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Abstract. In this paper we study quadratic polynomial vector fields
on C3 with 8 isolated singularities. Either two polynomial vector fields
share six singularities with the same position and spectra and the re-
maining two singularities have some relation on their spectra, or two
polynomial vector fields share five singularities with the same position
and spectra and the remaining three singularities have some other rela-
tion on their spectra. Under these conditions we determine the spectra
and positions of the remaining singularities. Moreover there exist two
three-parametric families of vector fields having the same singular points
and for each singular point both vector fields have the same spectrum.

1. Introduction and statement of the results

Consider polynomial vector fields on the affine space C3. We denote by
P the space of all polynomial vector fields

χ = P (x, y, z)
∂

∂x
+Q(x, y, z)

∂

∂y
+R(x, y, z)

∂

∂z

such that P , Q and R are quadratic. By Bezout’s Theorem, a generic
element of P has exactly eight isolated singularities. We denote by P8 the
space of the vector fields in P that have eight isolated singularities. Since
χ ∈ P8 has the maximum number of singularities, the determinant of the
linear part of χ at each singular point is nonzero. So the eigenvalues at any
singular point are nonzero, i.e. all singular points are non degenerate (see
for more details [5]). The space P8 is endowed with a structure of a complex
affine space identifying all the thirty coefficients of the polynomials P , Q
and R with a point of C30. This topology in the set P8 is called the topology
of the coefficients, and P8 is an open subset of P.

We say that two vector fields χ and χ̂ of P8 are affine equivalent if there
exists an affine transformation T that maps χ into χ̂ that is

χ̂(x, y, z) = DT · χ(T−1(x, y, z)).
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We denote by sing(χ) the singular points of χ. If p ∈ sing(χ) we define its
spectrum as the (unordered) triple of eigenvalues of the linearization matrix

Dχ(p) =

Px Py Pz

Qx Qy Qz

Rx Ry Rz

 |(x,y,z)=p.

Note that the spectrum of the matrix M = Dχ(p) carries the same infor-
mation as the ordered triple

(1) eq:triple (trM, tr(M2), detM).

Indeed, the characteristic polynomial is given by

−λ3 + trMλ2 +
1

2

(
(trM)2 − (tr(M2)

)
λ+ detM.

We say that two vector fields of P8 have the same spectra of singularities
if the set of all triples (1) associated to their singularities coincides. Note
that the above definition takes into account the spectra of singularities and
does not take into account the position of them. Our ultimate main aim is to
understand the pair of vector fields that share both position and spectra of
singularities, that is, to provide results in the following direction: consider
two polynomial vector fields χ and χ̂ having each of them 8 singularities
that we denote respectively by p1, . . . , p8 and p̂1, . . . , p̂8. Assume that

pi = p̂i for i = 1, . . . ,M and Dχ(pi) ∼ Dχ̂(p̂i) for i = 1, . . . , N,

where A ∼ B denotes that the matrices A and B are similar, that is they
have the same spectrum. Then for certain values of M and N we want to
see when

pi = p̂i and Dχ(pi) ∼ Dχ̂(p̂i) for i = 1, . . . , 8.

Once it has been established that two vector fields agree on the positions
of their singularities and their corresponding spectra, it is natural to ask
whether these two vector fields are identical or not. This question gives
rise to the concept of twin vector fields. We say that two different vector
fields are twin vector fields if they agree on position and spectra at all their
singularities. On our notation this corresponds to M = N = 8. The cor-
responding question for quadratic vector fields in the plane was studied in
[6] and for general polynomial vector fields in [4]. There the author proved
that if two quadratic vector fields in the plane have the same spectra then
after an affine transformation we can achieve that all the points share the
same spectra and position and it is proved that a generic vector field indeed
admits a unique twin vector field. Similar results for the space are not avail-
able in the literature and this is the main aim of this paper. The fact that
the dimension is greater makes the analysis much more intricate in particu-
lar because any two vector fields χ and χ̂ in general position after a suitable
affine map on C3 can have four singularities in the same position (and for
them if in addition both vector fields have the same spectra we can assume
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without loss of generality that two vector fields that have the same spectra),
but there are still four free points. If instead of quadratic vector fields we
take polynomial vector fields of higher degree the analysis gets even much
more complicated, so a good starting point in the case of the space is to work
with quadratic polynomial vector fields. The main tool in the proofs will be
the well-known Euler-Jacobi formula (see below for more details) and that
is the reason why in the paper we shall focus on polynomial vector fields.
Such a formula will be applied in a clever and convenient way that will lead
to have some control on the position and spectra of the singularities of a
polynomial vector field. The following are our results.

