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Abstract. For a general autonomous planar polynomial differential system it is
difficult to find conditions that are easy to verify and which guarantee global asymp-
totic stability, weakening the Markus-Yamabe condition. In this paper we provide
three conditions that guarantee the global asymptotic stability for polynomial dif-
ferential systems of the form x′ = f1(x, y), y

′ = f2(x, y), where f1 has degree one, f2
has degree n ≥ 1 and has degree one in the variable y. As a consequence we provide
sufficient conditions, weaker than the Markus-Yamabe conditions that guarantee the
global asymptotic stability for any generalized Liénard polynomial differential sys-
tem of the form x′ = y, y′ = g1(x) + yg2(x) with g1 and g2 polynomials of degrees n
and m, respectively.

1. Introduction and statement of the main results

Since the time of Liapunov it has become evident that finding conditions which
guarantee global asymptotic stability of an equilibrium point in a differential system,
even in two dimensions, is a difficult problem. Liapunov’s approach is probably the
most wide-spread general method used, though constructing a Liapunov function usu-
ally requires ingenuity, experience, and some luck. For the 2–dimensional autonomous
system

(1) x′ = f1(x, y), y′ = f2(x, y),

with f = (f1, f2) : R2 → R2, we seek for a set of easily verifiable conditions on the
function f which can give global asymptotic stability. A result to this end was proven
in 1993, the so-called Markus–Yamabe conjecture in two dimensions (see [6, 10, 11])).
This result shows that the global asymptotic stability is obtained if the eigenvalues of
the Jacobian matrix Df(x, y) have negative real part for all (x, y) ∈ R2. We remark
that the Markus-Yamabe conjecture holds in the positive sense in R2 (see [6, 10, 11])
but it does not hold in Rn with n > 2, see [1, 5].

The aim of this paper is to weaken the Markus-Yamabe condition and still obtain
global asymptotic stability for some classes of differential systems (1). The Markus-
Yamabe condition ensures the global asymptotic stability provided that the differential
system has a unique equilibrium point, the trace of Df is negative (TrDf < 0), and
the determinant of Df is positive (detDf > 0) for all (x, y) ∈ R2. The trace condition
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guarantees that each region of finite area shrinks under the flow, while the determi-
nant has a priori no known geometric interpretation. Several results (see [3, 9, 12, 13]
weaken the Markus-Yamabe condition by replacing the determinant condition by other
conditions. These new requirements on the equilibrium point seem unremovable be-
cause they are necessary for the global asymptotic stability and they are easily to
verify. Therefore, guided by the results in [4] for polynomial differential systems of
degrees 2 and 7 in the plane (we recall that the degree of a polynomial map f is n if
the components of f are polynomials of degree at most n) we consider the following
open problem.

Open problem. Assume that f : R2 → R2 is a polynomial map of degree n and
satisfies the following conditions:

(c1) TrDf < 0 for all (x, y) ∈ R2;
(c2) The differential equation (1) has a unique equilibrium point p ∈ R2.
(c3) The equilibrium point p is locally asymptotically stable.

Which is the largest family of planar differentiable systems (1) for which the assump-
tions (c1)-(c3) imply that p is globally asymptotically stable.

In view of [4] any planar differential system (x, y)′ = f(x, y) with f being a polyno-
mial map of degree two satisfying conditions (c1)-(c3) imply globally asymptotically
stability. On the other hand, in view of [2] there are polynomial differential systems
(x, y)′ = f(x, y) of degree seven (i.e. f has degree seven) for which conditions (c1)-
(c3) do not imply globally asymptotically stability. In this paper we will consider the
polynomial differential systems

(2) x′ = a1,0x+ a0,1y, y′ =
n∑

j=1

bj,0x
j + y

m∑
i=0

bi,1x
i

with m,n ≥ 1.

The following is our main result.

Theorem 1. Every planar polynomial differential system (2) satisfying conditions
(c1)-(c3) is globally asymptotically stable.

As a corollary we obtain the following result.

Corollary 2. Any generalized Liénard polynomial differential system

x′ = y, y′ =
n∑

j=1

bj,0x
j + y

m∑
i=0

bi,1x
i,

with n,m integers, satisfying conditions (c1)-(c3) is globally asymptotically stable.

Theorem 1 is proved in section 2. Corollary 2 follows from Theorem 1 taking a10 = 0
and a0,1 = 1.
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2. Proof of Theorem 1

The case n = 1 is trivial and the case n = 2 was proved in [4]. So in this paper we
consider the case n ≥ 3.

