbed system can exhibit 3 limit cycles. We note

that if we perturb the same linear center by a discontinuous piecewise linear
differential system with two zones separated by the straight line y = 0 the
perturbed system can exhibit at most 2 limit cycles.

1. Introduction and statement of the main results

The study of piecewise linear differential systems is relatively recent. The contri-
butions of Andronov, Vitt and Khaikin [1] provided the basis for the development
of the theory for these systems, which has received much attention from researchers.
One of the reasons for this interest in the mathematical community is that these
systems can be used to model applied problems, such as electronic circuits, biolog-
ical systems, mechanical devices, etc, see for instance the book [3]. Thus, in recent
years, the theory of piecewise linear differential systems has been increasingly de-
veloped and studied in order to understand the dynamics that such systems may
have. In this sense one of the points of greatest interest is to obtain a lower bound
for the maximum number of limit cycles that may arise around a single equilibrium
point on the discontinuity set (i.e., on the region separating the linear differential
systems). Remember that a limit cycle of a differential system is a periodic orbit
which is isolated in the set of all periodic orbits of the system.

This investigation started with the simplest possible case: the continuous piece-
wise linear differential systems with two zones separated by a straight line. Lum
and Chua [22] conjectured that the maximum number of limit cycles that can arise
in such systems is one. Later this conjecture was proved by Freire, Ponce, Rodrigo
and Torres [9] and more recently received an easier proof in [18]. After the closure
of this case the attention turned to the class of piecewise linear differential systems
with two zones, still separated by a straight line, but without the assumption of
continuity. Several authors has been investigating the limit cycles for this class of
systems, see for instance the articles [2, 4, 5, 7, 10, 11, 12, 13, 14, 15, 19, 20, 23]
and found that the lower bounds for the maximum number of limit cycles of discon-
tinuous piecewise linear differential system with two zones separated by a straight
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line can be three. But in the case that we perturb the linear center ẋ = y, ẏ = −x
inside the class of piecewise linear differential systems with two pieces separated by
the straight line y = 0 it is known that the maximum number of limit cycles which
can appear for small perturbations is two, see [17]. In order to extend this research,
we will consider discontinuous piecewise linear differential system with two zones,
but separated by a parabola instead of a straight line.

Let D be an open subset of R2 and consider a smooth function h : D ⊂ R2 → R.
Suppose that 0 ∈ R is a regular value of h and D is an open neighborhood of the
origin, so that the set Σ = h−1(0) ⊂ D is a differentiable curve in the plane. The
curve Σ, called discontinuity set, separates D in two open regions S1 = {(x, y) ∈ D :
h(x, y) > 0} and S2 = {(x, y) ∈ D : h(x, y) < 0}. We define a planar discontinuous
piecewise linear differential system, and denote it by X = (X1, X2), as

(1) X(x, y) =

{
X1(x, y) if (x, y) ∈ S̄1,
X2(x, y) if (x, y) ∈ S̄2,

where X1, X2 : D ⊂ R2 → R2 are planar linear differential systems.

In accordance with Filippov [8] we distinguish the following open regions in the
discontinuity set Σ:

(1) Crossing region: Σc = {p ∈ Σ : X1h(p).X2h(p) > 0},
(2) Sliding region: Σs = {p ∈ Σ : X1h(p).X2h(p) < 0},

where Xjh(p) =
⟨
∇h(p), Xj(p)

⟩
for j = 1, 2.

In this work we consider a planar discontinuous piecewise linear differential sys-
tem with two zones, S1 and S2, separated by a parabola. We assume without loss
of generality that the function h(x, y) = y − x2 defines Σ. Considering a subset
B ⊂ D, let χB(t, x) be the characteristic function defined as

χB(x, y) =

{
1 if (x, y) ∈ B,
0 if (x, y) /∈ B.

So system (1) can be written as

(2) X(x, y) =
2∑

j=1

χS̄j
(x, y)Xj(x, y).

Consider a linear perturbation of system (2) with a linear center at origin

(3)

(
ẋ
ẏ

)
=



(
y + ε(a0 + a1x+ a2y)
−x+ ε(d0 + d1x+ d2y)

)
if h(x, y) > 0,

(
y + ε(α0 + α1x+ α2y)
−x+ ε(δ0 + δ1x+ δ2y)

)
if h(x, y) < 0.

Our main result on the limit cycles of system (3) is the following.

Theorem 1. For |ε| ̸= 0 sufficiently small and a discontinuity set Σ given by the
parabola h(x, y) = y − x2 = 0 the piecewise linear differential system (3) can have
3 limit cycles.

