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Abstract. We investigate the flexibility of the entropy (topological and metric) for
the class of piecewise expanding unimodal maps. We show that the only restrictions
for the values of the topological and metric entropies in this class are that both are
positive, the topological entropy is at most log 2, and the metric entropy is not
larger than the topological entropy.

In order to have a better control on the metric entropy, we work mainly with
topologically mixing piecewise expanding skew tent maps, for which there are only
2 different slopes. For those maps, there is an additional restriction that the topo-
logical entropy is larger than 1

2 log 2.
Moreover, we generalize and give a different interpretation of the Milnor-Thurston

formula connecting the topological entropy and the kneading determinant for uni-
modal maps.

1. Introduction

Recently an important program in Dynamical Systems was initiated by Anatole
Katok. It concerns flexibility, that is, the idea that for a given class of dynamical
systems, dynamical invariants (for instance entropies) can take arbitrary values, sub-
ject only to natural restrictions. Various results in this direction were obtained for
instance in papers [E, EK, BKRH].

Here we investigate the family of piecewise expanding unimodal maps. While they
are not smooth, they are piecewise smooth (in fact, the maps that we consider are
piecewise linear). For those maps, by [LaY], there exists an absolutely continuous
invariant probability measure. By [LiY], this measure is unique. Therefore we can
consider its metric entropy (which is also equal to its Lyapunov exponent), as well as
the topological entropy of the map. Both entropies are positive, topological entropy
is at most log 2, and by the Variational Principle, the metric entropy is not larger
than the topological entropy. We will show (Theorem B) that those are the only
restrictions for the values of those entropies.

In order to have a better control on the metric entropy, we will work mainly with
piecewise expanding skew tent maps, for which there are only 2 different slopes. In
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Centre de Recerca Matemàtica, Barcelona, Spain. We are indebted to the anonymous referee for
finding a minor error in the first version of the paper.

1
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particular, for the topologically mixing expanding skew tent maps we prove a version
of a theorem on flexibility of entropies. For those maps, there is the additional
restriction that the topological entropy is larger than 1

2
log 2. Again, it turns out that

there are no additional restrictions (Theorem A).
There are two basic things that we have to prove in order to get Theorem A. One is

continuity of the density of the absolutely continuous invariant probability measure
as a function of a map, and the other one is existence of maps with small metric
entropy. For this, we need strong estimates on the density of this measure. Classical
methods, initiated in [LaY], using the variation and integral, are difficult and give
too weak estimates. In particular, in [BK] continuity of the density as a function of
the map is proved only at maps for which the turning point is not periodic.

The problem with this classical approach is that it is difficult to trace the trajectory
of a density under the iterates of the Frobenius-Perron operator. This is due to the
fact that most points have two preimages and the value of the image of the density at a
given point depends on the values (and derivatives, that are usually different) at those
preimages. However, for skew tent maps there is an alternative to this procedure.
Instead of looking at the whole density, we look only at its jumps (discontinuities).
Those jumps propagate along one trajectory of the map, and it is easy to keep track
of them.

As the old saying goes, nihil sub sole novum,1 and this method has been employed
by Ito, Tanaka and Nakada [ITN] over 40 years ago. They obtained a simple formula
for the densities of absolutely continuous invariant measures for skew tent maps.
Their results are not as widely known as they deserve, probably due to the fact that
the term “skew tent map” was not used at that time.2

Besides proving our main theorems about flexibility and theorems that lead to
them, we make an interesting observation. Namely, the formula of Milnor and
Thurston [MT], connecting for unimodal maps the kneading sequence to the topo-
logical entropy, can be reinterpreted easily as the fact that for a tent map the sum
of reciprocals of derivatives of all iterates of the map at the critical value is zero. It
turns out that this is also true for skew tent maps. We wonder whether this can be
translated back into a language involving some entropy-like quantities.

The paper is organized as follows. In Section 2 we give the basic definitions. In
Section 3 we prove that if the positive slope of a mixing expanding skew tent map
is large then the density of the absolutely continuous invariant probability measure
is close to 1. In Section 4 we show that an additional assumption in the preceding
section is necessary. In Section 5 we prove continuous dependence of this density on
the map, while in Section 6 we prove continuous dependence of the metric entropy
on the map. We do it for a larger class of maps, namely, we do not assume mixing.
In Section 7 we modify the standard square root construction (basically inverse of
the renormalization process) in order to stay in the class of piecewise expanding
maps. Then, in Section 8 we prove our main theorems, and in Section 9 we make the
observation we mentioned.

1Eccles. 1:10 (Vulg.)
2A search in the MathSciNet suggests that it was used for the first time in [MV].
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Figure 1. A skew tent map.

