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Abstract

We provide an upper bound for the maximum number of limit cycles for the class of discontinuous piecewise

differential systems formed by two differential systems separated by the straight line x = 0, one of which is a linear

rigid center while the other is a rigid center formed of a linear part plus a homogeneous polynomial of odd degree.

We solve the extended 16th Hilbert problem for this class of discontinuous piecewise differential systems.
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1. Introduction and main results

The study of the limit cycles is one of the most important objectives in the qualitative theory of the planar

ordinary differential equations. Already in 1900 Hilbert [1] proposed a list of 23 relevant problems to be solved

during the XX century. In his 16th problem Hilbert asked for an upper bound for the number of limit cycles for

the class of planar polynomial vector fields of degree n. This problem remains unsolved for n ≥ 2. We remark that5

to provide an upper bound for the maximum number of limit cycles in general is a very difficult problem for any

class of given differential systems, non necessarily polynomial differential systems.

The study of the discontinuous piecewise differential systems, more recently also called Filippov systems, has

attracted the attention of the mathematicians during these past decades due to their applications. These piecewise

differential systems in the plane are formed by different differential systems defined in distinct regions separated10

by a curve. A pioneering work on this subject was due to Andronov, Vitt and Khaikin [2] in 1920’s, and later

on to Filippov [3] in 1988 who provide the theoretical bases for this kind of differential systems. Nowadays a vast

literature on these differential systems is available. See for instance [4] for the main theory and some applications, [5]
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for applications in electrical circuits, [6] for applications in mechanical models, [7] for applications in relay systems,

[? 8] for applications in biological models, among others. As for the smooth differential systems the study of the15

existence and location of limit cycles in the piecewise differential systems is also of great importance.

Let p ∈ R2 be a singular point of an analytic differential system in the plane. The singularity p is a center if

there exists an open neighborhood U of p such that all the solutions in U \ {p} are periodic. Denote by Tq the

period of the periodic orbit through the point q ∈ U \ {p}. We say that p is an isochronous center if Tq is constant

for all q ∈ U \ {p}. An isochronous center is uniform or rigid if the angular velocity of the vector field is the same20

for all periodic orbits in U \ {p}. In other words, an isochronous center is rigid if in polar coordinates (r, θ) defined

by x = r cos θ, y = r sin θ it can be written as ṙ = G(r, θ), θ̇ = k, where k 6= 0 is a constant. See [9, 10] for details.

After scaling the time (if necessary) it is always possible to consider θ̇ = 1 in the previous expression.

Isochronicity in the regular case has been widely studied in the last decades, see for instance [11, 12, 13, 14, 15,

16, 17] due to its importance in applications involving physical phenomena. In recent years isochronicity has also25

been explored for the discontinuous piecewise differential systems, see for instance [18, 19, 20], by considering the

coupling of two or more centers and investigating their dynamics.

The main goal of this paper is to provide the maximum number of limit cycles that can exhibit the discontinuous

piecewise differential systems formed by the coupling of two special rigid centers whose discontinuous curve is the

straight line x = 0. More precisely, in one half-plane we consider the linear rigid center

ẋ = −y, ẏ = x, (1)

while in the other half-plane, given an odd n, we consider a rigid center of the form

ẋ = −y + x

n−1∑
i=0

aix
n−i−1yi, ẏ = x+ y

n−1∑
i=0

aix
n−i−1yi, (2)

but both centers after an arbitrary affine change of variables.

Our main result is the following one.

Theorem 1.1. Consider the discontinuous piecewise differential systems formed by system (1) in x ≤ 0 after the

affine change of variables

(X,Y ) = (b1x+ b2y + d1, b3x+ b4y + d2), bi ∈ R, dj ∈ R, with i = 1, 2, 3, 4 and j = 1, 2,

and system (2) in x ≥ 0 after the affine change of variables

(X,Y ) = (c1x+ c2y +M1, c3x+ c4y +M2), ci ∈ R, Mj ∈ R, with i = 1, 2, 3, 4 and j = 1, 2,

such that their centers continue being rigid centers. Then such discontinuous piecewise differential systems have at30

most n− 2 limit cycles for n odd.

The paper is organized as follows. In section 2 we recall the basic theory of the piecewise smooth vector fields.