The proof of Theorem 1 is divided into different cases. For proving it we will use
the next theorem providing the local phase portraits of semi–hyperbolic equilibrium
points for planar polynomial differential systems, for a proof of it see for instance [8,
Theorem 2.19].

Theorem 3. Let (0, 0) be an isolated equilibrium point of the planar polynomial dif-
ferential system

x′ = F (x, y), y′ = y +G(x, y)

with F and G being polynomials without constant and linear terms in the variables
x and y. Let y = g(x) be the soltution of y′ = y + G(x, y) = 0 and assume that
F (x, g(x)) = amxm + . . ., where m ≥ 2 and am ̸= 0. Then

(i) If m is odd and am > 0, then (0, 0) is an unstable node.
(ii) If m is odd and am < 0, then (0, 0) is a saddle.
(iii) If m is even, then (0, 0) is a saddle-node.

2.1. Case 1: a0,1 = 0. In this case system (2) becomes

(3) x′ = a1,0x = f1(x, y), y′ =

n∑
j=1

bj,0x
j + y

m∑
i=0

bi,1x
i = f2(x, y).

The divergence of this system is

div = TrDf = a1,0 +
m∑
i=0

bi,1x
i.

Imposing the condition (c1), i.e., TrDf < 0 for all (x, y) ∈ R2, we must have that m
is even and

a1,0 + b0,1 < 0, a1,0 +
m∑
i=0

bi,1x
i = bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
, bm,1 < 0,

with αi, βi ∈ R and βi ̸= 0. So system (3) becomes

(4) x′ = a1,0x, y′ = (b0,1 − a1,0)y +

n∑
j=1

bj,0x
j + ybm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
.

Note that if b0,1 − a1,0 + bm,1
∏m/2

i=1 (α
2
i + β2

i ) = 0, then the line x = 0 is filled by

equilibria and so this is not possible. So b0,1−a1,0+ bm,1
∏m/2

i=1 (α
2
i +β2

i ) ̸= 0 and (0, 0)
is the unique equilibrium point of system (4) yielding that condition (c2) is satisfied.

On the other hand, the matrix Df(0, 0) has eigenvalues a1,0 and b0,1 − a1,0 +

bm,1
∏m/2

i=1 (α
2
i +β2

i ). Imposing condition (c3) and taking into account that b0,1−a1,0+
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bm,1
∏m/2

i=1 (α
2
i +β2

i ) ̸= 0 we must have a1,0 < 0 and b0,1−a1,0+bm,1
∏m/2

i=1 (α
2
i +β2

i ) < 0,
in which case the origin is a stable node.

Now we shall prove that the origin is globally asymptotically stable. Any solution of
equation (4) with initial condition (x0, y0) is given by (x(y), y(t)) with x(t) = x0e

a1,0t

and y(t) satisfies the variation of constants formula, that is, setting

a(t) = b0,1 − a1,0 + bm,1

m/2∏
i=1

(
(x0e

a1,0t − αi)
2 + β2

i

)
,

we get

y(t) = y0e
∫ t
t0

a(s) ds
+

n∑
i=0

bi,0x
i
0

∫ t

t0

ea1,0iτe
∫ t
τ a(s) ds dτ, t ≥ t0.

Since a1,0 < 0 and x0e
a1,0t → 0 when t → +∞, there exists T > 0 such that for t ≥ T

we get

a(t) < 2
(
b0,1 − a1,0 + bm,1

m/2∏
j=0

(α2
j + β2

j )
)
=: a∗ < 0

Then, for t, τ ≥ T , we have 0 ≤ e
∫ t
τ a(s) ds ≤ ea

∗(t−τ) and ea1,0iτe
∫ t
τ a(s) ds ≤ ea1,0iτ+a∗(t−τ).

Therefore, for t, t0 ≥ T and t ≥ t0,

0 ≤ |y(t)| ≤ |y0|ea
∗(t−t0) +

n∑
i=0

|bi,0xi0|
|a1,0i− a∗|

(ea1,0it − ea1,0it0+a∗(t−t0))

if a∗ ̸= ia1,0 for any i = 0, 1, . . . , n and

0 ≤ |y(t)| ≤ |y0|ea
∗(t−t0)+|bi∗,0xi

∗
0 |(t−t0)e

a∗t+
n∑

i=0,i ̸=i∗

|bi,0xi0|
|a1,0i− a∗|

(ea1,0it−ea1,0it0+a∗(t−t0)),

if there exists i∗ ∈ {0, 1, . . . , n} such that a∗ = i∗a1,0.

In both cases using that a1,0 < 0 and a∗ < 0 we get that any solution (x(t), y(t))
with initial condition (x0, y0) at time t0, tends to the origin as t → +∞ and so the
origin is globally asymptotically stable. The proof of the theorem is proved in this
case.

