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Abstract. The so-called stretch-twist-fold flow consists in a Stokes flow de-
pending on two parameters defined in a unit closed ball B̄ that is associated
with the motion of a fluid particle coming from the dynamo theory and it
models a mechanism for studying the magnetic field of the Earth and the Sun.
Here for the first time we classify all the local phase portraits of its equilibrium
points, and we provide the global phase portraits on the 2-dimensional sphere
of the boundary of the ball B̄.

1. Introduction and statement of main results

The stretch-twist-fold flow is a special case of the Stokes flow coming from
the dynamo theory. More precisely, it is a two-parameter family of a three-
dimensional incompressible flow defined in the unit closed ball that is associated
with the fluid particle motion coming from the dynamo theory and it was devised
to represent the stretch-twist-fold action that is believed to be most conductive
of the so-called “fast dynamo action” in magnetohydrodynamics, see for more
details [7, 10, 11]. In other words, it is a model for studying the magnetic field of
the celestial bodies. This flow can exhibit a chaotic Lagrangian structure inside
the unit ball, see [4].

The stretch-twist-fold mechanism of the magnetic field generation was intro-
duced in [15, 16, 17], and it is given by the following 3-dimensional differential
system

x′ = az − 8xy,

y′ = 11x2 + 3y2 + z2 + bxz − 3,

z′ = −ax+ 2yz − bxy,

(1)

where x, y, z ∈ R, a, b are positive real parameters related with the ratios of the
intensities of the stretch, twist and fold components of the flow. Note that system
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(1) is invariant under the symmetry S(x, y, z) = (−x, y,−z), so the phase portrait
of the differential system (1) is symmetric with respect to the y-axis.

System (1) has been studied intensively from the analytical and the numerical
point of view as well as its integrability. From the dynamical point of view we
note that its vector field

X = (az − 8xy, 11x2 + 3y2 + z2 + bxz − 3,−ax+ 2yz − bxy)

satisfies the incompressibility condition ∇X = 0, which means that the system
preserves the volume in its phase space. This fact prevents the existence of strange
attractors. However this differential system can still exhibits a rich variety of
structures with chaotic and regular orbits intricately interspersed among each
other, see [1, 2, 3, 5].

The open unit ball

B = {(x, y, z) ∈ R3 : x2 + y2 + z2 < 1}

is invariant by the flow, and the vector field X is tangent to the boundary ∂B,
which is the unit sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Let f = f(x, y, z) = x2 + y2 + z2 − 1. Since

∂f

∂x
(az − 8xy) +

∂f

∂y
(11x2 + 3y2 + z2 + bxz − 3) +

∂f

∂z
(−ax+ 2yz − bxy) = 6yf,

it follows that the sphere S2 is also invariant under the flow generated by the
vector field X, for more details see Chapter 8 of [8]. In particular the existence
of this invariant sphere implies that the flow inside the open unit ball B remains
always inside this ball.

As far as we know until now a complete study of the equilibrium points of the
differential system (1) and of its local phase portrait has not been done.

The objective of this paper is double, first to do a complete study of the local
phase portraits of all equilibrium points of the differential system (1), and second
to describe the flow of the vector field X on the sphere S2 for all values of the
positive real parameters a and b.

We define the following six points whenever they are real

p1 = (0, 1, 0), p2 = (0,−1, 0),
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where

A = b−
√
64 + b2, B = b+

√
64 + b2, C =

√
2(100 + b2),

P = −a2(160 + bA) + 64(40 + bB), Q = Q = −a2(160 + bB) + 64(40 + bA).

Note that all these points when they exists, i.e. when they are real, are on the
sphere S2.

Note that since p4 = S(p3) and p6 = S(p5) and the phase portrait of the
differential system (1) is invariant with respect to the symmetry S, it follows
that the local phase portraits of the equilibrium points p3 and p4 are equal, and
the local phase portraits of the equilibrium points p5 and p6 are equal, of course
when they exist.