Section 3 brings some considerations about the rigid centers considered in this work. Theorem 1.1 is proved in

section 4. Finally section 5 closes the paper with concluding remarks.
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2. Preliminary definitions and results35

In this section we present the basic results of the theory on piecewise smooth vector fields that we need. A

discontinuous piecewise smooth vector field on an open set U ⊂ R2 is a pair of Cr-vector fields X and Y with r ≥ 1,

defined on U separated by a smooth codimension one manifold Σ. The switching manifold Σ or line of discontinuity

of the discontinuous piecewise differential system is obtained by considering Σ = h−1(0), where h : U ⊂ R2 −→ R

is a differentiable function having 0 as a regular value. Note that Σ is the separating boundary of the regions

Σ+ = {(x, y) ∈ U |h(x, y) > 0} and Σ− = {(x, y) ∈ U |h(x, y) < 0}. So, a piecewise smooth vector field is provided

by

Z(x, y) =

 X(x, y), if h(x, y) ≥ 0,

Y (x, y), if h(x, y) ≤ 0.
(3)

As usual, system (3) is denoted by Z = (X,Y,Σ) or simply by Z = (X,Y ), when the separation line Σ is well

understood. In order to establish a definition for the trajectories of Z and investigate its behavior, we need a

criterion for the transition of the orbits between Σ+ and Σ− across Σ. The contact between the vector field X (or

Y ) and the switching manifold Σ is characterized by the derivative of h in the direction of the vector field X (also

known as the Lie derivative of h with respect to X), that is by the expression

Xh(p) = 〈∇h(p), X(p)〉 ,

and for i ≥ 2 we define Xih(p) =
〈
∇Xi−1h(p), X(p)

〉
, where 〈., .〉 is the usual inner product in R2. The basic results

of the discontinuous piecewise differential systems in this context were stated by Filippov [3]. We can divide the

switching manifold Σ in the following sets:

(a) Crossing set: Σc : {p ∈ Σ : Xh(x) · Y h(x) > 0}.

(b) Escaping set: Σe : {p ∈ Σ : Xh(x) > 0 and Y h(x) < 0}.40

(c) Sliding set: Σs : {p ∈ Σ : Xh(x) < 0 and Y h(x) > 0}.

The escaping Σe or sliding Σs regions are respectively defined on points of Σ where both vector fields X and

Y simultaneously point outwards or inwards from Σ while the interior of its complement in Σ defines the crossing

region Σc (see Figure 1). The complementary of the union of these regions is the set formed by the tangency points

between X or Y with Σ.45

Σ

Figure 1: Crossing, sliding and escaping regions, respectively.

A point p ∈ Σ is called a tangency point of X (resp. Y ) if it satisfies Xh(p) = 0 (resp. Y h(p) = 0). A tangency

point is called a fold point of X if X2h(p) 6= 0. Moreover, p ∈ Σ is a visible (resp. invisible) fold point of X if

X2h(p) > 0 (resp. X2h(p) < 0).
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In order to define a trajectory of a discontinuous piecewise differential system passing through a crossing point,

it is enough to concatenate the trajectories of X and Y through that point. However in the sliding and escaping50

sets we need to define an auxiliary vector field. So we consider the Filippov’s convention (see [3]) and a new vector

field is defined on Σs ∪Σe. This new vector field, called sliding vector field, is a convex linear combination of X(p)

and Y (p) in a way that Zs is tangent to Σ in the cone generated by X(p) and Y (p). In this scenario the trajectories

of Z are considered as a concatenation of trajectories of X, Y and Zs.

Furthermore given a discontinuous piecewise vector field Z = (X,Y ) we say that an equilibrium point p of X is55

real if p ∈ Σ+ and it is virtual if p ∈ Σ−. Similar definitions for the equilibria of Y .

Given a vector field F (x, y) = (F1(x, y), F2(x, y)), defined on an open set U ⊂ R2, we consider the corresponding

ordinary differential equations

ẋ =
dx

dt
= F1(x, y), ẏ =

dy

dt
= F2(x, y), (4)

where the independent variable t is called the time. Denote the flow of (4) by ϕF or simply by ϕ when there is

no danger of confusion. Also denote by ϕF (t, p) or by ϕ(t, p) the solution of system (4) by the point p such that

ϕ(0, p) = p.

