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Abstract. It is known that the maximum number of limit cycles that can bifurcate
from a zero-Hopf equilibrium point of a quadratic polynomial differential system in
dimension two is 3, and that in dimension three is at least 3. Here we prove that
in dimension 4 at least 9 limit cycles can bifurcate in a zero-Hopf bifurcation of a
quadratic polynomial differential system.

1. Introduction and statement of the main result

A Hopf bifurcation takes place at a singular point of a differential system when this
changes its stability. More precisely, it is a local bifurcation which can appears when a
singular point of a differential system having a pair of complex conjugate eigenvalues
crosses the imaginary axis of the complex plane when we move the parameters of the
differential system. At this crossing under convenient assumptions on the differential
system, one or several small-amplitude limit cycles bifurcate from the singular point.

When the pair of complex eigenvalues are on the imaginary axis, i.e. they are of
the form ±bi, if the other eigenvalues are non-zero, we talk about a Hopf bifurca-
tion, but if some of the other eigenvalues are zero, we say that we have a zero-Hopf
bifurcation. Here we are interested in the study of the zero-Hopf bifurcations when
all the eigenvalues different from the ±bi are zero, we denote such kind of zero-Hopf
bifurcation a complete zero-Hopf bifurcation. While there is a well developed theory
for studying the Hopf bifurcations (see for instance [4, 10]), such theory does not
exist for the zero-Hopf bifurcations. For the zero-Hopf bifurcations there are only
partial results.

The goal of this paper is to study how many small-amplitude limit cycles can bifur-
cate in a complete zero-Hopf bifurcation at a singular point of a quadratic polynomial
differential system in function of the dimension of the system.

Bautin [1] in 1954 proved that at most 3 small-amplitude limit cycles can bifurcate
in a Hopf bifurcation at a singular point of a quadratic polynomial differential system
in R2. Note that in R2 the notions of Hopf bifurction, zero-Hopf bifurcation and
complete zero-Hopf bifurcation coincide.
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Also using Bautin’s result it is easy to show that at least 3 small-amplitude limit
cycles can bifurcate in a zero-Hopf bifurcation at a singular point of a quadratic
polynomial differential system in R3, for a proof of this last result using averaging
theory see the paper [3]. Some other results related with the zero-Hopf bifurcation
of quadratic polynomial differential system in R3 can be found for instance in [6, 8,
14]. Note that in R3 the notions of zero-Hopf bifurcation and complete zero-Hopf
bifurcation coincide.

Here we shall prove that at least 9 limit cycles can bifurcate in a complete zero-
Hopf bifurcation of a quadratic polynomial differential system in R4, this result is
obtained using averaging theory of second order.

More precisely, we investigate the zero-Hopf bifurcation at a singular point, that
without loss of generality we can assume at the origin of coordinates, of the following
quadratic polynomial differential systems in R4

(1)

ẋ = (a1ε+ a2ε
2)x− (b+ b1ε+ b2ε

2)y +
2∑

j=0

εjXj(x, y, z, w),

ẏ = (b+ b1ε+ b2ε
2)x+ (a1ε+ a2ε

2)y +
2∑

j=0

εjYj(x, y, z, w),

ż = (c1ε+ c2ε
2)z +

2∑
j=0

εjZj(x, y, z, w),

ẇ = (d1ε+ d2ε
2)w +

2∑
j=0

εjWj(x, y, z, w),

where

Xj(x, y, z, w) = aj0x
2 + aj1xy + aj2xz + aj3xw + aj4y

2 + aj5yz+
aj6yw + aj7z

2 + aj8zw + aj9w
2,

Yj(x, y, z, w), Zj(x, y, z, w) andWj(x, y, z, w) have the same expression asXj(x, y, z, w)
by replacing aji respectively by bji, cji and dji for j = 0, 1, 2 and i = 0, 1, . . . , 9. The co-
efficients aij, bij, cij, dij, a1, a2, b, b1, b2, c1, c2, c3, d1, d2 are real parameters with b ̸= 0.
Note that system (1) for ε = 0 at the origin has eigenvalues ±bi, 0, 0. So for ε = 0 a
zero-Hopf bifurcation can occur.

Our main result is:

Theorem 1. The following statements hold.

