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Introduction

Thirty years ago Sharkovskii [31] proved his beautiful theorem (see Theorem 1.3.1).
Unfortunately, this theorem remained unknown to western (english-speaking) math-
ematicians until 1977, when Stefan published his paper [32] about it. In spite of this,
it quickly became a mainstay of the theory of one dimensional dynamical systems,
strongly stimulating its development.

In the meantime (1975), the famous paper of Li and Yorke Period three implies
chaos[25] came out. It also contributed very much to popularize the study of the
discrete dynamics and chaos.

As it is well known, Sharkovskii’s Theorem characterizes the possible sets of
periods of all periodic orbits of continuous maps of a closed interval (or the real
line) into itself. This is done by means of a curious total ordering of the natural
numbers. From this, in particular, it follows trivially part of the result of Li and
Yorke. Moreover, Sharkovskii’s Theorem opened new, interesting and more general
problems. For instance, the theorem says nothing about the behaviour of the rele-
vant periodic orbits, which, as it has been shown later by several authors, gives a
lot of information in the study of the dynamics of the system under consideration.

One of the important questions in the theory of dynamical systems is to be
able to somehow measure the complexity of a system or, in other words, the degree
of “chaos” present in it. Various notions of chaotic behaviour can be considered.
However, maybe the better way to estimate chaos is to compute the topological
entropy of a system.

The study of certain classes of periodic orbits may shed light on these problems.
Formerly they were considered simple and minimal orbits (see, for instance, [32],
[11], [17], [7], [19]). Afterwards the notion of primary orbit arose. This kind of
orbits differs from the previous ones in the fact that they are independent on the
a priori knowledge of the Sharkovskii’s Theorem. They depend only on the class
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of maps under consideration, and this is why they are useful. For instance, the
characterization of the primary orbits of interval maps, together with the usual
graph techniques, allows to give a new proof of Sharkovskii’s Theorem, independent
on the a priori knowledge of the Sharkovskii’s ordering. The characterization of the
primary orbits also yields good estimates of the topological entropy, by using the
method introduced in [13].

The notion of a primary orbit was stated formally in [2] and, simultaneously,
in [8] where it was called —-minimal. The aim of the first paper was, precisely,
to develop and use the above technique to generalize Sharkovskii’s Theorem to the
case of continuous self maps of the space consisting of three intervals joined by a
common endpoint —the Y or the 3-star—, with this point fixed. This class of maps
will be called Y in the memory.

In this memory, we try to continue and generalize the work done for interval
maps and maps of ) in these directions. In particular we try to understand the
primary orbits in the n-star (n intervals joined by a common endpoint), and derive
the dynamical properties of this understanding. Since our task relies heavily on the
study done for the Y in [2], we first do a quick review of this paper in Chapter 1.
Mainly, we summarize in it all the definitions and results from [2] we are using in
the rest of the memory. Also we take our chance to state them in the more general
setting of the n-stars.

Chapter 2 continues the study of the Y done in [2], in the sense that we apply
the characterization of the primary orbits given there to the study of the topological
entropy. Of course, we use also the graph techniques of [13]. In this way, the best
lower bounds of the topological entropy for maps of ), depending on the set of
periods, are obtained.

The description of the sets of periods for maps of the interval is done in terms
of the Sharkovskii’s ordering. Baldwin, in [9], has shown that the situation in the
n-star (he calls it the n-od) is similar. That is, the sets of periods of continuous self
maps of the n-star can be described by means of a finite set of orderings. In [2] the
sets of periods of maps of ) are also described by means of three orderings. In both
cases Sharkovskii’s ordering appears. However the coincidences finish there. The
essential difference between Baldwin’s orderings (except Sharkovskii’s one) and the
orderings given in [2] is that these are linear (total), whereas those are partial. In
the first part of Chapter 3 we show that the sets of periods of continuous self maps
of the n-star can also be described by means of a finite set of linear orderings, which
can be associated to some rational numbers. These orderings are constructed in a
“number theoretical” way and they do the same job as Baldwin’s orderings.
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Intimately related with the description of the sets of periods, and with the notion
" of chaos, is a feature of maps we call full periodicity. We say that a map has full
periodicity if its set of periods is the whole set of natural numbers. Sharkovskii’s
Theorem (and Li and Yorke’s result) state, in particular, that if a continuous self
map of the interval has a periodic point of period 3 then it has full periodicity.
Mumbrt, in [28], solves the analogous problem in the Y (several years before the
publication of [2], where the solution of this problem was obtained as a corollary).
Namely he finds that, for a map of ) to have full periodicity, it suffices that its set
of periods contains the numbers 2, 3, 4, 5 and 7.

These results give rise to the question of finding minimal subsets of natural
numbers with the property that, for any map of certain class to have full periodicity,
it suffices that its set of periods contains some of those subsets. Sets of numbers with
those properties are called full periodicity kernels. In Chapter 3 we also characterize
the full periodicity kernels for continuous self maps of the n-stars, by using Baldwin’s
characterization of their sets of periods.

In the last chapter we deal again with primary orbits. We try to generalize the
characterization of primary orbits done in [2] to the n-star. There, the primary orbits
were classified into two categories: directed and undirected. Roughly speaking, we
can say that directed orbits are the “genuine” primary orbits in the Y, whereas
the undirected ones are “inherited” in some way from the interval. On trying to
generalize the characterization of the primary orbits, we see at once with suitable
examples that for n > 4 directed primary orbits no longer have the good properties
they had in the Y. The most striking fact about this class of orbits is that there
is no bound for the number of coloured arrows they can have. This point will be
discussed in detail in Section 4.5. Therefore we restrict ourselves to consider the class
of periodic orbits we call strongly directed. In Chapter 4 we completely characterize
the primary strongly directed orbits for self maps of the 4-star with the branching
point fixed. These orbits are in turn classified into several families, some of them
not easy to describe. For the two simplest ones we give a characterization which is

independent of n.

By looking at examples of primary orbits of the n-star with n > 4, we still
have the impression that the strongly directed orbits are the “genuine” primary
orbits of star maps, while the other primary orbits (undirected and directed not
strongly directed) are “inherited” somehow from stars of smaller n. It would be
interesting to understand this point in depth and, of course, to be able to extend
the characterization of the primary orbits to these families for the 4-star. We believe
that the main difficulties of the characterization of the primary orbits of continuous
self maps of the n-star (n > 4) having the branching point fixed, are already present



in the case n = 4. Thus, the knowledge of the full characterization for the case
n = 4, will give us good clues on how to prosecute this task to the general case.
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