When the trajectory of the vector field X through p ∈ Σ returns to Σ (by the first time) after a positive time

t1(p), called X–flight time, we define the half return map associated with X by πX(p) = φX(t1(p), p) = p1 ∈ Σ.

When the trajectory of Y through p1 ∈ Σ returns to Σ (by the first time) after a positive time t2(p1), called

Y –flight time, we define the half return map associated with Y by πY (p1) = φY (t2(p1), p1) ∈ Σ. The first return

map associated with Z = (X,Y ) is defined by the composition of these two transition maps, that is,

πZ(p) = πY ◦ πX(p) = φY (t2(p1), φX(t1(p), p))

or the reverse, applying first the flow of Y and after the flow of X. See Figure 2.60

φX(t, p)

πZ(p)
p p1 Σ

φY (t, p1)

Figure 2: First return map of a discontinuous piecewise differential system.

When the vector fields X and Y associated to Z = (X,Y ) have a first integral (see [21]), the solution curves of

the respective differential equations are contained in the level sets of the first integrals. In this scenario the first

return map can be handily computed by seeking for points in Σ that are on the same level curves of these first

integral functions. In this case we avoid working with flight times.

3. Considerations about the rigid centers65

We consider a polynomial differential system in R2, ẋ = P (x, y), ẏ = Q(x, y) of degree n. Assume that it has

a center at the origin of coordinates. Then it is well known, see for instance [10, 22], that this center is a uniform
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isochronous if and only if by doing a linear change of variables and a rescaling of time it can be written as

ẋ = −y + xf(x, y), ẏ = x+ yf(x, y) (5)

where f(x, y) is a polynomial of degree n− 1 in the variables x and y, and f(0, 0) = 0. Consider system (5). Conti

[10] proved the following result.

Proposition 3.1. Let f(x, y) =
∑n−1
i=0 aix

n−i−1yi be a homogeneous polynomial of degree n − 1. Then the origin

is a uniform isochronous center of system (5) if either n is even, or n is odd and

n−1∑
i=0

ai

∫ 2π

0

cosn−i−1 θ sini θ dθ =

n−1∑
i=0

aiIn−i−1,i = 0. (6)

When n is even,
∑n−1
i=0 ai In−i−1,i = 0 always holds, because f(cos(θ + π), sin(θ + π)) = −f(cos θ, sin θ), where

f(cos θ, sin θ) =

n−1∑
i=0

ai cosn−i−1 θ sini θ.

If n odd, from the formulas of sections 2.511 e 2.512 of [23] we get that In−i−1,i = 0 when i odd, and consequently,

n−1∑
i=0

ai

∫ 2π

0

cosn−i−1 θ sini θ dθ = a0

[
2π(n− 2)!!

2
n−1
2

(
n−1
2

)
!

]
+

+

n−3
2∑

k=1

a2k

[
2π(2k − 1)!!(n− 2k − 2)!!

(n− 1)(n− 3) · · · (n− 2k + 1) 2
n−2k−1

2

(
n−2k−1

2

)
!

]
+

+ an−1

[
2π(n− 2)!!

2
n−1
2

(
n−1
2

)
!

]
,

where (2p)!! = p(p− 2)(p− 4) · · · 2 and (2p+ 1)!! = (2p+ 1)(2p− 1) · · · 3 · 1. Thus, when n is odd, hypothesis (6) is

equivalent to take

an−1 = −a0 −
2

n−1
2

(
n−1
2

)
!

(n− 2)!!

n−3
2∑
j=1

a2j


(2j − 1)!!(n− 2j − 2)!!

2
n−2j−1

2

(
n−2j−1

2

)
!

j∏
i=1

(n− 2i+ 1)

 . (7)

So in this paper under the conditions of Proposition 3.1 we shall work with rigid centers of the form (2).

We denote by

Yn(x, y) =

(
−y + x

n−1∑
i=0

aix
n−i−1yi, x+ y

n−1∑
i=0

aix
n−i−1yi

)
the vector field associated to system (2). Equivalently in polar coordinates system (2) writes

ṙ = rn
n−1∑
i=0

ai cosn−i−1 θ sini θ

θ̇ = 1.

(8)

System (8) has the first integral

Hn(r, θ) =
1

(1− n)rn−1
−
n−1∑
i=0

ai

∫
cosn−i−1 θ sini θdθ. (9)
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So in Cartesian coordinates the first integral of system (2) becomes

Hn(x, y) =
1

(1− n)(x2 + y2)
n−1
2

−
n−1∑
i=0

ai

∫
xn−iyi

(x2 + y2)
n+1
2

dy.