We define

b1 =

√
4096− 2256a2 + 25a4 + (256 + 25a2)

√
256 + 68a2 + a4

50a2
,

b2 =
16− a2

a
, b3 =

25− a2

a
, b4 =

a2 − 16

a
, b5 =

a2 − 25

a
,

and we consider the sets of parameters

R1 = {(a, b) : a ∈ (0, 4), 0 < b < b2},
L1 = {(a, b) : a ∈ (0, 4), b = b2,
R2 = {(a, b) : a > 0, b > b2, b > b4},
L2 = {(a, b) : a > 4, b = b4},
R3 = {(a, b) : a > 4, b < b4}.

where Ri denotes regions, Li denotes lines and all together form a partition of
the plane formed by the points (a, b) with a and b positive. See Figure 1.

The equilibrium points of the differential system (1) are described in the next
proposition.

Theorem 1. The differential system (1) has the following equilibrium points

(a) p1, p2, p3, p4, p5 and p6 if (a, b) ∈ R1;
(b) p1 = p5 = p6, p2, p3 and p4 if (a, b) ∈ L1;
(c) p1, p2, p3 and p4 if (a, b) ∈ R2;
(d) p1, p2 = p3 = p4 if (a, b) ∈ L2;
(e) p1 and p2 if (a, b) ∈ R3.

The straight line formed by the y-axis is invariant under the flow of the differ-
ential system (1), containing a heteroclinic orbit which travels inside the ball B
from the equilibrium point p1 to the equilibrium point p2. Indeed, when x = z = 0
we get that (ẋ, ẏ, ż) = (0, 3(y2 − 1), 0).
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Figure 1. Bifurcation diagram on the number of equilibrium
points in the parameter plane (a, b) with a and b positive.

Now we define the sets of parameters

R1
1 = {(a, b) : a ∈ (0, 16

√
2/41), 0 < b < b1},

L0 = {(a, b) : a ∈ (0, 16
√

2/41), b = b1,
R2

1 = {(a, b) : a ∈ (0, 4), b1 < b < b2},
L1 = {(a, b) : a ∈ (0, 4), b = b2},
R1

2 = {(a, b) : a ∈ (0,
√

41/2), b2 < b < b3, b > b4},
L1
3 = {(a, b) : a ∈ (0,

√
41/2), b = b3},

P = (
√

41/2, 9/
√
82),

L1
2 = {(a, b) : a ∈ (4,

√
41/2), b = b4},

R1
3 = {(a, b) : a ∈ (4, 5), b4 < b < b3},

L2
3 = {(a, b) : a ∈ (

√
41/2, 5), b = b3, b > b4},

R2
2 = {(a, b) : a > 0, b > b3, b > b4},

L2
2 = {(a, b) : a >

√
41/2), b = b4},

R2
3 = {(a, b) : a >

√
41/2), b5 < b < b4, b > b3},

L4 = {(a, b) : a > 5, b = b5},
R3

3 = {(a, b) : a > 5, b < b5},

see Figure 2.

The local phase portraits of the equilibrium points of the differential system (1)
are described in the next theorem. For the definitions of hyperbolic, semihyper-
bolic equilibrium points, saddle, focus, node, saddle-node, see [8] and section 2.
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Figure 2. Bifurcation diagram on the local phase portraits at the
equilibrium points in the parameter plane (a, b) with a and b positive.

We recall that a non-diagonalizable node is a node with equal eigenvalues whose
Jordan normal form does not diagonalize.

Theorem 2. The local phase portraits of the differential system (1) in its equi-
librium points are:

(a) In the region R1
1:

p1 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the
direction inside the ball B is negative;
p5 and p6 are hyperbolic stable foci on S2, and their eigenvalue in the
direction inside the ball B is positive.

(b) In the line L0:
p1 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the
direction inside the ball B is negative;
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p5 and p6 are hyperbolic stable non-diagonalizable nodes on S2, and their
eigenvalue in the direction inside the ball B is positive.

(c) In the region R2
1:

p1 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the
direction inside the ball B is negative;
p5 and p6 are hyperbolic stable nodes on S2, and their eigenvalue in the
direction inside the ball B is positive.

(d) In the line L1:
p1 is a semihyperbolic stable node on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the
direction inside the ball B is negative.

(e) In the region R1
2:

p1 is a hyperbolic stable node on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the
direction inside the ball B is negative.