2.2. Case 2: a0,1 ̸= 0. In this case introducing the change of variables X = x,
Y = a1,0x+ a0,1y system (2) can be written as

X ′ = Y, Y ′ = a1,0Y + a0,1

n∑
i=1

bi,0X
i + (Y − a1,0X)

m∑
i=0

bi,1X
i,

that can be written as

(5) x′ = y, y′ = a1,0y +

p∑
i=1

b̃i,0x
i + y

m∑
i=0

bi,1x
i,
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where in order to avoid cumbersome notation, we have renamed the variables (X,Y )

again as (x, y) and the new parameters b̃i,0 = a0,1bi,0−a1,0bi−1,1 for i = 1, . . . , p, where

p =

{
n, if n ≥ m+ 1 or a1,0 = 0,

m+ 1, if n ≤ m+ 1 and a1,0 ̸= 0.

Taking into account that

TrDf = a1,0 +
m∑
i=0

bi,1x
i

and imposing condition (c1), i.e. TrDf < 0 for all (x, y) ∈ R2 we must have that m is
even and

a1,0 + b0,1 < 0, a1,0 +

m∑
i=0

bi,1x
i = bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
, bm,1 < 0,

with αi, βi ∈ R and βi ̸= 0. Hence system (5) becomes

x′ = y,

y′ =

p∑
i=1

b̃i,0x
i + ybm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
= Ay +

p∑
i=1

b̃i,0x
i + y

(
bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
−A

)
,

(6)

where A = bm,1
∏m/2

i=1 (α
2
i + β2

i ) and bm,1
∏m/2

i=1

(
(x − αi)

2 + β2
i

)
− A has no constant

terms.

Case 2.1: p even. Note that if b̃10 ̸= 0, then equation (6) has always an equilibrium
point besides the origin taking into account that

y′|y=0 = x

p−1∑
i=0

b̃i+1,0x
i

with b̃1,0b̃p,0 ̸= 0 and p − 1 being odd (equation
∑p−1

i=0 b̃i+1,0x
i = 0 has always a real

solution different from x = 0). Therefore, in order that condition (c2) is fulfilled we

must have b̃1,0 = 0. In this case system (6) becomes

(7) x′ = y, y′ = Ay +

p∑
i=2

b̃i,0x
i + y

(
bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
−A

)
.

In this case the origin is semi-hyperbolic and in order to apply Theorem 3 we must
write equation (7) in canonical Jordan form. For doing this we apply the change of



6 J. LLIBRE AND C. VALLS

variables X = x− Y/A, Y = y and system (7) becomes

X ′ = − 1

A

( p∑
i=2

b̃i,0

(
X +

Y

A

)i
+ Y bm,1

m/2∏
i=1

((
X +

Y

A
− αi

)2
+ β2

i

))
,

Y ′ = AY +

p∑
i=2

b̃i,0

(
X +

Y

A

)i
+ Y

(
bm,1

m/2∏
i=1

((
X +

Y

A
− αi

)2
+ β2

i

)
−A

)
.

Now, after rescaling by the time variable ds = Adt, and using Newton’s binomial
formula, we obtain the system in canonical normal form

X ′ = −
p∑

i=2

b̃i,0
A2

i∑
j=0

(
i

j

)
XjY i−j

Ai−j
− Y

(
bm,1

A2

m/2∏
i=1

((
X +

Y

A
− αi

)2
+ β2

i

)
− 1

A

)
,

Y ′ = Y +

p∑
i=2

b̃i,0
A

i∑
j=0

(
i

j

)
XjY i−j

Ai−j
+

Y

A

(
bm,1

m/2∏
i=1

((
X +

Y

A
− αi

)2
+ β2

i

)
−A

)
,

(8)

where now the prime means derivative in the new time s (note that since A < 0 the
original system in time t changes the direction of the orbits). Applying Theorem 3 we
get that

Y = −b̃2,0X
2/A+ · · · and then F (X,Y ) = −b̃2,0X

2/A2 + · · ·

implying that the origin (0, 0) is a saddle-node, which is not possible. So in order that

condition (c3) is fulfilled we must have b̃2,0 = 0, but then system (7) would be of the
form

x′ = y, y′ = Ay + x3
p−3∑
i=0

b̃i+3,0x
i + y

(
bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
−A

)
.

and the equation
∑p−3

i=0 b̃i+3,0x
i = 0 has a real solution different from x = 0 unless

b̃3,0 = 0, but then again applying Theorem 3 we get that

Y = −b̃4,0X
4/A+ · · · and then F (X,Y ) = −b̃4,0X

4/A2 + · · ·

implying that the origin (0, 0) is a saddle-node, which is not possible. Proceeding

inductively we conclude that b̃i,0 = 0 for i ≥ 1 and in this case taking into account
that p is even we get that the origin is a saddle-node and condition (c3) is not satisfied.
In short, in this case no system satisfies conditions (c1)-(c3) and there is nothing to
prove.