⟨thm.0⟩
Theorem 1. Assume that two vector fields χ and χ̂ ∈ P8 have the same
spectra and there are seven singularities sharing the same position and spec-
tra. Then the eight singularities share position and spectra.

Related results in the plane were obtained in [6].

The proof of Theorem 1 is given in section 2.
⟨t.1⟩

Theorem 2. Assume that two vector fields χ and χ̂ in P8 have the same
spectra, and that they have six singularities sharing positions and spectra
denoted by p1, . . . , p6. We denote by p7 and p8 (respectively p̂7 and p̂8)
the remaining singularities of χ (respectively χ̂). Assume that trDχ(p7) ̸=
trDχ(p8), then either χ = χ̂ or χ and χ̂ are twin vector fields.

The proof of Theorem 2 is given in section 3.
⟨t.2⟩

Theorem 3. Assume that the vector fields χ and χ̂ in P8 have the same
spectra, and share five singularities p1, . . . , p5 with the same positions and
spectra. Denote by p6, p7, p8 (respectively p̂6, p̂7, p̂8) the remaining singular-
ities of χ (respectively χ̂) and assume that trDχ(p6) ̸= 0. If detDχ(p7) ̸=
−detDχ(p8), trDχ(p7) = trDχ(p8) and trDχ(p6) ̸= trDχ(p7), then there
are six singularities sharing positions and spectra and

(a) either χ = χ̂, or χ and χ̂ are twin vector fields,
(b) or x̂8 = x8 = x̂7 = x7, ẑ8 = z8 = ẑ7 = z7, ŷk ̸= yk for k = 7, 8, and

equations (5) hold,
(c) or ŷ8 = y8 = ŷ7 = y7, ẑ8 = z8 = ẑ7 = z7, x̂k ̸= xk for k = 7, 8, and

equations(4) hold,
(d) or x̂8 = x8 = x̂7 = x7, ŷ8 = y8 = ŷ7 = y7, ẑk ̸= zk for k = 7, 8, and

equations (6) hold,
(e) or x̂8 = x8 = x̂7 = x7, ŷk ̸= yk, ẑk ̸= zk for k = 7, 8, and equa-

tions (5) and (6) hold,
(f) or ŷ8 = y8 = ŷ7 = y7, x̂k ̸= xk, ẑk ̸= zk for k = 7, 8, and equa-

tions (4) and (6) hold,
(g) or ẑ8 = z8 = ẑ7 = z7, x̂k ̸= xk, ŷk ̸= yk for k = 7, 8, and equa-

tions (4) and (5) hold,
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(h) or x̂k ̸= xk, ŷk ̸= yk, ẑk ̸= zk for k = 7, 8, and equations (4), (5)
and (6) hold.

The proof of Theorem 3 is given in section 4.
⟨thms.1⟩

Theorem 4. Assume that two vector fields χ and χ̂ of P8 have p1, . . . , p6
singular points with the same positions and spectra. We denote by p7 and
p8 (respectively p̂7, p̂8) the remaining singularities of χ (respectively χ̂). If
p7 and p̂7 have the same spectra, then the following statements hold.

(a) The spectra of p8 and p̂8 are the same.
(b) If trDχ(p7) ̸= trDχ(p8), then either χ = χ̂, or χ and χ̂ are twin

vector fields.
(c) If trDχ(p7) = trDχ(p8), then

(c.1) either χ = χ̂, or χ and χ̂ are twin vector fields,
(c.2) or x̂k = xk, ẑk = zk, ŷk ̸= yk for k = 7, 8, and equations (5)

hold,
(c.3) or ŷk = yk, ẑk = zk, x̂k ̸= xk for k = 7, 8, and equations (4)