2. Definitions

An interval map f : [0, 1] → [0, 1] is called piecewise expanding if there is a finite
partition of [0, 1] into smaller intervals, and on the closure of each of those smaller
intervals f is of class C2 and |f ′| ≥ T for some constant T > 1. If f is unimodal, this
partition can be finer than the partition into pieces of monotonicity (laps).

For a unimodal map f : [0, 1] → [0, 1] we assume that f is increasing on the left
lap and decreasing on the right one. If c is the turning (critical) point for f then the
core of f is the interval [f 2(c), f(c)].

A skew tent map is a unimodal map which is linear (we will use this term in the
sense of “affine”; this is a common terminology in real analysis) on each lap (see
Figure 1). There are three popular models for skew tent maps. In the first one the
map f is defined on some interval containing 0 in its interior, 0 is the turning point,
and f(0) = 1 ([MV]). In the second and third ones f maps [0, 1] to itself. In the
second model, f(0) = f(1) = 0 ([BK]). In the third model, [0, 1] is the core of f
([ITN]). We will use the third model. Thus, in particular, we will have f(c) = 1 and
f(1) = 0. The slopes of f will be denoted by s (the left slope) and −t (the right
slope). The condition that f maps [0, 1] to itself translates to the condition 1

s
+ 1

t
≥ 1.

The two main spaces of skew tent maps that we consider are the space Y of all
piecewise expanding skew tent maps and its subspace X consisting of topologically
mixing piecewise expanding skew tent maps. For computations it is good to remember
that s, t > 1, that c = (t−1)/t, and that the fixed point is t/(t+ 1) (there is a unique
fixed point, except when f(0) = 0, and then we mean the other fixed point), see again
Figure 1. In terms of slopes, each map of Y is determined by slopes s, t > 1, subject
to 1

s
+ 1

t
≥ 1.

Lemma 2.1. For a map f ∈ Y the following properties are equivalent:

(i) f ∈ X,
(ii) f(0) is to the left of the fixed point of f ,
(iii) t > 1

s
+ 1

t
,

(iv) topological entropy of f is larger than 1
2

log 2.
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Proof. By Theorem 4.70 of [Ru], (i) implies (iv). To show that (iv) implies (ii),
suppose that f(0) is equal to or to the right of the fixed point. Then every point to
the left of the fixed point is mapped to the right of the fixed point, and vice versa.
The map f 2 restricted to the interval between 0 and the fixed point is unimodal, so
its topological entropy is at most log 2. Thus, the entropy of f is at most 1

2
log 2.

To show that (ii) implies (i), note that f(0) = 1 − s(t−1)
t

= s+t−st
t

. Thus, by
the formula (13) of [ITN] (in that paper our s, t are called a, b), our space X is the
same as the space D∗ from [ITN] (formally, in that paper the authors speak about
parameters, while we speak about maps). By Theorem 3.5 of [ITN], any map from
that space is topologically exact, so it is topologically mixing. This proves that the
properties (i), (ii) and (iv) are equivalent.

To show equivalence of (ii) and (iii), observe that 1− s(t−1)
t

< t
t+1

is equivalent to
1
t+1

< s(t−1)
t

, which is equivalent to st2 > t+ s, which is equivalent to (iii). �

We consider the spaces Y and X with the uniform (sup) topology. Parametrization
via the absolute values of the slopes gives the same topology.

By [LaY], piecewise expanding maps have an absolutely continuous invariant prob-
ability measure (acip in short). By [LiY], if the map is unimodal, this measure is
unique. We will use the notation µ for this measure and % for its density. For µ multi-
plied by a positive constant (that is, an absolutely continuous invariant measure, that
is finite, but not necessarily normed) we will use the acronym acim. Of course, by
“absolutely continuous” we mean absolutely continuous with respect to the Lebesgue
measure λ.

We will use notation from kneading theory (see, e.g., [CE] or [MT]). The itinerary
of a point x is the sequence A0, A1, . . . , where Ai = L if f i(x) < c, Ai = R if f i(x) > c,
and Ai = C if f i(x) = c. If there is no symbol C in this sequence, the itinerary is
infinite. If there is a C, the sequence terminates at the first C. The central notion is
the kneading sequence of the map f . There are two versions of it. The simpler one,
which we will use in the proof of Lemma 3.3 and in Section 4, defines the kneading
sequence as the itinerary of 1 (the image of the turning point). The other version,
which we will use in all other places, defines the kneading sequence as the limit of the
itineraries of x as x goes to 1 from the left. In this version, the symbol C does not
appear in the kneading sequence.