By coupling the two rigid centers (1) and (2) we can consider the piecewise smooth vector field

Z(x, y) =

 Yn(x, y), x ≥ 0,

X(x, y), x ≤ 0,
(10)

where X(x, y) = (−y, x). Observe that the switching manifold is the straight line Σ = h−1(0), where h(x, y) = x.

Since the vector fields X and Yn associated with the piecewise smooth vector field Z = (Yn, X) are integrable,

then the solution curves of the respective differential equation are contained in the level sets of their respective first

integrals. Thus the first return map associated with the discontinuous piecewise vector field Z can be computed by

seeking for points in the switching manifold Σ that are on the same level curves of these first integrals. In this way

for a limit cycle of the discontinuous piecewise differential system associated with Z given by (10) which has two

intersecting points (0, y1) and (0, y2) with the line of discontinuity Σ = {x = 0}, its coordinates y1 and y2 must be

an isolated zero of the set of equations
F (0, y1) = F (0, y2),

Hn(0, y1) = Hn(0, y2),

or, in polar coordinates,


F (r0, π/2) = F (R0, 3π/2),

Hn(r0, π/2) = Hn(R0, 3π/2),

where (r0, π/2) and (R0, 3π/2) are the respective intersecting points (0, y1) and (0, y2) in polar coordinates. Now,

we move towards finding the integral
∫

cosn−i−1 θ sini θdθ in order to have a complete characterization of the first70

integral Hn which is of paramount importance in this work.

3.1. n odd

We consider that n is odd. Then we have that

n−1∑
i=0

ai

∫
cosn−i−1 θ sini θdθ = a0

∫
cosn−1 θdθ +

n−1
2∑
j=1

a2j−1

∫
cosn−2j θ sin2j−1 θdθ+

+

n−3
2∑
j=1

a2j

∫
cosn−1−2j θ sin2j θdθ + an−1

∫
sinn−1 θdθ.

By formulas 2.512(2), 2.512(4), 2.512(1), and 2.511(2) of [23] we get

Ω0 =

∫
cosn−1 θdθ =

sin θ

n− 1

cosn−2 θ +

n−3
2∑

k=1

(n− 2)(n− 4) · · · (n− 2k) cosn−2k−2 θ

2k
(
n−3
2

) (
n−5
2

)
· · ·
(
n−1
2 − k

)
+

(n− 2)!!θ

2
n−1
2 (n−1

2 )!
,

Ω2j−1 =

∫
cosn−2j θ sin2j−1 θdθ = −cosn−2j+1 θ

n− 1

[
sin2j−2 θ +

j−1∑
k=1

2k(j − 1)(j − 2) · · · (j − k) sin2j−2k−2 θ

(n− 3)(n− 5) · · · (n− 2k − 1)

]
,
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Ω2j =

∫
cosn−1−2j θ sin2j θdθ

= −cosn−2j θ

n− 1

[
sin2j−1 θ +

j−1∑
k=1

(2j − 1)(2j − 3) · · · (2j − 2k + 1) sin2j−2k−1 θ

(n− 3)(n− 5) · · · (n− 2k − 1)

]
+

+
(2j − 1)!!

(n− 1)(n− 3) · · · (n− 2j + 1)

[
(n− 2j − 2)!! θ

2
n−2j−1

2 (n−2j−1
2 )!

+
sin θ

n− 1− 2j
·

·

cosn−2j−2 +

n−2j−3
2∑

k=1

(n− 2j − 2)(n− 2j − 4) · · · (n− 2j − 2k) cosn−2j−2k−2 θ

2k
(
n−2j−3

2

) (
n−2j−5

2

)
· · ·
(
n−2j−1

2 − k
)

 ,
and

Ωn−1 =

∫
sinn−1 θdθ = − cos θ

n− 1

sinn−2 θ +

n−3
2∑

k=1

(n− 2)(n− 4) · · · (n− 2k) sinn−2k−2 θ

2k
(
n−3
2

) (
n−5
2

)
· · ·
(
n−1
2 − k

)
+

(n− 2)!!θ

2
n−1
2 (n−1

2 )!
.