hold,
(c.4) or x̂k = xk, ŷk = yk, ẑk ̸= zk for k = 7, 8, and equations (6)

hold,
(c.5) or x̂k = xk, ŷk ̸= yk, ẑk ̸= zk for k = 7, 8, and equations (5)

and (6) hold,
(c.6) or ŷk = yk, x̂k ̸= xk, ẑk ̸= zk for k = 7, 8, and equations (4)

and (6) hold,
(c.7) or ẑk = zk, x̂k ̸= xk, ŷk ̸= yk for k = 7, 8, and equations (4)

and (5) hold,
(c.8) or x̂k ̸= xk, ŷk ̸= yk, ẑk ̸= zk for k = 7, 8, and equations (4),

(5) and (6) hold.

The proof of Theorem 4 is given in section 5.

We remark that Theorems 2, 3 and 4 are similar to Theorem 1 of [6],
and all these results are related in spirit to the ones for foliations on P2 of
degree two in [3], and to the ones for foliations on P2 coming from a generic
quadratic vector field on C2 in [2]. In all of them we provide conditions and
study the situation of having two vector fields agree on position and spectra
at all their singularities. Now we want to study whether the two vector fields
are identical or not, or in other words, if twin vector fields really exist. In
the following theorem we provide a family of twin vector fields.

⟨thm.3⟩
Theorem 5. There exist two three-parametric families of twin vector fields
in P8.

Note that in Theorem 5 we have constructed a positive-dimensional family
of twin vector fields, but since this family is very special it is not known
that for generic vector fields, twin vector fields exist and are unique as it
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happens in the plane where the author in [6] proves that generic quadratic
vector fields admit always a twin vector field.

2. Proof of Theorem 7
⟨sec.2⟩

The main result that we use for proving Theorems 7, is the Euler-Jacobi
formula restricted to polynomials of degree 2 in C3, which can be stated as
follows. For a proof see [1].

?⟨EJF⟩?
Theorem 6 (Euler-Jacobi formula). If P,Q and R are polynomials in
C[x, y, z] of degree 2 such that the systems P (x, y, z) = Q(x, y, z) = R(x, y, z) =
0 has exactly 8 solutions, denoted by p1, . . . , p8 ∈ C3 and let g(x, y, z) be an
arbitrary polynomial of degree at most 2, then

8∑
k=1

g(pk)

J(pk)
= 0,

where J(x, y, z) is the Jacobian determinant of P,Q and R, that is,

J(x, y, z) = det
∂(P,Q,R)

∂(x, y, z)
= det

Px Py Pz

Qx Qy Qz

Rx Ry Rz

 .

Moreover J(pk) ̸= 0 for k = 1, . . . , 8.

Before proving Theorem 1 we state and proof a proposition that will
immediately imply the proof of the theorem.

⟨t.0⟩
Proposition 7. Let χ be a vector field in P8. Denote by p1, . . . , p8 their
singularities. Then the position and the spectra of the singular point p8 is
completely determined by the position and the spectra of p1, . . . , p7.

Proof. Let χ = (P,Q,R) ∈ P8 be a vector field having p1, . . . , p8 singularities
with their spectra. Applying the Euler-Jacobi formula with g(x, y, z) = 1
we get that

8∑
k=1

1

J(pk)
=

8∑
k=1

1

detDχ(pk)
= 0,

and then we can obtain J(p8) in function of J(pk) for k = 1, . . . , 7.

Now applying the Euler-Jacobi formula with g(x, y, z) = tr(Dχ(x, y, z))
we get

8∑
k=1

tr(Dχ(pk))

J(pk)
= 0,

and so we obtain tr(Dχ(p8)) in function of tr(Dχ(pk)) and J(pk) for k =
1, . . . , 7.
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Applying the Euler-Jacobi formula with g(x, y, z) = tr(Dχ(x, y, z)2) we
get

8∑
k=1

tr(Dχ(pk)
2)

J(pk)
= 0,

and so we obtain tr(Dχ(p8)
2) in function of tr(Dχ(pk)

2) and J(pk) for k =
1, . . . , 7.