3. Density is close to 1

The following theorem is proved in [ITN] (see Figure 2 for some examples of nor-
malized densities obtained in this way).

Theorem 3.1. For f ∈ Y, the function

(1) %̂ =
∞∑
k=0

1

(fk)′(0)
χ

[fk(0),1]

is the density of an acim for f .

Remark 3.2. We have to explain how to understand the derivatives in (1) if 0 is
periodic of period p > 1, because formally fk is not differentiable at 0 for k > p− 2.
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In [ITN], the authors use the chain rule and pretend that f ′(c) = −t, so we can use
the same convention in (1). However, it really does not matter. We have

rp+p−1∑
k=rp

1

(fk)′(0)
χ

[fk(0),1]
=

1

(f rp)′(0)

p−1∑
k=0

1

(fk)′(0)
χ

[fk(0),1]
=

1

(f rp)′(0)

p−2∑
k=0

1

(fk)′(0)
χ

[fk(0),1]
.

We could remove 1
(fp−1)′(0)

χ
[fp−1(0),1]

above, because fp−1(0) = 1 and [1, 1] has Lebesgue

measure zero. Therefore,

∞∑
k=0

1

(fk)′(0)
χ

[fk(0),1]
=

(
∞∑
r=0

1

(f rp)′(0)

)
p−2∑
k=0

1

(fk)′(0)
χ

[fk(0),1]
.

Thus,
∑p−2

k=0
1

(fk)′(0)
χ

[fk(0),1]
is the density of an acim for f . This expression is well

defined, because it does not involve f ′(c). Therefore,

(2)

(
∞∑
r=0

1

(f rp)′(0)

)
p−2∑
k=0

1

(fk)′(0)
χ

[fk(0),1]

is also an invariant density, no matter how we define the values of (f rp)′(0). If we
use the chain rule, we can define that always f ′(c) = −t, or that always f ′(c) = s,
but also we can define that sometimes it is −t and sometimes s.

Theoretically, there is a danger that the sum
∑∞

r=0
1

(frp)′(0)
is zero. However, the

ratio of the rth and (r + 1)st terms is equal to (fp)′(0) with f ′(c) defined as s or
−t. We will see in the next lemma that this ratio is larger than 2. Consequently, our
infinite sum is non-zero.

Lemma 3.3. Assume that f ∈ Y and 0 is periodic for f of period p > 1. Then

(3)

p−1∏
k=0

|f ′(fk(0))| ≥ 1 + min(s, t2) > 2,

no matter whether f ′(c) is defined as s or −t.

Proof. Assume first that f ∈ X. In this case we prove that

(4)

p−1∏
k=0

|f ′(fk(0))| ≥ 1 + s > 2,

If the orbit of 0 includes a point from (c, 1), then the left-hand side of (4) is at least
st2, which, by Lemma 2.1, is larger than t + s, which is larger than 1 + s. The
remaining possibility is that the kneading sequence of f is RLp−2C. Then f(0) ≤ c,
so s ≥ 1−c

c
= 1

t−1 . Therefore, st ≥ 1 + s, and (4) follows.
Let us now consider the general situation of f ∈ Y. As we noticed in the proof

of Lemma 2.1, if f is not mixing, then f([0, c]) ⊂ [c, 1] and vice versa. Then f 2

restricted to [0, c] maps [0, c] to itself, and is a piecewise linear unimodal map. Thus,
if we restrict it further, to its core I (see Section 2), we get a map which is almost a
skew tent map, except that its domain is not [0, 1] and that it has a minimum at the
turning point. To remedy this, we rescale it by conjugating via the linear map from
I onto [0, 1] that reverses orientation. In such a way, we get a new skew tent map
g, with slopes t2 and −st. This process is called renormalization (see, e.g. [dMvS],
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Section II.5). If g is not mixing, we renormalize it again. This process has to stop,
because the topological entropy of g is twice the topological entropy of f , and any
map from Y has positive entropy. Thus, by Lemma 2.1, maps from Y which are
renormalizable n times, but not n+ 1 times, have entropy larger than 1

2n+1 log 2 and

smaller than or equal to 1
2n

log 2.
Now, if 0 is a periodic point of f ∈ Y with period p and the n-th renormalization

of f (call it g) is mixing, then by the chain rule, the product of the derivatives of f
along the orbit of 0 is equal to the product of the derivatives of g along the orbit of
0, but the latter one is, as we already proved, at least 1 plus the left slope of g. If
n = 0, then this slope is s, if n = 1 then it is t2. If n > 1 then it is larger than s.
This proves (3). �

By [K], %̂ is bounded below by a positive constant on the support of the acim,
which is the union of finitely many intervals. For f ∈ X, this support is just [0, 1].