(f) In the line L1
2:

p1 is a hyperbolic stable node on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a semihyperbolic unstable node on S2, and its eigenvalue in the di-
rection inside the ball B is negative.

(g) In the region R3
3:

p1 is a hyperbolic stable node on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a hyperbolic unstable node on S2, and its eigenvalue in the direction
inside the ball B is negative.

(h) In the line L1
3:

p1 is a hyperbolic stable non-diagonalizable node on S2, and its eigenvalue
in the direction inside the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is negative;
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p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the
direction inside the ball B is negative.

(i) In the point P :
p1 is a hyperbolic stable non-diagonalizable node on S2, and its eigenvalue
in the direction inside the ball B is positive;
p2 is a semihyperbolic unstable node on S2, and its eigenvalue in the di-
rection inside the ball B is negative.

(j) In the line L2
3:

p1 is a hyperbolic stable non-diagonalizable node on S2, and its eigenvalue
in the direction inside the ball B is positive;
p2 is a hyperbolic unstable node on S2, and its eigenvalue in the direction
inside the ball B is negative.

(k) In the region R2
2:

p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside
the ball B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the
direction inside the ball B is negative.

(l) In the line L2
2:

p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a semihyperbolic unstable node on S2, and its eigenvalue in the di-
rection inside the ball B is negative.

(m) In the region R1
3:

p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a hyperbolic unstable node on S2, and its eigenvalue in the direction
inside the ball B is negative.

(n) In the line L4:
p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a hyperbolic unstable non-diagonalizable node on S2, and its eigen-
value in the direction inside the ball B is negative.

(o) In the region R2
3:

p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a hyperbolic unstable focus on S2, and its eigenvalue in the direction
inside the ball B is negative.
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From Theorem 2 and by the Hartman–Grobman Theorem (see for instance
[6]) we note that the segment of the invariant y-axis with endpoints p1 and p2 is
contained in the unstable manifold of the equilibrium point p1 and in the stable
manifold of the equilibrium point p2

Again from Theorem 2 and by the Hartman–Grobman Theorem it follows that
at each equilibrium point on the sphere S2 of the differential system (1) there
is either a stable, or an unstable manifold of at most dimension two contained
inside the open ball B.

In the next three theorems we describe the dynamics on the invariant sphere
S2 of the flow of the differential system (1) in function of the positive parameters
a and b. We have numerical evidences that the differential system (1) has no
periodic orbits on the sphere S2 (see the Appendix). So we do the next conjecture.

Conjecture 1. For all positive values of the parameters a and b the differential
system (1) has no periodic orbits.

For definitions of separatrix, canonical region, strip flow and spiral or nodal
flow see for instance section 1.9 of [8], or section 3.

Let φ(t, p) be an orbit of a vector field X on the sphere S2 such that φ(0, p) = p.
We define the set

ω(p) = {q ∈ S2 : there exist {tn} with tn → ∞ and φ(tn) → q when n → ∞}.

In a similar way we define the set

α(p) = {q ∈ S2 : there exist {tn} with tn → −∞ and φ(tn) → q when n → ∞}.

The sets ω(p) and α(p) are called the ω-limit set and the α–limit set of p, respec-
tively.

Theorem 3. Assume that the differential system (1) has no periodic orbits on
the invariant sphere S2, and that (a, b) ∈ L2 ∪ R3. Then every orbit on S2

different from the equilibrium points p1 and p2 has α-limit in p2 and ω-limit in
p1. Removing the two equilibria we obtain one canonical region with a spiral or
nodal flow. See Figure 3(a).

Theorem 4. Assume that the differential system (1) has no periodic orbits on
the invariant sphere S2, and that (a, b) ∈ L1 ∪ R2. Then one of the two stable
separatrices of the saddle p2 come from the unstable equilibrium p3 and the other
from the unstable equilibrium p4, and the two unstable separatrices of p2 go to
the stable equilibrium p1. Removing the four separatrices of the saddle p2 and all
the equilibria we obtain two canonical regions with strip flows. In one canonical
region every orbit has α-limit at p3 and ω-limit at p1. In the other canonical
region every orbit has α-limit at p4 and ω-limit at p1. See Figure 3(b).
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(a)

(b)

(c)

Figure 3. If we identify the infinity of the plane to a point we
get the sphere S2. The thick lines are formed by the separatrices
of the saddles, and the thin lines are some orbits which are not
separatrices. (a) The phase portrait of system (1) when (a, b) ∈
L2 ∪ R3. (b) The phase portrait of system (1) when (a, b) ∈ L1 ∪
R2. (c) The phase portrait of system (1) for some values of the
parameters (a, b) ∈ R1.