We note that if the discontinuity set is the straight line y = 0, then the piecewise
linear differential system (3) has at most two limit cycles for |ε| ≠ 0 sufficiently
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small. This result has been proved in [17]. So when the discontinuity set becomes
a parabola Theorem 1 shows that the maximum number of limit cycles that the
piecewise linear differential system (3) can exhibit is greater than two.

2. Averaging theory for discontinuous piecewise differential systems

In this section we present the averaging theory for planar discontinuous piecewise
differential systems (PDPDS). For more details, see [16].

Consider the following discontinuous piecewise differential system

(4) x′(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

with

Fi(t, x) =
2∑

j=1

χS̄j
(t, x)F j

i (t, x), for i = 1, 2, and

R(t, x, ε) =
2∑

j=1

χS̄j
(t, x)Rj(t, x),

where F j
i : S1 ×D → R2, Rj : S1 ×D× (−ε0, ε0) → R2 for i = 1, 2 and j = 1, 2 are

continuous functions, T -periodic in the variable t and D is an open subset of R2.
For i = 1, 2 denote

DxFi(t, z) =
2∑

j=1

χS̄j
(t, z)DxF

j
i (t, z),

and define the averaged functions f1, f2 : D → R2 as

f1(z) =

∫ T

0

F1(t, z) dt, and

f2(z) =

∫ T

0

(DxF1(t, z)y1(t, z) + F2(t, z)) dt,

where

y1(t, z) =

∫ t

0

F1(s, z) ds.

For a proof of the following result see [16].

Theorem 2. (The first order averaging theorem for PDPDS). Assume the following
conditions.

(H1) For i = 1, 2 and j = 1, 2, the continuous functions F j
i and Rj

i are lo-
cally Lipschitz with respect to x, and T -periodic with respect to the time t.
Furthermore for j = 1, 2 the boundaries of Sj are piecewise Ck embedded
hypersurfaces with k ≥ 1.

(H2) There exists an open bounded set C ⊂ D such that, for |ε| ̸= 0 sufficiently
small, every solution of system (4) starting in C reaches the set of discon-
tinuity Σ only at its crossing region.

(H3) For a∗ ∈ C with f1(a
∗) = 0, there exists a neighborhood U ⊂ C of a∗ such

that f1(z) ̸= 0 for all z ∈ U \ {a∗} and dB(f1, U, 0) ̸= 0. (dB(f1, U, 0)
denotes the Brouwer degree of f1 at 0).
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Then for |ε| ̸= 0 sufficiently small, there exists a T -periodic solution x(t, ε) of
system (4) such that x(0, ε) → a∗ as ε → 0.

Remark 1. If the determinant of Jacobian matrices Df1(a
∗) in Theorem 2 is

nonzero, then the Brouwer degree dB(f1, U, 0) is not zero, for more details see [21].

3. Proof of the main results

In order to prove Theorem 1 we need the following lemma proved in Lemma 4.5
of [6].

Lemma 3. Consider p + 1 linearly independent functions fi : U ⊂ R → R, i =
0, 1, . . . , p

(i) Given p arbitrary values xi ∈ U , i = 0, 1, . . . , p there exist p + 1 constants
Ci, i = 0, 1, . . . , p such that

(5) f(x) :=

p∑
i=0

Cifi(x)

is not the zero function and f(xi) = 0 for i = 0, 1, . . . , p.
(ii) Furthermore if all fi are analytical functions on U and there exists j ∈

{0, 1, . . . , p} such that fj |U has constant sign, it is possible to get an f
given by (5), such that it has at least p simple zeros in U .

Now consider the functions

k0(r) =

√
−1 +

√
1 + 4r2,

k1(r) =

√
−1 +

√
1 + 4r2 + r2

(
−3 +

√
1 + 4r2

)
,

k2(r) = r2,

k3(r) = r2 csc−1

( √
2r√

−1 +
√
1 + 4r2

)
,

and define the set of functions K = {k0, k1, k2, k3}.

Lemma 4. The functions of K are linearly independent on the interval (0,∞).

Proof. To prove the assertion it is necessary and sufficient to show that WK(r) =
W (k0, k1, k2, k3)(r) ̸= 0 on (0,∞), where W (f0, f1, . . . , fn)(t) denotes the Wron-
skian of the functions f0, f1, . . . , fn with respect to t, that is

W (f0, f1, . . . , fn)(t) =

∣∣∣∣∣∣∣∣∣
f0(t) · · · fn(t)
f ′
0(t) · · · f ′

n(t)
...