Let us estimate the variation of %̂ for f ∈ X. Since f(0) is to the left of the fixed
point of f , there exists m ≥ 0 such that the kneading sequence of f is RLRmL . . . . To
see that, note that we allow m = 0. The first two symbols of the kneading sequence
are always RL, so the only possibility that it does not start with RLRmL is that it
is RLR∞, but then f(0) is the fixed point. We will denote the space of all elements
of X with the kneading sequence RLRmL . . . , where m ≤ n, by Xn. Then X is the
union of the ascending sequence of subsets Xn.

Lemma 3.4. If f ∈ Xn and s ≥ t then

(5) Var(%̂) ≤ n+ 1

s
+

2s+ 1

s2
.

Proof. Since variation of the sum is not larger than the sum of variations, by (1)
(Theorem 3.1), we have

(6) Var(%̂) ≤
∞∑
k=1

1

|(fk)′(0)|
.

This series converges because the map f is piecewise expanding.
If f ∈ Xn, then we have |(fk)′(0)| ≥ s for k = 1, 2, . . . , n+ 1 and |(fk)′(0)| ≥ s2tk−2

for k > n+ 1, so

(7) Var(%̂) ≤ n+ 1

s
+

1

s2

(
1 +

1

t
+

1

t2
+ . . .

)
=
n+ 1

s
+

1

s2
· t

t− 1
.

By Lemma 2.1, f ∈ X is equivalent to st2 − s− t ≥ 0. Solving this inequality for t
we get

t >
1 +
√

1 + 4s2

2s
≥ 1 +

1

2s
.

Since the function t 7→ t
t−1 is decreasing, we get

t

t− 1
<

1 + 1
2s

1
2s

= 2s+ 1.

Therefore, for f ∈ Xn we get the estimate (5). �
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Figure 2. The graphs of the density % for:
top left: s = 2.35051 . . . and t = 10

6
;

top right: s = 3.2339 . . . and t = 10
7

;

bottom left: s = 4.9467 . . . and t = 10
8

;

bottom right: s = 9.9837 . . . and t = 10
9

.

Now we normalize %̂, that is, we set % = %̂/
∫
%̂. Then % is the density of the acip

for f . Remember that by [LiY], the acip is unique.

Theorem 3.5. For every n and ε > 0 there exists s(ε, n) such that if f ∈ Xn has
slope s ≥ s(ε, n) then 1− ε ≤ % ≤ 1 + ε and Var(%) ≤ ε.

To illustrate Theorem 3.5 we show in Figure 2 four densities for maps from X0 with
larger and larger slope s.

Proof of Theorem 3.5. Let us start by estimating the value of %̂(0). If 0 is periodic of
period p, then

(8) |%̂(0)− 1| ≤
∞∑
i=1

1

|(f ip)′(0)|
≤

∞∑
i=1

1

si
=

1

s− 1
.

If 0 is not periodic, then %̂(0) = 1, so (8) also holds.
Now, the existence of the required s(ε, n) follows from the fact that the limit as

s→∞ is 0 on of the right hand side of both (5) (Lemma 3.4) and (8). �
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4. Necessity of spaces Xn

We want to justify the assumption that f ∈ Xn in Theorem 3.5. For this we show
that if we move through different classes Xn then the limit density can be completely
different (see Figure 3).
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Figure 3. Two limit densities for f(0) = a = 0.4 (left picture) and
f(0) = a = 0.49 (right picture).

Let us fix a ∈ (0, 1/2) and take the skew tent map f with f(0) = a and the kneading
sequence RLR2nC (then the orbit of the turning point is the Štefan periodic orbit of
period 2n+ 3). For k = 0, 1, . . . , 2n, set

(9) xk = fk(a) =
t

t+ 1
+

(
a− t

t+ 1

)
(−t)k.

Let % be the density of the acim, normalized by %(0) = 1 (so, since the only preimage
of 0 is 1, and % is invariant under the Frobenius-Perron operator, we have %(1) = t).
The function % is constant on [a, f(a)] and has jumps

1

s(−t)k
=

t− 1

(1− a)(−1)ktk+1

at xk, since

s =
1− a
c

=
1− a
1− 1

t

=
t(1− a)

t− 1
.