Therefore the first integral Hn given by (9) for n odd can be written as

Hn(r, θ) =
1

(1− n)rn−1
− a0Ω0 −

n−1
2∑
j=1

a2j−1Ω2j−1 −

n−3
2∑
j=1

a2jΩ2j − an−1Ωn−1.

In Cartesian coordinates we obtain that Hn can be expressed in the form

Hn(x, y) =
−1

(n− 1)(x2 + y2)
n−1
2

−

a0

 y

(x2 + y2)
1
2 (n− 1)

 xn−2

(x2 + y2)
n−2
2

+

n−3
2∑

k=1

xn−2k−2
∏k
i=1(n− 2i)

2k(x2 + y2)
n−2k−2

2

∏k
i=1

(
n−1
2 − i

)
+

(n− 2)!! arctan (y/x)

2
n−1
2 (n−1

2 )!


−

n−1
2∑
j=1

a2j−1

{
−xn−2j+1

(x2 + y2)
n−2j+1

2 (n− 1)

(
y2j−2

(x2 + y2)j−1
+

j−1∑
k=1

2ky2j−2k−2
∏k
i=1(j − i)

(x2 + y2)
2j−2k−2

2

∏k
i=1(n− 2i− 1)

)}
−

n−3
2∑
j=1

a2j

{
−xn−2j

(x2 + y2)
n−2j

2 (n− 1)

(
y2j−1

(x2 + y2)
2j−1

2

+

j−1∑
k=1

y2j−2k−1
∏k
i=1(2j − 2i+ 1)

(x2 + y2)
2j−2k−1

2

∏k
i=1(n− 2i− 1)

)
+

(2j − 1)!!∏j
i=1(n− 2i+ 1)

 y

(x2 + y2)
1
2 (n− 2j − 1)

 xn−2j−2

(x2 + y2)
n−2j−2

2

+

n−2j−3
2∑

k=1

xn−2j−2k−2
∏k
i=1(n− 2j − 2i)

2k(x2 + y2)
n−2j−2k−2

2

∏k
i=1

(
n−2j−1

2 − i
)


+
(n− 2j − 2)!! arctan (y/x)

2
n−2j−1

2 (n−2j−1
2 )!

)}
− an−1

{
−x

(x2 + y2)
1
2 (n− 1)

(
yn−2

(x2 + y2)
n−2
2

+

+

n−3
2∑

k=1

yn−2k−2
∏k
i=1(n− 2i)

2k(x2 + y2)
n−2k−2

2

∏k
i=1

(
n−1
2 − i

) +
(n− 2)!! arctan (y/x)

2
n−1
2 (n−1

2 )!

 .
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By considering hypothesis (7) of Conti we have that the arctangent functions will cancel out and, after straightfor-

ward calculations, we get

Hn(x, y) =
1

(x2 + y2)
n−1
2

− 1

n− 1
− a0yx

n−2

n− 1
− a0
n− 1

n−3
2∑
j=1

yxn−2j−2
(
x2 + y2

)j∏j
i=1(n− 2i)

2j
∏j
i=1

(
n−1
2 − i

) +

+

n−1
2∑
j=1

a2j−1
y2(j−1)xn−2j+1

n− 1
+

n−1
2∑
j=1

a2j−1

n− 1

(
j−1∑
k=1

2ky2j−2k−2xn−2j+1
(
x2 + y2

)k∏k
i=1(j − i)∏k

i=1(n− 1− 2i)

)
+

+

n−3
2∑
j=1

a2j
y2j−1xn−2j

n− 1
+

n−3
2∑
j=1

a2j
n− 1

(
j−1∑
k=1

y2j−2k−1xn−2j
(
x2 + y2

)k∏k
i=1(2j − 2i+ 1)∏k

i=1(n− 1− 2i)

)

−

n−3
2∑
j=1

a2j
(2j − 1)!!yxn−2j−2

(
x2 + y2

)j
(n− 1− 2j)

∏j
i=1(n− 2i+ 1)

−

n−3
2∑
j=1

a2j(2j − 1)!!

(n− 1− 2j)
∏j
i=1(n− 2i+ 1)

·

·

n−2j−3
2∑

k=1

yxn−2j−2k−2
(
x2 + y2

)j+k∏k
i=1(n− 2j − 2i)

2k
∏k
i=1

(
n−1−2j

2 − i
)

− a0xy
n−2

n− 1

− a0
n− 1

n−3
2∑
j=1

xyn−2j−2
(
x2 + y2

)j∏j
i=1(n− 2i)

2j
∏j
i=1

(
n−1
2 − i

) +

(
2

n−1
2

(
n−1
2

)
!