Theorem 5. Assume that the differential system (1) has no periodic orbits on
the invariant sphere S2. Then for some values (a, b) ∈ R1 one of the two stable
separatrices of the saddle p2 come from the unstable equilibrium p3 and the other
from the unstable equilibrium p4, and one unstable separatrix of p2 goes to the
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stable equilibrium p5 and the other goes to the stable equilibrium p6. One of the
two unstable separatrices of the saddle p1 goes to the stable equilibrium p5 and
the other goes to the stable equilibrium p6, and one of the stable separatrix of p1
comes from the unstable equilibrium p3 and the other comes from the unstable
equilibrium p4. Removing the separatrices of the two saddles p1 and p2 and all
the equilibria we obtain four canonical regions with strip flows. In a canonical
region every orbit has α-limit at p3 and ω-limit at p5. In other canonical region
every orbit has α-limit at p3 and ω-limit at p6. In another canonical region every
orbit has α-limit at p4 and ω-limit at p5. Finally in the fourth canonical region
every orbit has α-limit at p4 and ω-limit at p6. See Figure 3(c).

We note that Theorems 3 and 4 characterize completely the topological phase
portraits of the differential system (1) when the parameters (a, b) ∈ L1∪R2∪L2∪
R3, but when the parameters (a, b) ∈ R1 we have proved in Theorem 5 that for
some values of such parameters its phase portrait is topologically equivalent to
the phase portrait of Figure 3(c). We have numerical evidence that the following
conjecture must hold.

Conjecture 2. For all values of the parameters (a, b) ∈ R1 the phase portrait of
the differential system (1) is topologically equivalent to the one of Figure 3(c).

We recall the stereographic projection from the south pole. We identify R2 as
the tangent plane to the sphere S2 at the point (0, 0,−1), and we denote the points
of R2 as (u, v) = (u, v,−1). Let π : R2 → S2 \ {(0, 0, 1)} be the diffeomorphism
given by

π(u, v) =

(
x =

2u

1 + u2 + v2
, y =

2v

1 + u2 + v2
, z =

u2 + v2 − 1

1 + u2 + v2

)
.

That is, π is the inverse map of the stereographic projection π−1 : S2\{(0, 0, 1)} →
R2 defined by

π−1(x, y, z) =

(
u =

x

1− z
, v =

y

1− z

)
.

2. The equilibria of system (1)

In this section we prove Theorems 1 and 2.

Proof of Theorem 1. First we note that P = 0 if and only if b = (a2 − 16)/a (i.e.
P vanishes on L2), and that Q = 0 if and only if b = (16− a2)/a (i.e. Q vanishes
on L1).

Since P and Q are positive in the region R1, for the values of the parameters
(a, b) in this region the differential system (1) has the six equilibria p1, p2, p3, p4,
p5 and p6. Therefore statement (a) of Theorem 1 is proved.
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Since P > 0 and Q = 0 on the line L1, it follows that p1 = p5 = p6, p2, p3 and
p4. This completes the proof of statement (b) of Theorem 1.

Since P > 0 and Q < 0 in the region R2, for the values of the parameters (a, b)
in this region the differential system (1) has the four equilibria p1, p2, p3 and p4,
and consequently statement (c) of Theorem 1 follows.

Since P = 0 and Q < 0 on the line L2, it follows that p1, p2 = p3 = p4. This
completes the proof of statement (d) of Theorem 1.

Finally, since P < 0 andQ < 0 in the regionR2, for the values of the parameters
(a, b) in this region the differential system (1) has the two equilibria p1 and p2.
This proves statement (e) of Theorem 1.

In summary Theorem 1 is proved. □

In what follows we recall some basic definitions and results that we shall need
for proving Theorem 2.