Let us concentrate on the right part of the interval (the situation on the left one
is very similar). If p is the value of % on [a, f(a)], then the value of % at x2k+1 (more
precisely, the limit from the left) is

%(x2k+1) = p−
k−1∑
j=0

t− 1

(1− a)t2j+2

= p− t− 1

(1− a)t2
· 1− 1/t2k

1− 1/t2
= p− 1

(1− a)(t+ 1)

(
1− 1

t2k

)
.
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By (9),

1

t2k
=

t
(

t
t+1
− a
)

x2k+1 − t
t+1

,

so

%(x2k+1) = p− 1

(1− a)(t+ 1)

(
1−

t
(

t
t+1
− a
)

x2k+1 − t
t+1

)
.

Since x2n+1 = 1, we have

p = t+
1

(1− a)(t+ 1)

(
1−

t
(

t
t+1
− a
)

1− t
t+1

)
=

1

1− a
.

Now let us go with n to infinity, keeping a constant. Then t goes to 1, f(a) goes
to 1 − a, and for every ε > 0 the points x2k+1 are ε-dense in [1 − a, 1] if n is large
enough. Therefore, % goes to the limit %̃, and for x ≥ 1− a we have

%̃(x) =
1

1− a
− 1

2(1− a)

(
1−

1
2
− a

x− 1
2

)
=

1

2(1− a)
+

1− 2a

4(1− a)
· 1

x− 1
2

.

Very similar computations give us

%̃(x) =
1

2(1− a)
+

1− 2a

4(1− a)
· 1

1
2
− x

for x ≤ a.
In such a way we get

(10) %̃(x) =


1

2(1−a) + 1−2a
4(1−a) ·

1
1
2
−x if x < a,

1
1−a if a ≤ x ≤ 1− a,

1
2(1−a) + 1−2a

4(1−a) ·
1

x− 1
2

if x > 1− a,

so in particular, %̃ is symmetric with respect to 1/2.
Now we have to normalize %̃ (that is, to divide it by its integral) in order to get the

limit density %. We have∫
%̃(x) dx = 2

∫ a

0

(
1

2(1− a)
+

1− 2a

4(1− a)
· 1

1
2
− x

)
dx+

1− 2a

1− a

=
a

1− a
+

1− 2a

1− a
+

1− 2a

2(1− a)

∫ a

0

1
1
2
− x

dx

= 1− 1− 2a

2− 2a
log

(
1

2
− x
) ∣∣∣∣a

0

= 1− 1− 2a

2− 2a
log(1− 2a).

Thus the limit density % of the acip is given by the function from formula (10)
divided by 1− (1− 2a) log(1− 2a)/(2− 2a).

Observe that as a goes to 1/2 then the maximal value of % (at the plateau) increases
to 2. This motivates us to make the following conjecture, with weaker and stronger
versions.

Conjecture 4.1. There exists a constant K such that for every f ∈ X the density of
the acip for f is bounded above by K.



10 LLUÍS ALSEDÀ, MICHA L MISIUREWICZ, AND RODRIGO A. PÉREZ

Conjecture 4.2. For every f ∈ X the density of the acip for f is bounded above by
2.

5. Continuous dependence of densities

The next thing to show is that the density % of the acip depends continuously on
the map. In this section we will stress the dependence on the map, so we will write
%f , %̂f , etc.

For %̂f = %̂ given by (1), let us look at its approximations %̂`,f , given by

(11) %̂`,f =
∑̀
k=0

1

(fk)′(0)
χ

[fk(0),1]
.

We would like to prove that %̂g as a function of g is continuous at any given f .
Unfortunately, this is not true, because if 0 is periodic for f , the number f ′(c) is
involved in the formula for %̂f , and it can change under arbitrarily small perturbations
of f . We need to circumvent it using Remark 3.2. We will denote the ball of radius δ
in Y (in the sup metric), centered at f by B(f, δ). We will also denote the L1 norm
by ‖ · ‖.

Lemma 5.1. Fix f ∈ Y (with slopes s and −t) and ε > 0. Then there exists δ > 0

such that for every g ∈ B(f, δ) there is a scalar γ > min(s,t2)−1
min(s,t2)+1

satisfying

(12) ‖%̂g − γ%̂f‖ < ε.

Proof. Suppose first that 0 is not periodic for f (or f(0) = 0). There exist constants
T > 1 and δ > 0 such that if g ∈ B(f, δ) then the absolute values of the slopes of g
are at least T . Then the sup distance between %̂g and %̂`,g is not larger than

∞∑
k=`+1

1

T k
=

1

T `(T − 1)
.