Finally applying the Euler-Jacobi formula with g1(x, y, z) = x, g2(x, y, z) =
y and g3(x, y, z) = z we get

8∑
k=1

g1(pk)

J(pk)
= 0

8∑
k=1

g2(pk)

J(pk)
= 0 and

8∑
k=1

g3(pk)

J(pk)
= 0

which determines completely the position of p8 in function of the positions
of pk and J(pk) for k = 1, . . . , 7. This completes the proof of the proposition.

□

Note that the proof of Theorem 1 follows directly from the proof of Propo-
sition 7.

3. Proof of Theorem 2
⟨sec.3⟩

We denote by ak and âk the determinant of Dχ(pk) and Dχ̂(pk), respec-

tively, and by bk and b̂k the traces of Dχ(pk) and Dχ̂(pk), respectively.
Moreover we denote by pk = (xk, yk, zk) the positions of the points for the
vector field χ, and by p̂k = (x̂k, ŷk, ẑk) the positions of the points for the
vector field χ̂.

Note that by assumptions pk = p̂k, ak = âk and bk = b̂k for k = 1, . . . , 6,
either b7 ̸= b8 with b7 ̸= 0 and b8 ̸= 0, or b8 = 0 and b7 ̸= 0, or b7 = 0 and
b8 ̸= 0. Note that without loss of generality we can assume that a7 = â7,

b7 = b̂7, a8 = â8 and b8 = b̂8.

The Euler-Jacobi formula with g1(x, y, z) = x and g2(x, y, z) = tr(Dχ(x, y, z))x
yield

x7
a7

+
x8
a8

=
x̂7
a7

+
x̂8
a8

,

and
b7x7
a7

+
b8x8
a8

=
b7x̂7
a7

+
b8x̂8
a8

.

If b8 = 0 and b7 ̸= 0 then x7 = x̂7 and so x8 = x̂8. If b7 = 0 and b8 ̸= 0 then
x8 = x̂8 and so x7 = x̂7. If b7 ̸= b8 with b7 ̸= 0 and b8 ̸= 0, then

x7 − x̂7 = −a7
a8

(x8 − x̂8) and x7 − x̂7 = −b8a7
b7a8

(x8 − x̂8)

and so x7 = x̂7 and x8 = x̂8.
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Proceeding analogously taking g3(x, y, z) = y, g4(x, y, z) = tr(Dχ(x, y, z))y,
g5(x, y, z) = z and g6(x, y, z) = tr(Dχ(x, y, z))z we get that y7 = ŷ7, y8 = ŷ8,
z7 = ẑ7 and z8 = ẑ8. In short, χ and χ̂ are twin vector fields.

4. Proof of Theorem 3
⟨sec.4⟩

We denote by ak and âk the determinant of Dχ(pk) and Dχ̂(pk), respec-

tively, and by bk and b̂k the traces of Dχ(pk) and Dχ̂(pk), respectively.
Moreover we denote by pk = (xk, yk, zk) the positions of the points for the
vector field χ, and by p̂k = (x̂k, ŷk, ẑk) the positions of the points for the
vector field χ̂.

Without loss of generality we can assume that ak = âk and bk = b̂k for
k = 1, . . . , 8. By assumptions b6 ̸= 0, a7 + a8 ̸= 0, b7 = b8 and b6 ̸= b7.

The Euler-Jacobi formula with g1(x, y, z) = x and g2(x, y, z) = tr(Dχ(x, y, z))x
yield

x6
a6

+
x7
a7

+
x8
a8

=
x̂6
a6

+
x̂7
a7

+
x̂8
a8

,

and
b6x6
a6

+
b7x7
a7

+
b8x8
a8

=
b6x̂6
a6

+
b7x̂7
a7

+
b8x̂8
a8

.

Hence

x6 − x̂6 = −a6
a7

(x7 − x̂7)−
a6
a8

(x8 − x̂8),

and

x6 − x̂6 = −a6b7
a7b6

(x7 − x̂7)−
a6b8
a8b6

(x8 − x̂8).

Since b8 = b7 ̸= b6 we get that

x6 − x̂6 =
b7
b6

(
−a6
a7

(x7 − x̂7)−
a6
a8

(x8 − x̂8)

)
,

and so x6 = x̂6. Moreover it follows that

(2) eq:burra (x7 − x̂7) = −a7
a8

(x8 − x̂8).