An equilibrium point of a differential system or vector field in a 2-dimensional
manifold is hyperbolic if the real part of its two eigenvalues are nonzero. The
local phase portraits of the hyperbolic equilibrium points in dimension two are
classified, see for instance Theorem 2.15 of [8].

An equilibrium point of a differential system or vector field in a 2-dimensional
manifold is semihyperbolic if it has only one eigenvalue equal to zero. The semi-
hyperbolic equilibrium points only can be saddles, nodes or saddle-nodes, see for
instance Theorem 2.19 of [8].

We recall that each isolated equilibrium point of a continuous differential sys-
tem or vector field in a 2-dimensional manifold has associated a unique integer
number called its (topological) index. The nodes and foci have index 1, the saddles
have index −1, and the saddle-nodes have index 0. See for more details Chapter
6 of [8].

The next theorem is proved in [8, page 179]

Theorem 6 (Poincaré–Hopf Theorem). For every continuous vector field on the
sphere S2 with a finite number of equillibrium points, the sum of the indices of its
equilibrium points is 2.

Proof of Theorem 2. The Jacobian matrix of the differential system (1) is −8y −8x a
22x+ bz 6y 2z + bx
−a− by 2z − bx 2y


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The equilibrium points p3 and p4 exist in the regions R1∪L1∪R2. The Jacobian
matrix evaluated at these two equilibrium points has the same characteristic
polynomial

P34(λ) =
3

256
(a(a2(b2 + 32)− 512)

√
b2 + 64− a3b(b2 + 64))

+
1

128
(a2(13b2 + 544)− 64(b2 + 64)− b(13a2 + 64)

√
b2 + 64)λ− λ3.

Therefore the Jacobian matrix evaluated at both equilibrium points have the same
eigenvalues. It is easy to check that the independent term of this characteristic
polynomial does not vanish if (a, b) ∈ R1 ∪ L1 ∪ R2. The discriminant of this
cubic characteristic polynomial is negative if (a, b) ∈ R1 ∪ L1 ∪ R2, hence this
polynomial has only one real root and two complex roots. Since the independent
term of the polynomial P34(λ) does not vanish in order to see that the real root
of this polynomial is always negative when (a, b) ∈ R1 ∪L1 ∪R2 it is sufficient to
compute the roots of this polinomial in a point (a, b) ∈ R1 ∪ L1 ∪ R2. Since the
system formed by the coefficients of the poynomial P34(λ)+(λ−r)(λ2+ω2) has no
solution in the real variables r, ω and (a, b) ∈ R1∪L1∪R2, it follows that the real
part of the two complex eigenvalues of the polynomial P34(λ) never vanish. So in
order to see that the real part of the two complex eigenvalues is always positive
it is sufficient to see that for a particular value of (a, b) ∈ R1∪L1∪R2. Hence the
equilibrium points p3 and p4 are always hyperbolic. Moreover, by Theorem 2.15
of [8] and taking into account that p3 and p4 are on the invariang sphere S2, they
are always hyperbolic unstable foci on S2, and their eigenvalue in the direction
inside the ball B is negative.

The equilibrium points p5 and p6 exist in the region R1. The Jacobian matrix
evaluated at these two equilibrium points have the same characteristic polynomial

P56(λ) =− 3

256
(a(a2(b2 + 32)− 512)

√
b2 + 64 + a3b(b2 + 64))

+
1

128
(a2(13b2 + 544)− 64(b2 + 64) + b(13a2 + 64)

√
b2 + 64)λ− λ3.

Therefore the Jacobian matrix evaluated at both equilibrium points have the same
eigenvalues. It is easy to check that the independent term of this characteristic
polynomial does not vanish if (a, b) ∈ R1. So these points are always hyperbolic.
Moreover it is easy to check that the discriminant D of this cubic characteristic
polynomial is negative if (a, b) ∈ R1

1, zero if (a, b) ∈ L0, and positive if (a, b) ∈ R2
1.

Using for the polynomial P56(λ) the same kind of arguments than the ones
used in the study of the roots of the polynomial P34(λ) we obtain that when
D < 0 the polynomial P56(λ) has only one positive real root and two complex
roots, and the real part of the complex roots is negative. Hence the equilibrium
points p5 and p6 are always hyperbolic. Furthermore, by Theorem 2.15 of [8] and
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taking into account that p5 and p6 are on the invariant sphere S2, they are always
hyperbolic stable foci on S2, and their eigenvalue in the direction inside the ball
B is positive.