Let us choose ` so large that this is less than ε/3.
Observe that for α, β ∈ R and a, b ∈ [0, 1] we have

(13) ‖αχ[a,1] − βχ[b,1]‖ ≤ |α− β|+ |a− b|max(|α|, |β|).
If δ is sufficiently small, then for each k ≤ ` the points fk(0) and gk(0) are as close

to each other as we want, and the derivatives (fk)′(0) and (gk)′(0) are as close to each
other as we want. Therefore, by (13), making δ sufficiently small yields∑̀

k=1

|fk(0)− gk(0)| < ε/3,

so then ‖%̂`,f − %̂`,g‖ < ε/3. This proves that for a sufficiently small δ, if g ∈ B(f, δ),
then γ = 1, and

(14) ‖%̂g − %̂f‖ < ε.

Now we consider the case of 0 being periodic for f with period p > 1. In this
case, it is not necessarily true that for a small δ, (fk)′(0) and (gk)′(0) are close to

each other. However, this is true if we replace %̂f and %̂`,f by ̂̂%f and ̂̂%`,f , where
we change the values of f ′(f rp+p−2) to shadow the values of g′(grp+p−2) (look at the
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kneading sequence for g; if at the position rp+ p− 2 we see L, set f ′(f rp+p−2(0)) = s,
otherwise set f ′(f rp+p−2)(0)) = −t). Here we are using Remark 3.2. While always
f rp+p−2(0) = c, we are allowed to choose values for the derivative for different values
of r. With this modification, instead of (14) we get (12) for some γ.

By Lemma 3.3, we have

1−
∞∑
r=1

1

(1 + min(s, t2))r
≤

∞∑
r=0

1

(f rp)′(0)
≤ 1 +

∞∑
r=1

1

(1 + min(s, t2))r
,

independently of whether our choices for f ′(f rp+p−2(0)) were as for %̂f or as for ̂̂%f .
Since the right and left expressions above equal 1− 1

min(s,t2)
and 1+ 1

min(s,t2)
respectively,

we obtain the uniform estimate γ > min(s,t2)−1
min(s,t2)+1

. �

Now we can prove the main result of this section.

Theorem 5.2. The map g 7→ %g from Y to L1([0, 1]) is continuous.

Proof. We use Lemma 5.1, but we have to switch from %̂ to % = %̂/
∫
%̂ = %̂/‖%̂‖.

Given f ∈ Y and ε > 0, let δ, g and γ be as in Lemma 5.1. We have

‖%f − %g‖ =

∥∥∥∥ %̂f
‖%̂f‖

− %̂g
‖%̂g‖

∥∥∥∥ ≤ ∥∥∥∥ γ%̂f
γ‖%̂f‖

− %̂g
γ‖%̂f‖

∥∥∥∥+

∥∥∥∥ %̂g
γ‖%̂f‖

− %̂g
‖%̂g‖

∥∥∥∥
=
‖γ%̂f − %̂g‖
γ‖%̂f‖

+ ‖%̂g‖
∣∣‖%̂g‖ − γ‖%̂f‖∣∣
γ‖%̂f‖ · ‖%̂g‖

=
‖γ%̂f − %̂g‖+

∣∣‖%̂g‖ − γ‖%̂f‖∣∣
γ‖%̂f‖

≤ 2‖γ%̂f − %̂g‖
γ‖%̂f‖

.

Thus, by Lemma 5.1,

‖%f − %g‖ ≤
2ε(min(s, t2) + 1)

(min(s, t2)− 1)‖%̂f‖
.

This shows continuity of the map g 7→ %g at f . Since f ∈ Y was arbitrary, this map
is continuous on Y. �

6. Continuous dependence of metric entropy

For g ∈ Y denote by µg the acip for g.

Theorem 6.1. The map g 7→ hµg(g) from Y to R is continuous.

Proof. By the Rohlin Lemma ([P, R]), we have

hµf (f) =

∫
log |f ′| dµf =

∫
log |f ′| %f dλ,

where λ is the Lebesgue measure.
Fix f ∈ Y. The density %f is bounded above by some constant M . There are also

constants N, η such that for every g ∈ B(f, η) the function log |g′| is bounded above
by N .

On the other hand, in view of Theorem 5.2 and since the map g 7→ log |g′| from Y
to L1([0, 1]) is continuous, for every ε > 0 there exists δ ∈ (0, η) such that∥∥ log |f ′| − log |g′|

∥∥ < ε

2M
, and

‖%f − %g‖ <
ε

2N
,
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whenever g ∈ B(f, δ). Thus,∣∣hµf (f)− hµg(g)
∣∣ =

∣∣∣∣∫ log |f ′| %f dλ−
∫

log |g′| %g dλ
∣∣∣∣

≤
∫ ∣∣ log |f ′| − log |g′|

∣∣ %f dλ+

∫
log |g′| |%f − %g| dλ

≤M
∥∥ log |f ′| − log |g′|

∥∥+N‖%f − %g‖ < ε.