Case 2.2: p odd. Note that if b̃10 ̸= 0, the matrix Df(0, 0) has eigenvalues

λ± =
1

2

(
A±

√
A2 + 4b̃1,0

)
,

and imposing condition (c3) we must have b̃1,0 < 0 and since A < 0, the origin is a

stable node if A2 + 4b̃1,0 ≥ 0 and a stable focus if A2 + 4b̃1,0 < 0.
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If b̃1,0 = 0 then we get system (7) and the origin is semi-hyperbolic. Proceeding as for

Case 2.1 we get that if b̃2,0 ̸= 0 then the origin is a saddle-node, which is not possible.

So, b̃2,0 = 0. Now applying Theorem 3 to system (8) we get that Y = −b̃3,0X
3/A+ · · ·

and then F (X,Y ) = −b̃3,0X
3/A2 + · · · implying that, if b̃3,0 ̸= 0, in order that the

origin (0, 0) is a node we must have b̃3,0 < 0. If b̃3,0 = 0 then in order that condition

(c3) is fulfilled we must have b̃4,0 = 0 and so on. In short, in order that condition (c3)

if fulfilled for system (7) there must exist i∗ ∈ {1, . . . , n} odd, for which b̃i∗,0 < 0 and
system (7) writes as

x′ = y, y′ = Ay + xi
∗
p−i∗∑
i=0

b̃i+i∗,0x
i + y

(
bm,1

m/2∏
i=1

(
(x− αi)

2 + β2
i

)
−A

)
.

Note that p − i∗ is even and that equation
∑p−i∗

i=0 b̃i+i∗,0x
i = 0 cannot have a real

solution (otherwise condition (c2) is not satisfied). Taking this into account we can
write

p−i∗∑
i=0

b̃i+i∗,0x
i = b̃p,0

(p−i∗)/2∏
k=1

(x2 − 2α̃kx+ (α̃2
k + β̃2

k)), for some α̃k, β̃k ∈ R with β̃k ̸= 0.

In this case the origin of system (6) is the unique equilibrium point of system (6) and

taking b̃i∗,0 < 0 and A < 0 all conditions (c1)-(c3) are satisfied. Note that

b̃i∗,0 = b̃p,0

(p−i∗)/2∏
k=1

(α2
k + β2

k),

and since b̃i∗,0 < 0 this implies that b̃p,0 < 0.

We recall that p is odd, m is even and bp,0 < 0. A study (see [7]) of such system in
a neighborhood of the origin on the Poincaré sphere forms the backbone of the proof.
In this case system (6) is a generalized Liénard differential system with p odd, m even,

p > m+ 1 and b̃p,0 < 0. We can indeed make the rescaling

x = αX, y = βY, t = γs, α =
(b2m,1

b̃p,0

)1/(p−1−2m)
, γ = − 1

bm,1αm
, β =

α

γ
,

and system (6) becomes
(9)

X ′ = Y, Y ′ = AY +Xi∗
p−i∗−1∑
i=0

b̂i+i∗,0X
i−Xp+Y

(
b̂m,1

m/2∏
i=1

(
(X− α̂i)

2+ β̂2
i

)
−A

)
,

where b̂2i,1, b̂m,1, α̂i, β̂i are the new parameters and the coefficient of Y Xm is −1.

Note that now system (9) is a generalized Liénard differential system with p odd,
m even, and the coefficient of Xp equal to −1. Using the differential system (3) of
[7] with ε = 1, m odd and n even (in the notation of [7]) we get that the infinity of
system (9) must be one of the following five infinities described in the phase portraits
of Figure 5(3), Figure 6(1), Figure 7(3), Figure 8(6) and Figure 9(3).
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From these previous figures we get that either the infinity is a repeller (there are
orbits which come from infinity, but there are no orbits going to infinity) in Figure
5(3), Figure 6(1) and Figure 7(3), or there are no orbits going or coming from infinity
in Figure 8(6) and Figure 9(3).

Note that since the divergence of the system is negative (condition (c1)) by the
Bendixon Theorem (see for instance [8, Theorem 7.10]) no periodic orbit exist and
conditions (c1)-(c3) together with the behaviour at infinity previously described imply
that the origin is globally asymptotically stable. This concludes the proof of Theorem 1.
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