When D = 0 the two complex roots become a negative double real root, and
the remaining real root continues being positive. Therefore, by Theorem 2.15 of
[8] taking into account that p5 and p6 are on the invariant sphere S2, they are
always hyperbolic stable non-diagonalizable nodes on S2, and their eigenvalue in
the direction inside the ball B is positive.

When D > 0 the previous negative double real root splits into two distinct
negative real roots, and the remaining real root continues being positive. Hence,
by Theorem 2.15 of [8] taking into account that p5 and p6 are on the invariant
sphere S2, they are always hyperbolic stable nodes on S2, and their eigenvalue in
the direction inside the ball B is positive.

Computing the eigenvalues of the Jacobian matrix at p1 and p2 we get that
they are

λ1 = 6, λ2 = −3−
√
25− a2 − ab, λ3 = −3 +

√
25− a2 − ab

and

λ1 = −6, λ2 = 3−
√
25− a2 + ab, λ3 = 3 +

√
25− a2 + ab,

respectively. Then in the region R1 = R1
1 ∪ L0 ∪ R2

1 it is easy to check that p1
is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is positive; and that p2 is a hyperbolic saddle on S2, and its eigenvalue in the
direction inside the ball B is negative. This completes the proof of statements
(a), (b) and (c) of Theorem 2.

In the line L1 the equilibrium p1 is semihyperbolic on S2 having an eigenvalue
positive and the other zero, and its eigenvalue in the direction inside the ball B
is positive; and p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction
inside the ball B is negative. On this line we only have the four equilibrium
points pi for i = 1, 2, 3, 4. We know that p3 and p4 are foci on S2, and that p2 is
a saddle, so the sum of the indices of these three equilibria is 1. Therefore, by
the Poincaré-Hopf Theorem the index of the semihyperbolic equilibrium p1 must
be 1, and consequently p1 must be a semihyperbolic stable node. This completes
the proof of statements (d) of Theorem 2.

In the region R1
2 the equilibrium p1 becomes a hyperbolic stable node on S2, and

its eigenvalue in the direction inside the ball B is positive; and p2 is a hyperbolic
saddle on S2, and its eigenvalue in the direction inside the ball B is negative.
This completes the proof of statements (e) of Theorem 2.

In the line L1
2 the equilibrium p1 continues being a hyperbolic stable node on S2,

and its eigenvalue in the direction inside the ball B is positive; but p2 becomes
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a semihyperbolic equilibrium on S2 with a positive real eigenvalue and a zero
eigenvalue, and its eigenvalue in the direction inside the ball B is negative. Since
in the line L1

2 the unique equilibrium points are p1 and p2, and the index of p1
is 1, by the Poincaré-Hopf Theorem the index of the semihyperbolic equilibrium
p2 is also 1. So p2 is a semihyperbolic unstable node on S2. This completes the
proof of statements (f) of Theorem 2.

In the region R3
3 the equilibrium p1 continues being a hyperbolic stable node

on S2, and its eigenvalue in the direction inside the ball B is positive; and p2
becomes a hyperbolic unstable node on S2, and its eigenvalue in the direction
inside the ball B is negative. So statement (g) of Theorem 2 is proved.

In the line L1
3 the equilibrium p1 becomes a hyperbolic stable non-diagonalizable

node on S2, and its eigenvalue in the direction inside the ball B is positive; and
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative. Therefore statement (h) of Theorem 2 is proved.

In the point P the equilibrium p1 is a hyperbolic stable non-diagonalizable
node on S2, and its eigenvalue in the direction inside the ball B is positive; and
p2 is a semihyperbolic equilibrium on S2 with a positive eigenvalue and a zero
eigenvalue, and its eigenvalue in the direction inside the ball B is negative. By
the Poincaré-Hopf Theorem p2 is a semihyperbolic unstable node on S2. This
completes the proof of statement (i) of Theorem 2.