�

7. Rectangular root

To switch from a map g to a map with the topological and metric entropies halved,
we need a square root procedure. This procedure is a kind of reverse to the renormal-
ization procedure (see the proof of Lemma 3.3). The traditional square root procedure
works as follows. Remember that when we say “linear” we mean what in algebra is
called “affine”.

Suppose we have a unimodal map g with an acip ν. Then we define a unimodal
map G in the following way. On [0, 1/3], G(x) = (2 + g(1 − 3x))/3, on [2/3, 1],
G(x) = 1 − x, on [1/3, 2/3] G is linear to make it continuous. Figure 4 shows g,
G and G2. For G2 the intervals [0, 1/3] and [2/3, 1] are invariant, and on each of
them G2 is linearly conjugate to g. The map G maps each of them to the other one.
All points of [1/3, 2/3], except the fixed point, are eventually mapped by iterates of
G to [0, 1/3] ∪ [2/3, 1] (except in the case when all those points are fixed points of
G2). Therefore h(G) = (1/2)h(g) and hκ(G) = (1/2)hν(g), where κ is the acip for G
obtained from ν (we will define it rigorously in a moment).

Figure 4. The square root procedure. Maps g, G and G2.

The problem with this procedure is that even if we start with a piecewise expanding
map, we end up with a map that has intervals on which the absolute value of the
slope is 1. To modify this procedure in such a way that the resulting map is also
piecewise expanding, let us look at the original procedure from the point of view of
compositions of maps.

Let ϕ be the linear, orientation reversing map, that sends the interval [0, 1/3] onto
the interval [0, 1]. Then ϕ(x) = 1 − 3x and ϕ−1(x) = (1 − x)/3. Similarly, let ψ be
the linear orientation preserving map, sending the interval [2/3, 1] onto the interval
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[0, 1]. Then ψ(x) = 3x − 2 and ψ−1(x) = (2 + x)/3. Now we see that on [0, 1/3] we
have G = ψ−1 ◦ g ◦ϕ and on [2/3, 1] we have G = ϕ−1 ◦ψ. Since G sends [0, 1/3] onto
[2/3, 1] and vice versa, on [0, 1/3] we have G2 = ϕ−1 ◦ g ◦ ϕ and on [2/3, 1] we have
G2 = ψ−1 ◦ g ◦ ψ. This explains why on both intervals G2 is linearly conjugate to g.

This also allows us to give a precise definition of the measure κ. Namely, κ is the
average of the images of the measure ν under the maps ϕ−1 and ψ−1. The equalities
from the preceding paragraph show that since ν is invariant for g, κ is invariant for
G.

If you look at Figure 4, you see nine small squares in a big square. If we change
some of them into rectangles, our procedure will work better. Therefore we will call
this procedure the rectangular root.

If g(0) > 0 then we define the rectangular root procedure by changing in the
definition of ϕ the interval [0, 1/3] to [0, (1 + ε)/3] for some sufficiently small ε > 0
(see Figure 5). The slopes of G on [0, (1 + ε)/3] are now equal to the slopes of g
divided by 1 + ε, so if ε is sufficiently small, their absolute values are still larger than
1. The slope of G on [2/3, 1] is −(1 + ε). The interval [(1 + ε)/3, 2/3] is mapped by
G onto a larger interval, so the absolute value of the slope is larger than 1 as well.

Figure 5. The rectangular root procedure when g(0) > 0. Maps g, G
and G2.

If g(0) = 0, then we simply remove the middle interval. That is, we take as ϕ the
linear orientation reversing maps, sending the interval [0, (1 + ε)/2] onto the interval
[0, 1], and as ψ the linear orientation preserving map, sending the interval [(1+ε)/2, 1]
onto the interval [0, 1]. Then we set G = ψ−1 ◦ g ◦ϕ on [0, (1 + ε)/2] and G = ϕ−1 ◦ψ
on [(1 + ε)/2, 1] (see Figure 6). As in the first case, if ε > 0 is sufficiently small, then
G is piecewise expanding.

8. Main Theorems

The first flexibility result is about mixing skew tent maps (the space X).

Theorem A. For every pair a, b ∈ R with 1
2

log 2 < a ≤ log 2 and 0 < b ≤ a
there exists a piecewise expanding mixing skew tent map f for which h(f) = a and
hµ(f) = b, where µ is the acip for f .