(a) At most 2 limit cycles bifurcate from the origin of system (1) when ε = 0 by
applying the averaging theory of first order, and this upper bound is reached.

(b) At most 9 limit cycles bifurcate from the origin of system (1) when ε = 0 by
applying the averaging theory of second order, and this upper bound is reached.
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Statement (a) of Theorem 1 is proved in section 3. Statement (b) is proved in
section 4. In section 2 we recall the averaging theory of first and second order as it
was stated in [2]. This will be the main tool for proving Theorem 1.

2. The averaging theory of first and second order

The aim of this section is to present the averaging method of first and second order
as it was developed in [2, 5, 7]. The following result is Theorem 4.2 of [2].

Theorem 2. We consider the following differential system

(2) ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : R × D → Rn, R : R × D × (−εf , εf ) → Rn are continuous functions,
T -periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypotheses (i) and (ii) hold. We assume:

(i) F1, F2, R are locally Lipschitz with respect to x, F1(t, .) ∈ C1(D) for all t ∈ R,
and R is differentiable with respect to ε. We define f1, f2: D −→ Rn as

(3)

f1(z) =
1

T

∫ T

0

F1(s, z)ds,

f2(z) =
1

T

∫ T

0

[
DzF1(s, z)

∫ s

0

F1(t, z)dt+ F2(s, z)

]
ds.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf ) \ {0}, there
exists a ∈ V such that f1(a) + εf2(a) = 0 and dB(f1 + εf2, V, a) ̸= 0.

Then for |ε| > 0 sufficiently small there exists a T -periodic solution φ(·, ε) of the
system (2) such that φ(0, ε) → a when ε → 0.

Where dB(f1 + εf2, V, 0) denotes the Brouwer degree of the function f1 + εf2 in
the neighborhood V of zero. It is known that if the function f1 + εf2 is C1 then it
is sufficient to check that det(D(f1 + εf2(aε))) ̸= 0 in order to have that dB(f1 +
εf2, V, 0) ̸= 0, for more details see [9].

For additional information on the averaging theory see the books [11, 15].

3. Proof of statement (a) of Theorem 1

First we rescale the variables (x, y, z, w) doing the change of variables (x, y, z, w) =
(εX, εY, εZ, εW ), second we pass to cylindrical coordinates doing (X,Y, Z,W ) =
(ϱ cos θ, ρ sin θ, η, ξ), and third we take the angle θ as the new independent variable.
Then system (1) becomes into the normal form for applying the averaging theory.
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Thus in the variables (ρ, ξ, η) system (1) writes

(4)

dρ

dθ
= εF11(θ, ρ, η, ξ) + ε2F21(θ, ρ, η, ξ) +O(ε3),

dξ

dθ
= εF12(θ, ρ, η, ξ) + ε2F22(θ, ρ, η, ξ) +O(ε3),

dη

dθ
= εF13(θ, ρ, η, ξ) + ε2F23(θ, ρ, ξ, η) +O(ε3).

Taking

x = (ρ, ξ, η),

t = θ,

F1(t, x) = (F11(θ, ρ, η, ξ), F12(θ, ρ, ξ, η), F13(θ, ρ, η, ξ)),

F2(t, x) = (F21(θ, ρ, η, ξ), F22(θ, ρ, ξ, η), F23(θ, ρ, ξ, η)),

and T = 2π, system (4) is equivalent to system (2). For i = 1, 2, 3 from (3) we have
that f1 = (f11, f12, f13) where

f1i(ρ, η, ξ) =
1

2π

∫ 2π

0

F1i(θ, ρ, η, ξ)dθ.

Doing these computations we get that

(5)

f11(ρ, η, ξ) =
1

b
(ρ(2a1 + (a03 + b06)ξ + (a02 + b05)η)) = 0,

f12(ρ, η, ξ) =
1

b
((c00 + c04)ρ

2 + 2(c09ξ
2 + η(c1 + c08ξ + c07η))) = 0,

f13(ρ, η, ξ) =
1

b
((d00 + d04)ρ

2 + 2(ξ(d1 + d09ξ) + d08ξη + d07η
2)) = 0.

By Theorem 2 the unique limit cycle which bifurcates from the origin of system (1)
is provided from the unique real zero with ρ > 0 of system (5).