Applying the Euler-Jacobi formula with g1(x, y, z) = x2 taking into account
that x6 = x̂6 we get

x27
a7

+
x28
a8

=
x̂27
a7

+
x̂28
a8

,

and so
1

a7
(x7 − x̂7)(x7 + x̂7) = − 1

a8
(x8 − x̂8)(x8 + x̂8).

Using also (2) we get

− 1

a8
(x8 − x̂8)

(
x7 + x̂7 − x8 − x̂8

)
= 0.
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Then either x8 = x̂8 and then also x7 = x̂7, or x8 ̸= x̂8 and x7 ̸= x̂7 and

(3) eq:relations.re x̂7 + x7 = x̂8 + x8

This equation together with (2) and the fact that a7 + a8 ̸= 0 imply

(4) eq:relations.0x̂7 = −(a7 − a8)x7 − 2a7x8
a7 + a8

, x̂8 = −(a8 − a7)x8 − 2a8x7
a7 + a8

.

Proceeding in the same manner using g2(x, y, z) = y, g3(x, y, z) = tr(Dχ(x, y, z))y,
g4(x, y, z) = y2, we get that y6 = ŷ6, and either y7 = ŷ7 and y8 = ŷ8, or
y7 ̸= ŷ7 and y8 ̸= ŷ8 and

(5) eq:relations.01ŷ7 = −(a7 − a8)y7 − 2a7y8
a7 + a8

, ŷ8 = −(a8 − a7)y8 − 2a8y7
a7 + a8

,

Finally proceeding in the same way using g5(x, y, z) = z, g6(x, y, z) =
tr(Dχ(x, y, z))z, g7(x, y, z) = z2 we get that z6 = ẑ6 and either z7 = ẑ7
and z8 = ẑ8 or z7 ̸= ẑ7 and z8 ̸= ẑ8 and

(6) eq:relations.02ẑ7 = −(a7 − a8)z7 − 2a7z8
a7 + a8

, ẑ8 = −(a8 − a7)z8 − 2a8z7
a7 + a8

.

Note that p6 = p̂6.

We consider the following cases.

Case (a) : xi = x̂i, yi = ŷi and zi = ẑi for i = 7, 8. So statement (a) holds.
Case (b) : xi = x̂i, zi = ẑi for i = 7, 8, y7 ̸= ŷ7 and y8 ̸= ŷ8. Applying the

Euler-Jacobi formula with g8(x, y, z) = xy we get

x7y7
a7

+
x8y8
a8

=
x7ŷ7
a7

+
x8ŷ8
a8

but then
x7
a7

(y7 − ŷ7) = −x8
a8

(y8 − ŷ8)

which yields (in view of the corresponding equation (2) with x re-
placed by y) that x7 = x8. Doing the same with g9(x, y, z) = yz we
get that z7 = z8 and from (5) we get statement (b).

Case (c) : yi = ŷi, zi = ẑi for i = 7, 8, x7 ̸= x̂7 and x8 ̸= x̂8. Following similar
arguments to the case (b), statement (c) follows.

Case (d) : xi = x̂i, yi = ŷi for i = 7, 8, z7 ̸= ẑ7 and z8 ̸= ẑ8. Following similar
arguments to the case (b), statement (d) follows.

Case (e) : xi = x̂i, for i = 7, 8, y7 ̸= ŷ7, y8 ̸= ŷ8, z7 ̸= ẑ7 and z8 ̸= ẑ8.
Following similar arguments to the case (b), statement (e) follows.

Case (f) : yi = ŷi, for i = 7, 8, x7 ̸= x̂7, x8 ̸= x̂8, z7 ̸= ẑ7 and z8 ̸= ẑ8.
Following similar arguments to the case (b), statement (f) follows.

Case (g) : zi = ẑi, for i = 7, 8, x7 ̸= x̂7, x8 ̸= x̂8, y7 ̸= ŷ7 and y8 ̸= ŷ8.
Following similar arguments to the case (b), statement (g) follows.