Proof. If log sa = a, then f ∈ X with slopes sa and −sa has topological entropy a.
By [MV, Theorem C] and the subsequent remark, there exists a number γ > 1 and a
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Figure 6. The rectangular root procedure when g(0) = 0. Maps g, G
and G2.

continuous decreasing function β : (1, γ]→ [1,∞) such that limt↘1 β(t) =∞ and for
g ∈ X we have h(g) = a if and only if the slopes of g are β(t),−t for t ∈ (1, γ]. This
in particular implies that sa ≤ γ and β(sa) = sa. Moreover, by [MV, Theorem C],
the skew tent maps with the slopes β(t),−t have the same kneading sequence for all
t, so we will be able to use Theorem 3.5 for them.

Let ft ∈ X be the function with slopes β(t) and −t, and let µt be its acip. For t = sa
this measure is also the measure with maximal entropy, so hµt(ft) = a. As t goes to
1, then β(t) goes to infinity and the turning point ct goes to 0, so by Theorem 3.5
µt([0, ct]) goes to 0. Since the partition of [0, 1] into [0, ct] and (ct, 1] is a generator,
this implies that hµt(ft) goes to 0. Therefore, by Theorem 6.1 and continuity of the
function β, there exists t such that hµt(ft) = b. �

The next theorem shows flexibility of entropies for piecewise expanding unimodal
maps.

Theorem B. For every pair a, b ∈ R with 0 < a ≤ log 2 and 0 < b ≤ a there exists
a piecewise expanding unimodal map f for which h(f) = a and hµ(f) = b, where µ is
the acip for f .

Proof. If a > 1
2

log 2, this follows from Theorem A. If a ≤ 1
2

log 2, there is n ≥ 1

such that 1
2

log 2 < 2na ≤ log 2. Then use Theorem A to find g ∈ X with h(g) = 2na
and hν(g) = 2nb, where ν is the acip for g. Finally, use n times the rectangular root
procedure (see Section 7) to get the desired f . Each time we use this procedure, both
topological and metric entropy get divided by 2. Then f is a piecewise expanding
unimodal map with h(f) = a and hµ(f) = b. �

The following proposition shows that in Theorem B we cannot replace unimodal
maps by skew tent maps.

Proposition 8.1. There is no piecewise expanding skew tent map with topological
entropy 1

4
log 2 and metric entropy smaller than 1

4
log 16

15
.

Proof. Let f ∈ Y have topological entropy h(f) = 1
4

log 2. This means that f is twice
renormalizable (see the proof of Lemma 3.3). If the slopes of f are s and −t, after
two renormalizations we get a skew tent map g with slopes s2t2 and −st3 and entropy
log 2, linearly conjugate to f 4 restricted to an invariant interval.
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Topological entropy log 2 for a unimodal map is equivalent to this map having the
kneading sequence RL∞, so for a skew tent map means that the sum of reciprocals
of the absolute values of the slopes is 1 It is well known (and vary easy to check) that
then the Lebesgue measure is invariant, so the acip is the Lebesgue measure. Thus,
we have s+ t = s2t3. Remember that we assume s, t > 1.

Set T = max(s, t). We have T 2 < s2t3 = s + t ≤ 2T , so T < 2. Hence, absolute
values of both slopes of the second renormalization g are smaller than 16. Therefore
1/16 < c < 15/16, so either λ([0, c]) > 1/16 or λ((c, 1]) > 1/16. Then,

hλ(g) > − 1

16
log

1

16
− 15

16
log

15

16
= log 16− 15

16
log 15 > log 16− log 15 = log

16

15
.

Thus, if µ is the acip for f , then hµ(f) = 1
4
hλ(g) > 1

4
log 16

15
. �

9. An interesting observation

Hidden in [ITN] is the formula called by the authors “f -expansion”. Namely, for
f ∈ Y and x ∈ [0, 1] we have, (translating to our notation)

(15) x = 1− 1

t

∞∑
k=0

1

(fk)′(x)
.

Taking y > c for which f(y) = x, we can reinterpret it as

(16) f(y) =
∞∑
k=0

1

(fk)′(y)
.

However, since (16) does not work for y < c, it does not look important. On the
other hand, if we take in (15) y = 1, we get

(17)
∞∑
k=0

1

(fk)′(1)
= 0,

which is much more interesting.
If s = t, then the left-hand side of (17) is the value of the Milnor-Thurston kneading

determinant at 1/s. However, s is the exponential of the topological entropy of f .
Thus, formula (17) is a generalization and a different interpretation of the Milnor-
Thurston formula connecting the topological entropy and the kneading determinant
for unimodal maps.
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16 LLUÍS ALSEDÀ, MICHA L MISIUREWICZ, AND RODRIGO A. PÉREZ
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