. . .
...

f
(n)
0 (t) · · · f

(n)
n (t)

∣∣∣∣∣∣∣∣∣ .
So, using some algebraic manipulator, as Mathematica or Maple, we obtain

WK(r) =
16(1 + 4r2 +

√
1 + 4r2)P1(r)

(1 + 4r2)7/2
,
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where

P1(r) =

√
(2 + 6r2 + 2r4)

√
1 + 4r2 − (2 + 10r2 + 10r4).

It is easy to see that P1(r) ̸= 0, and 1+ 4r2 +
√
1 + 4r2 > 0. Therefore WK(r) ̸= 0

on (0,+∞). This conclude the proof of the lemma. �

Proof of Theorem 2. Consider system (3). Using polar coordinates x = r cos θ and
y = r sin θ system (3) becomes

(6) (ṙ, θ̇) = (0,−1) + εM(θ, r),

where:

M(r, θ) =

{
(A(θ, r), B(θ, r)) if sin θ − r cos2 θ > 0,
(C(θ, r), D(θ, r)) if sin θ − r cos2 θ < 0,

and

A(θ, r) = (a0 + r(a2 + d1) sin θ) cos θ + a1r cos
2 θ + (d0 + d2r sin θ) sin θ,

B(θ, r) =
(d0 + d1r cos θ + d2r sin θ) cos θ − (a0 + a1r cos θ + a2r sin θ) sin θ

r
,

C(θ, r) = (α0 + r(α2 + δ1) sin θ) cos θ + α1r cos
2 θ + (δ0 + δ2r sin θ) sin θ,

D(θ, r) =
(δ0 + δ1r cos θ + δ2r sin θ) cos θ − (α0 + α1r cos θ + α2r sin θ) sin θ

r
.

Taking θ as the new time system (6) writes

dr

dθ
=


εA(θ, r)

−1 + εB(θ, r)
if sin θ − r cos2 θ > 0,

εC(θ, r)

−1 + εD(θ, r)
if sin θ − r cos2 θ < 0.

So system (6) and consequently system (3) become equivalent to

(7) r′ = R(θ, r, ε),

where the prime denotes derivatives with respect to the independent variable θ.

Expanding (7) in Taylor series at ε = 0 up to order 1 in ε we get

(8) r′ =

{
εF1(θ, r) +O(ε2) if sin θ − r cos2 θ > 0,

εG1(θ, r) +O(ε2) if sin θ − r cos2 θ < 0,

where

F1(θ, r) = −a1r cos
2 θ − (a0 + (a2 + d1)r sin θ) cos θ − (d0 + d2r sin θ) sin θ,

G1(θ, r) = −α1r cos
2 θ − (α0 + (α2 + δ1)r sin θ) cos θ − (δ0 + δ2r sin θ) sin θ.

Clearly hypotesis (H1) of Theorem 2 holds for system (8). Furthermore, given

θ1(r) = arccos

√√
4r2 + 1− 1

2r2

 and θ2(r) = arccos

−

√√
4r2 + 1− 1

2r2

 ,

we have that for r > 0, sin θ − r cos2 θ > 0 if and only if θ1(r) < θ < θ2(r); and

sin θ−r cos2 θ < 0 if and only if θ2(r) < θ < θ1(r)+2π. Let ĥ(θ, r) = sin θ−r cos2 θ,

thus the set of discontinuity of system (8) is given by Σ̂ = ĥ−1(0) = {(θ1(r), r) :
r > 0} ∪ {(θ2(r), r) : r > 0}.
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Denoting X1 = (εF1(θ, r) + O(ε2),−1) and X2 = (εG1(θ, r) + O(ε2),−1), for
|ε| ̸= 0 sufficiently small we have

X1ĥ(θi(r), r).X
2ĥ(θi(r), r) =

(−1 +
√
1 + 4r2)2

2r4
,

for i = 1, 2. Then Σ̂ has only crossing regions. So hypotesis (H2) of Theorem 2
holds for system (8). Computing the averaged function f1 we obtain

f1(r) =

∫ θ2

θ1

F1(θ, r) dθ +

∫ θ1+2π

θ2

G1(θ, r) dθ

= g0k0(r) + g1k1(r) + g2k2(r) + g3k3(r)

where g0 = −d0+δ0, g1 = a1−d2−α1+δ2, g2 = α1+δ2, g3 = a1+d2−α1−δ2. Since
the functions k0, k1, k2, k3 are linearly independent and k1(r) has constant sign for
r > 0, then from Lemma 3 the function f1(r) can have for convenient values of the
coefficients g0, g1, g2, g3 three simple zeros. Consequently the derivative at those
zeros is nonzero, and by Remark 1 the Brouwer degree of f1(r) at those zeros is
nonzero. So the hypothesis (H3) holds at these zeros. Then by Theorem 2 the
proof of theorem follows. �
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