Case (h) : x7 ̸= x̂7, x8 ̸= x̂8, y7 ̸= ŷ7, y8 ̸= ŷ8, z7 ̸= ẑ7 and z8 ̸= ẑ8. From (4),
(5) an (6), it follows statement (h).
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5. Proof of Theorem 4
⟨secs.2⟩

We denote by a8 and â8 the determinant of Dχ(p8) and Dχ̂(p8), respec-

tively, by b8 and b̂8 the traces of Dχ(p8) and Dχ̂(p8), respectively, and
by c8 and ĉ8 the traces of Dχ(p8)

2 and Dχ̂(p8)
2, respectively. Moreover,

we denote by p8 = (x8, y8, z8) and p7 = (x7, y7, z7) the positions of the
points for the vector field χ, and by p̂8 = (x̂8, ŷ8, ẑ8) and p̂7 = (x̂7, ŷ7, ẑ7)
the positions of the points for the vector field χ̂. Note that from the
Euler-Jacobi formula with g1(x, y, z) = 1, g2(x, y, z) = tr(Dχ(x, y, z)) and
g3(x, z, y) = tr(Dχ(x, y, z)2) we get

1

a8
=

1

â8
,

b8
a8

=
b̂8
â8

,
c8
a8

=
ĉ8
â8

,

so a8 = â8, b8 = b̂8 and c8 = ĉ8. This completes the proof of statement (a).

Applying the Euler Jacobi formula with g1(x, y, z) = x, g2(x, y, z) = y,
g3(x, y, z) = z, g4(x, y, z) = tr(Dχ(p))x, g5(x, y, z) = tr(Dχ(p))y, g6(x, y, z) =

tr(Dχ(p))z and taking into account that ai = âi and bi = b̂i for i = 1, . . . , 8,
we get

x7
a7

+
x8
a8

=
x̂7
a7

+
x̂8
a8

,

y7
a7

+
y8
a8

=
ŷ7
a7

+
ŷ8
a8

,

z7
a7

+
z8
a8

=
ẑ7
a7

+
ẑ8
a8

,

b7x7
a7

+
b8x8
a8

=
b7x̂7
a7

+
b8x̂8
a8

,

b7y7
a7

+
b8y8
a8

=
b7ŷ7
a7

+
b8ŷ8
a8

,

b7z7
a7

+
b8z8
a8

=
b7ẑ7
a7

+
b8ẑ8
a8

.

(7) eq:relaciones

Multiplying by b7 the first equality in (7) and subtracting the fourth from
it, and doing the same with the second and the fifth equalities and the same
with the third and sixth we get

(b7 − b8)x8
a8

=
(b7 − b8)x̂8

a8
,
(b7 − b8)y8

a8
=

(b7 − b8)ŷ8
a8

,
(b7 − b8)z8

a8
=

(b7 − b8)ẑ8
a8

.

We have two cases: either b7 − b8 ̸= 0 or b7 − b8 = 0.

If b7−b8 ̸= 0, then x8 = x̂8, y8 = ŷ8 and z8 = ẑ8. Then the second, fourth
and sixth equalities in (7) imply that x7 = x̂7, y7 = ŷ7 as well as z7 = ẑ7.
In short p7 = p̂7, p8 = p̂8 and the spectrum of p8 and p̂8 is the same. This
concludes the proof of statement (b).
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If b7 = b8 then we apply the Euler-Jacobi formula with g1(x, y, z) = x2,
g2(x, y, z) = y2, and g3(x, y, z) = z2 and we get

x27
a7

+
x28
a8

=
x̂27
a7

+
x̂28
a8

, i.e
x27 − x̂27

a7
=

x̂28 − x28
a8

,

y27
a7

+
y28
a8

=
ŷ27
a7

+
ŷ28
a8

, i.e
y27 − ŷ27

a7
=

ŷ28 − y28
a8

,

z27
a7

+
z28
a8

=
ẑ27
a7

+
ẑ28
a8

, i.e
z27 − ẑ27

a7
=

ẑ28 − z28
a8

.

(8) eq:relations.bis

Note that the first, second and third relations in (7) can be written as

(9) eq:relations.biss
x7 − x̂7

a7
=

x̂8 − x8
a8

,
y7 − ŷ7

a7
=

ŷ8 − y8
a8

,
z7 − ẑ7

a7
=

ẑ8 − z8
a8

.