(n− 1)(n− 2)!!

)
·

n−3
2∑
j=1

a2j(2j − 1)!!(n− 2j − 2)!!

2
n−2j−1

2

(
n−2j−1

2

)
!
∏j
i=1(n− 2i+ 1)

 ·
−xyn−2 −

n−3
2∑
j=1

xyn−2j−2
(
x2 + y2

)j∏j
i=1(n− 2i)

2j
∏j
i=1

(
n−1
2 − i

)
 .

(11)

4. Systems (1) and (2) after an affine change of variables

The discontinuous piecewise vector field (10) has the centers of both smooth vector fields placed at the origin

of coordinates. Now, we give the expression of the differential systems (1) and (2) and their first integrals after the

respective general affine change of variables

(X,Y ) = (b1x+ b2y + d1, b3x+ b4y + d2), bi ∈ R, dj ∈ R, with i = 1, 2, 3, 4 and j = 1, 2, (12)

and

(X,Y ) = (c1x+ c2y +M1, c3x+ c4y +M2), ci ∈ R, Mj ∈ R, with i = 1, 2, 3, 4 and j = 1, 2. (13)

We want to investigate the number of limit cycles of the discontinuous piecewise vector field (10) after these changes

of variables. However after these changes of variables we still want that the centers of each smooth vector field are75

rigid.

First we consider system (1) in x ≤ 0 after the change of variables (12). The new linear system has a center at

P = (d1, d2). Doing the change of variables (X,Y ) = (z + d1, w + d2) we get

ż = − (b1b3 + b2b4) z

b2b3 − b1b4
+

(
b21 + b22

)
w

b2b3 − b1b4
,

ẇ = −
(
b23 −+b24

)
z

b2b3 − b1b4
+

(b1b3 + b2b4)w

b2b3 − b1b4
.

(14)
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Equivalently in polar coordinates we obtain

ṙ =
r
(
(b21 + b22 − b23 − b24) sin(2θ)− 2(b3b1 + b2b4) cos(2θ)

)
2(b2b3 − b1b4)

,

θ̇ =
−(b21 + b22) sin2 θ + (b1b3 + b2b4) sin(2θ)−

(
b23 + b24

)
cos2 θ

b2b3 − b1b4
.

Using polar coordinates we conclude that (14) has a rigid center at the origin if and only if b1 = b4 and b2 = −b3
and (14) writes

ż = −w ẇ = z.

So  Ẋ = −Y + d2

Ẏ = X − d1
or, in polar coordinates


ṙ = d2 cos θ − d1 sin θ,

θ̇ =
r − d2 sin θ − d1 cos θ

r
.

(15)

Observe that a first integral of (15) is

F1(X,Y ) = (X − d1)2 + (Y − d2)2 or, in polar coordinates, F1(r, θ) = (r cos θ − d1)2 + (r sin θ − d2)2. (16)

On the other hand we consider in x ≥ 0 system (2) with the affine change of variables (13). The new system has a

center at Q = (M1,M2). Doing the change of variables (X,Y ) = (z +M1, w +M2) we get

ż =

(
c21 + c22

)
w − (c1c3 + c2c4) z

c2c3 − c1c4
+ z (c2c3 − c1c4) 1−n

(
n−1∑
i=0

ai (c3z − c1w) i (c2w − c4z) n−i−1

)
,

ẇ =
(c1c3 + c2c4)w −

(
c23 + c24

)
z

c2c3 − c1c4
+ w (c2c3 − c1c4) 1−n

(
n−1∑
i=0

ai (c3z − c1w) i (c2w − c4z) n−i−1

)
,

(17)

or equivalently in polar coordinates

ṙ =
r
((
c21 + c22 − c23 − c24

)
sin(2θ)− 2 (c1c3 + c2c4) cos(2θ) + 2 (c2c3 − c1c4) 2−n · S

)
2c2c3 − 2c1c4

,

θ̇ = − (c1 sin θ − c3 cos θ)2 + (c2 sin θ − c4 cos θ) 2

c2c3 − c1c4
,

where

S =

n−1∑
i=0

ai (c3r cos θ − c1r sin θ) i (c2r sin θ − c4r cos θ) n−i−1.