In the line L2
3 the equilibrium p1 is a hyperbolic stable non-diagonalizable node

on S2, and its eigenvalue in the direction inside the ball B is positive; and p2 is
a hyperbolic unstable node on S2, and its eigenvalue in the direction inside the
ball B is negative. This completes the proof of statement (j) of Theorem 2.

In the region R2
2 the equilibrium p1 is a hyperbolic stable focus on S2, and its

eigenvalue in the direction inside the ball B is positive; and p2 is a hyperbolic
saddle on S2, and its eigenvalue in the direction inside the ball B is negative.
Hence statement (k) of Theorem 2 is proved.

In the line L2
2 the equilibrium p1 is a hyperbolic stable focus on S2, and its

eigenvalue in the direction inside the ball B is positive; and p2 is a semihyper-
bolic equilibrium on S2 with a positive eigenvalue and a zero eigenvalue, and its
eigenvalue in the direction inside the ball B is negative. Again by the Poincaré-
Hopf Theorem p2 is a semihyperbolic unstable node on S2. This completes the
proof of statement (l) of Theorem 2.

In the region R1
3 the equilibrium p1 is a hyperbolic stable focus on S2, and its

eigenvalue in the direction inside the ball B is positive; and p2 is a hyperbolic
unstable node on S2, and its eigenvalue in the direction inside the ball B is
negative. Therefore statement (m) of Theorem 2 is proved.
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In the line L4 the equilibrium p1 is a hyperbolic stable focus on S2, and its
eigenvalue in the direction inside the ball B is positive; and p2 is a hyperbolic
unstable non-diagonalizable node on S2, and its eigenvalue in the direction inside
the ball B is negative. This completes the proof of statement (n) of Theorem 2.

In the region R2
3 the equilibrium p1 is a hyperbolic stable focus on S2, and its

eigenvalue in the direction inside the ball B is positive; and p2 is a hyperbolic
unstable focus on S2, and its eigenvalue in the direction inside the ball B is
negative. So statement (o) of Theorem 2 is proved. This completes the proof of
Theorem 2. □

3. Proofs of Theorems 3, 4 and 5

We recall the Poincaré-Bendixson Theorem on the sphere S2. For a proof see
the more general proof of this theorem for a compact region of the plane provided
in section 1.7 of [8], or see [13].

Theorem 7 (Poincaré-Bendixson Theorem I). Let φ(t, p) be an orbit of a C1

vector field X on the sphere S2. Assume that X has finitely many equilibrium
points. Then one of the following statements holds.

(i) If ω(p) does not contains equilibrium points, then ω(p) is a periodic orbit.

(ii) If ω(p) contains both regular and equilibrium points, then ω(p) is formed
by a set of orbits, every one of which tends to one of the equilibrium points
in ω(p) as t → ±∞.

(iii) If ω(p) does not contain regular points, then ω(p) is a unique equilibrium
point.

A separatrix of a vector field on the sphere S2 is an equilibrium point, or a
limit cycle, or an orbit on the boundary of a hyperbolic sector at an equilibrium
point. The set of all separatrices is closed (see [12]) and we denote it by ΣX . An
open connected component of S2\ΣX is a canonical region of X. It is known that
the flow on a canonical region is topologically equivalent to one of the following
three flows (see [9, 12, 14]):

(i) The flow defined on R2 by the differential system ẋ = 1, ẏ = 0, which we
denote by strip flow.

(ii) The flow defined on R2 \ {0} by the differential system given in polar
coordinates r′ = 0, θ′ = 1, which we denote by annulus flow.

(iii) The flow defined on R2 \ {0} by the differential system given in polar
coordinates r′ = r, θ′ = 0, which we denote by spiral or nodal flow.
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Proof of Theorem 3. By assumptions the differential system (1) has no periodic
orbits on the invariant sphere S2, and from Theorem 2 if (a, b) ∈ L2 ∪ R3, then
the unique separatrices of the system are the two equilibrium points p1 and p2,
being p1 a stable equilibrium and p2 an unstable equilibrium. Therefore the flow
on the canonical region S2 \ {p1, p2} is a spiral or nodal flow. This completes the
proof of the theorem. □