Solving the first equation of (5) we obtain the solution

ξ = −2a1 + (a02 + b05)η

a03 + b06



4-DIMENSIONAL ZERO HOPF BIFURCATION 5

Then the second and the third equations become

g12 =
8a21c09

(a03 + b06)2
+ (c00 + c04)ρ

2 − 2

(a03 + b06)2
(2a03a1c08+

2a1b06c08 − 4a02a1c09 − 4a1b05c09 − a203c1 − 2a03b06c1 − b206c1)η+
2

(a03 + b06)2
(a203c07 + 2a03b06c07 + b206c07 − a02a03c08 − a03b05c08

−a02b06c08 − b05b06c08 + a202c09 + 2a02b05c09 + b205c09)η
2,

g13 =
4a1(2a1d09 − a03d1 − b06d1)

(a03 + b06)2
+ (d00 + d04)ρ

2 − 2

(a03 + b06)2

(2a03a1d08 + 2a1b06d08 − 4a02a1d09 − 4a1b05d09 + a02a03d1+

a03b05d1 + a02b06d1 + b05b06d1)η +
2

(a03 + b06)2
(a203d07+

2a03b06d07 + b206d07 − a02a03d08 − a03b05d08 − a02b06d08
−b05b06d08 + a202d09 + 2a02b05d09 + b205d09)η

2.

Eliminating ρ2 between these two equations we get a quadratic equation in η which
has at most two solutions, but when we substitute one of these two solutions of η in
g12 = 0 or g13 = 0, since there appears only ρ2, one of the two possible solutions is
negative. Hence these system at most has two solutions with ρ > 0, and there are
examples with two. Therefore by Theorem 2 we deduce that system (1) has at most
two limit cycles. This case has been studied in [8]. We give an example proving that
the bound is reached

Now we shall provide an example of the result of statement (a) of Theorem 1
having 2 limit cycles bifurcating from a zero-Hopf bifurcation. Consider the quadratic
polynomial differential system

(6)

dx

dt
= −3

2
εx− y − xz + xw,

dy

dt
= x− 3

2
εy + 2yz + yw,

dz

dt
= 3εz − x2 + 3y2 − 11z2 + 4w2 + 2zw,

dw

dt
= 3εw +

1

2
x2 +

1

2
y2 − 6z2 + w2 + 2zw.

The eigenvalues of the singular point (0, 0, 0, 0) of system (6) are −3ε

2
± i and 3ε

of multiplicity 2. From system (5) we have for system (6) that

(7)

f11(ρ, η, ξ) =
ρ

2
[−3 + η + 2ξ] = 0,

f12(ρ, η, ξ) =
1

2
[ρ2 + η(3− 11η) + ξ(4ξ + 2η)] = 0,

f13(ρ, η, ξ) =
1

2
[ρ2 + 2ξ(3 + ξ) + 2η(−6η + 2ξ)] = 0.
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Solving system (7) there are only two solutions (ρ, η, ξ) with ρ > 0, namely

P12 =

(
3

√
6

5
,∓ 3√

5
,
1

2
(3± 3√

5
)

)
.

Since

det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣∣∣∣
(ρ,ξ,η)=P12

= ±162√
5
̸= 0,

by Theorem 2 system (6) has two limit cycles for ε ̸= 0 sufficiently small.

4. Proof of statement (b) of Theorem 1

The averaged function of first order (f11(ρ, ξ, η), f12(ρ, ξ, η), f13(ρ, ξ, η)) is identically
zero if and only if

a1 = 0, b06 = −a03, b05 = −a02, c09 = c1 = c08 = c07 = 0,

d04 = −d00, d1 = d09 = d08 = d07 = 0, c04 = −c00.