Again using polar coordinates we conclude that this system has a rigid center at the origin if and only if c4 = c1

and c3 = −c2. Under these conditions system (17) writes

ż = −w + z
(
c21 + c22

)
1−n

(
n−1∑
i=0

ai (c2z + c1w) i (c1z − c2w) n−i−1

)
,

ẇ = z + w
(
c21 + c22

)
1−n

(
n−1∑
i=0

ai (c2z + c1w) i (c1z − c2w) n−i−1

)
,

or equivalently

ṙ = rn
(
c21 + c22

)
1−n

n−1∑
i=0

ai (c1 sin θ + c2 cos θ) i (c1 cos θ − c2 sin(θ)) n−i−1,

θ̇ = 1.

9



Now if we go back through the change of variables (X,Y ) = (z +M1, w +M2) we get

Ẋ = M2 − Y +
(
c21 + c22

)
1−n (X −M1)

(
n−1∑
i=0

ai (c2 (X −M1) + c1 (Y −M2)) i (c1 (X −M1)− c2 (Y −M2)) n−i−1

)
,

Ẏ = X −M1 +
(
c21 + c22

)
1−n (Y −M2)

(
n−1∑
i=0

ai (c2 (X −M1) + c1 (Y −M2)) i (c1 (X −M1)− c2 (Y −M2)) n−i−1

)
.

(18)

Denote by Y 1
n (X,Y ) the vector field associated with system (18). Observe that the first integral of system (18) is

the first integral of the original vector field evaluated at the change of variables, that is,

F2(X,Y ) = Hn

(
c1 (X −M1) + c2 (M2 − Y )

c21 + c22
,
c1 (Y −M2)− c2 (M1 −X)

c21 + c22

)
where Hn is given by (11). Notice that F2(X,Y ) can be written as

F2(X,Y ) =
f1(X,Y )

g1(X,Y )
,

where g1(X,Y ) =
[
(X −M1)2 + (Y −M2)2

]n−1
2 and f1(X,Y ) = F2(X,Y )g1(X,Y ) is a polynomial of degree n−1.

From equation (16) we have that F1(X,Y ) = (X−d1)2+(Y−d2)2 is a first integral ofX1(X,Y ) = (−Y + d2, X − d1).

So the limit cycles for the discontinuous piecewise vector field

Z1(X,Y ) =

 Y 1
n (X,Y ), x ≥ 0,

X1(X,Y ), x ≤ 0,
(19)

are given by the solutions of the following system of equations

F1(0, y0) = F1(0, y1), F2(0, y0) = F2(0, y1). (20)

From the first equation of (20) we obtain that y1 = −y0 + 2d2, for every y0, y1 ∈ R with y0 6= y1. Substituting this

expression into the second equation of (20) we get F2(0, y0) = F2(0,−y0 + 2d2), that is,

f1(0, y0) g1(0,−y0 + 2d2)− g1(0, y0) f1(0,−y0 + 2d2) = 0. (21)

Since n is odd, we get that (n − 1)/2 is an integer and g1 is also a polynomial of degree n − 1. Therefore

equation (21) is a polynomial of degree 2(n− 1) and therefore has at most 2(n− 1) zeros. So we conclude that the

discontinuous piecewise differential system Z1 can have at most n− 1 limit cycles because if y0 is a solution of (21)

then y1 = −y0 + 2d2 is also a solution of (21), and every pair (y0, y1 = −y0 + 2d2) can determine a limit cycle.80

However, y0 = d2 is always a solution of (21) so that this solution corresponds to the periodic orbit of X1 that is

tangent to the separation line given by the y-axis. Therefore this solution does not correspond to a limit cycle. So,

we can reduce the upper bound to n− 2.

5. Conclusion and Further Directions

In this paper we have studied the upper bound for the maximum number of limit cycles of discontinuous piecewise85

differential systems formed by two differential systems separated by the straight line x = 0, one of which is a linear

rigid center while the other is a rigid center formed of a linear part with a homogeneous polynomial nonlinear part

of degree n odd. We have proved that they can have at most n − 2 limit cycle. So the extended 16th Hilbert

problem to these class of piecewise differential systems has been solved.
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