Proof of Theorem 4. By hypotheses the differential system (1) has no periodic
orbits on the invariant sphere S2, and from Theorem 2 if (a, b) ∈ L1 ∪R2 the sys-
tem has the equilibrium points pi for i = 1, 2, 3, 4, being p1 a stable equilibrium,
p2 a saddle, and p3 and p4 are unstable equilibria. By the Poincaré-Bendixson
Theorem the two stable separatrices of the saddle p2 come from the unstable equi-
librium p3 and the other from the unstable equilibrium p4, and the two unstable
separatrices of p2 go to the stable equilibrium p1. Removing the four separatrices
of the saddle p2 and the four equilibria we obtain two canonical regions with strip
flows. In one canonical region every orbit distinct from the equilibrium points p3
and p1 has α-limit in p3 and ω-limit in p1. In the other canonical region every
orbit distinct from the equilibrium points p4 and p1 has α-limit in p4 and ω-limit
in p1. So the proof of the theorem is done. □

Proof of Theorem 5. By hypotheses the differential system (1) has no periodic
orbits on the invariant sphere S2, and by Theorem 2 if (a, b) ∈ R1, then the
system has the equilibrium points pi for i = 1, . . . , 6, being p1 and p2 two saddles,
p3 and p4 two unstable equilibria, and p5 and p6 two stable equilibria. Then near
the line L1 but inside the region R1 by continuity we have that the two stable
separatrices of the saddle p2 come one from the unstable equilibrium p3 and the
other from the unstable equilibrium p4. Since the equilibrium points p5 and p6
bifurcate from the equilibrium point p1, it follows that one of the two unstable
separatrices of the saddle p1 goes to the stable equilibrium p5 and the other goes
to the stable equilibrium p6. On the line L1 the two unstable separatrices of
the saddle p2 go to the stable equilibrium p1. Again by continuity one unstable
separatrix of p2 must go to the stable equilibrium p5 and the other separatrix
must go to the stable equilibrium p6. Note that it is not possible that both
unstable separatrices go either to p5, or to p6 because the local phase portraits
at the points p5 and p6 are the same due to the symmetry S of the differential
system (1). It only remains to know the α-limit of the two stable separatrices of
the saddle p1. Due to the previous results (see Figure 3(c)) one comes from the
unstable equilibrium p3 and the other comes from the unstable equilibrium p4.
This completes the proof of the theorem. □
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We note that we have computed numerically many phase portraits of the differ-
ential system (1) for different values of (a, b) ∈ R1 and always we have obtained
phase portraits topologically equivalent to the one described in Theorem 5.

Appendix: Some numerical computations

A polynomial differential system on the sphere S2

ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z),

through the stereographic projection π−1, becomes the following rational differ-
ential system

(2) u̇ =
1 + u2 + v2

2
(P̄ + uR̄), v̇ =

1 + u2 + v2

2
(Q̄+ vR̄),

on the plane R2, where

F̄ = F

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
u2 + v2 − 1

1 + u2 + v2

)
.

If t denotes the independent variable in the above differential system, then that
system becomes polynomial introducing the new independent variable s through
ds = (1 + u2 + v2)m−1dt.

Now the differential system (1) written in the form (2) is

(3)
u̇ = −a− 2au2 − 36uv − 4bu2v − au4 + 4u3v + 4uv3 + av4,
v̇ = −2(1 + bu− 18u2 + auv − bu3 + buv2 + u4 + au3v + auv3 − v4).

We draw the phase portraits of the polynomial differential system (3) in the
plane R2 in the Poincaré disc, i.e. roughly speaking we identify the plane R2 with
the interior of the unit disc, and its boundary the circle S1 with the infinity of
R2, for more details on the so called Poincaré compactification see Chapter 5 of
[8]. Identifying the circle S1 of the infinity to a point we have the phase portrait
of the differential system (1) on the sphere S2.

In Figure 4(a) we provide the phase portrait in the region L2 ∪ R3, in Figure
4(b) we provide the phase portrait in the region L1 ∪ R2, and in Figure 4(c) we
provide a phase portrait in the region R1.
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(a) (b)
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Figure 4. (a) The phase portrait of system (2) for (a, b) = (6, 2).
(b) The phase portrait of system (1) when (a, b) = (4, 8). (c)
The phase portrait of system (1) for some values of the parameters
(a, b) = (2, 1).
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