It follows from the first identity in (9) (which is also (2)) that either x̂7 = x7
and so x̂8 = x8, or x̂7 ̸= x7 and x̂8 ̸= x8. In this last case from the first
and second relations in (8) we get (3). Proceeding exactly as in the proof
of Theorem 3 that equation (4) holds. Proceeding exactly in the same way
for the coordinates y and z we get that either ŷ7 = y7 and so ŷ8 = y8, or
ŷ7 ̸= y7 and ŷ8 ̸= y8 and (5) holds, or that ẑ7 = z7 and so ẑ8 = z8, or ẑ7 ̸= z7
and ẑ8 ̸= z8 and (6) holds. We consider the following cases.

Case (a) : xi = x̂i, yi = ŷi and zi = ẑi for i = 7, 8 and statement (c.1) holds.
Case (b) : xi = x̂i, zi = ẑi for i = 7, 8, y7 ̸= ŷ7 and y8 ̸= ŷ8. From (5) we get

statement (c.2).
Case (c) : yi = ŷi, zi = ẑi for i = 7, 8, x7 ̸= x̂7 and x8 ̸= x̂8. From (4) we get

statement (c.3).
Case (d) : xi = x̂i, yi = ŷi for i = 7, 8, z7 ̸= ẑ7 and z8 ̸= ẑ8. From (6) we get

statement (c.4).
Case (e) : xi = x̂i, for i = 7, 8, y7 ̸= ŷ7, y8 ̸= ŷ8, z7 ̸= ẑ7 and z8 ̸= ẑ8. From

(5) and (6) we get statement (c.5).
Case (f) : yi = ŷi, for i = 7, 8, x7 ̸= x̂7, x8 ̸= x̂8, z7 ̸= ẑ7 and z8 ̸= ẑ8. From

(4) and (6) we get statement (c.6).
Case (g) : zi = ẑi, for i = 7, 8, x7 ̸= x̂7, x8 ̸= x̂8, y7 ̸= ŷ7 and y8 ̸= ŷ8. From

(4) and (5) we get statement (c.7).
Case (h) : x7 ̸= x̂7, x8 ̸= x̂8, y7 ̸= ŷ7, y8 ̸= ŷ8, z7 ̸= ẑ7 and z8 ̸= ẑ8. From (4),

(5) an (6), it follows statement (c.8).

This concludes the proof of the theorem.

6. Proof of Theorem 5

Let

χ = (P (x), Q(y), R(z)) := (P,Q,R)

be a quadratic polynomial vector field with 8 singularities, that is, with P ,
Q and R having two simple complex roots. Consider now another quadratic
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vector field of the form

χ̂ = (aP + bQ+ cR)
∂

∂x
+ (dP + eQ+ fR)

∂

∂y
+ (gP + hQ+ iR)

∂

∂z

for some complex numbers a, . . . , i. Let

A =

a b c
d e f
g h i

 and note that Dχ̂(x, y, z) = A ·Dχ(x, y, z).

Moreover note that

χ = Aχ̂.

Assume that detA = 1. Then detDχ̂(x, y, z) = detDχ(x, y, z). Moreover
note that since A is invertible the singularities of χ are the same as the
singularities of χ̃. Furthermore the relation trDχ̂(x, y, z) = tr(A·Dχ(x, y, z))
becomes

P ′(x) +Q′(y) +R′(z) = aP ′(x) + eQ′(y) + iR′(z)

that is

(1− a)P ′(x) + (1− e)Q′(y) + (1− i)R′(z) = 0,

whose solution is a = e = i = 1. Finally, the relation trDχ̂(x, y, z)2 =
tr(A ·Dχ(x, y, z2) which yields

P ′(x)2+Q′(y)2+R′(z)2 = P ′(x)2+2bdQ′P ′+2cgR′P ′+Q′(y)2+2fhQ′R′+R′(z)2

and so bd = cg = fh = 0. Since detA = 1 we get

dch+ bfg = 0.

So, we have a family of three parametric vector fields all of them being twin
vector fields (the elements in the family are basically in bijection with 3× 3
unipotent triangular matrices). In short, we have proven the existence and
non-uniqueness of twin vector fields.
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