Under theses conditions we can apply the averaging theory of second order. Then
from (3) we have f2 = (f21, f22, f23) = (f21(ρ, η, ξ), f22(ρ, η, ξ), f23(ρ, η, ξ) where

f21(ρ, η, ξ) =
ρ

8b2
(8a2b+ (a00a01 + a01a04 − 2a00b00 − b00b01 + 2a04b04−

b01b04 + a05c00 + b02c00 − a02c01 + a06d00 + b03d00 − a03d01)ρ
2+

4b(a13 + b16)ξ + 4(a01a09 + 2a09b04 − 2a00b09 − b01b09 + b08c03−
a08c06 + 2b09d03 − 2a09d06)ξ

2 + 4b(a12 + b15)η + 4(a01a08 + 2a08b04−
2a00b08 − b01b08 + b08c02 + 2b07c03 − a08c05 − 2a07c06+
2b09d02 + b08d03 − 2a09d05 − a08d06)ξη + 4(a01a07 + 2a07b04−
2a00b07 − b01b07 + 2b07c02 − 2a07c05 + b08d02 − a08d05)η

2),

f22(ρ, η, ξ) =
1

2b2
(b(c10 + c14)ρ

2 − (a06c00 + b03c00 − a03c01 + b00c03 + b04c03−
c03c05 − a00c06 − a04c06 + c02c06 − c06d03 + c03d06)ρ

2ξ + 2bc19ξ
2−

2(b09c03 − a09c06)ξ
3 + 2bc2η − (a05c00 + b02c00 − a02c01 + b00c02+

b04c02 − a00c05 − a04c05 + bc10 + bc14 − c06d02 + c03d05)ρ
2η

+bc18ξη − 2(b09c02 + b08c03 − a09c05 − a08c06)ξ
2η + 2bc17η

2−
2(b08c02 + b07c03 − a08c05 − a07c06)ξη

2 − 2(b07c02 − a07c05)η
3),

f23(ρ, η, ξ) =
1

2b2
(b(d10 + d14)ρ

2 + 2bd2ξ − (a06d00 + b03d00 − a03d01+

c06d02 + b00d03 + b04d03 − c03d05 − a00d06 − a04d06)ρ
2ξ + 2bd19ξ

2−
2(b09d03 − a09d06)ξ

3 − (a05d00 + b02d00 − a02d01 + b00d02 + b04d02+
c05d02 − a00d05 − a04d05 − c02d05 + d03d05 − d02d06)ρ

2η + 2bd18ξη−
2(b09d02 + b08d03 − a09d05 − a08d06)ξ

2η + 2bd17η
2 − 2(b08d02 + b07d03−

a08d05 − a07d06)ξη
2 − 2(b07d02 − a07d05)η

3).
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We isolate ρ2 from the equationf21(ρ, η, ξ) = 0 and we substitute it in f2i(ρ, η, ξ) = 0
for i = 2, 3. Then we get two polynomials (g22, g23) = (g22(η, ξ), g23(η, ξ)) of the form

g22 = C0 + C1η + C2ξ + C3η
2 + C4ηξ + C5ξ

2 + C6η
3 + C7η

2ξ + C8ηξ
2 + C9ξ

3,
g23 = D0 +D1η +D2ξ +D3η

2 +D4ηξ +D5ξ
2 +D6η

3 +D7η
2ξ +D8ηξ

2 +D9ξ
3,

where the coefficients Cj and Dj multiplied by the coefficient of ρ2 in f21(ρ, η, ξ) are
polynomials in the coefficients of system (1) except that they are divided by some
power of b. We do not provide the explicit expressions of the coefficients Ci and Di

because some of them are huge and they need several pages for writing one of such
huge coefficients.

Looking only at the coefficients of system (1) which appear in Cj and Dj we see
that C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, D0, D1, D2, D3, D4, D5, D6, D7, D8,
D9 are all independent because pairwise contain different coefficients of system (1),
with the exceptions of the coefficients C7 and C8, and D7 and D8 that share the same
coefficients of system (1). But now looking directly at the explicit expressions of C7

and C8, and of D7 and D8 we observe that they are also independent.

In short, since all coefficients of the system g22(η, ξ) = 0 and g23(η, ξ) = 0 are
independent they can be chosen in such a way that the number of real solutions of
that system corresponds to the maximum number provided by the Bezout Theorem,
i.e. nine solutions. See [12] for more details on the Bezout Theorem.

In summary, since we are interested in the solutions of system f21(ρ, η, ξ) = 0,
f22(ρ, η, ξ) = 0, f23(ρ, η, ξ) = 0, having ρ > 0, by Theorem 2 the averaging theory
of second order can produce 9 limit cycles in a zero-Hopf bifurcation at the origin of
system (1). This completes the proof of statement (b) of Theorem 1.
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