

On the cyclicity of Kolmogorov polycycles

David Marín^{1,2} and **Jordi Villadelprat**^{⊠3}

¹Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
²Centre de Recerca Matemàtica, Edifici Cc, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Barcelona), Spain
³Departament d'Enginyeria Informàtica i Matemàtiques, ETSE, Universitat Rovira i Virgili, 43007 Tarragona, Spain

> Received 11 April 2022, appeared 30 July 2022 Communicated by Gabriele Villari

Abstract. In this paper we study planar polynomial Kolmogorov's differential systems

$$X_{\mu} \quad \begin{cases} \dot{x} = xf(x,y;\mu), \\ \dot{y} = yg(x,y;\mu), \end{cases}$$

with the parameter μ varying in an open subset $\Lambda \subset \mathbb{R}^N$. Compactifying X_{μ} to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ , that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all $\mu \in \Lambda$. We are interested in the cyclicity of Γ inside the family $\{X_{\mu}\}_{\mu \in \Lambda}$, i.e., the number of limit cycles that bifurcate from Γ as we perturb μ . In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N = 3 and N = 5, and in both cases we are able to determine the cyclicity of the polycycle for all $\mu \in \Lambda$, including those parameters for which the return map along Γ is the identity.

Keywords: limit cycle, polycycle, cyclicity, asymptotic expansion.

2020 Mathematics Subject Classification: 34C07, 34C20, 34C23.

1 Introduction and main results

The present paper is motivated by the results obtained by Gasull, Mañosa and Mañosas [8] with regard to the *stability* of an unbounded polycycle Γ in the Kolmogorov's polynomial differential systems

$$\begin{cases} \dot{x} = xf(x,y), \\ \dot{y} = yg(x,y). \end{cases}$$

These systems are widely used in ecology to describe the interaction between two populations, see [18] for instance. That being said, the stability of the polycycle is not the main issue to

[™]Corresponding author. Email: jordi.villadelprat@urv.cat