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Abstract. We study the continuous and discontinuous planar piecewise differential
systems formed by linear centers together with linear Hamiltonian saddles separated
by one or two parallel straight lines. When these piecewise differential systems are
either continuous or discontinuous separated by one straight-line, they have no limit
cycles. When these piecewise differential systems are continuous and are separated
by two parallel straight lines they do not have limit cycles. On the other hand, when
these piecewise differential systems are discontinuous and separated by two parallel
straight lines (either two centers and one saddle, or two saddles and one center), we
show that they can have at most one limit cycle, and that there exist such systems
with one limit cycle. If the piecewise differential systems separated by two parallel
straight lines have three linear centers, or three linear Hamiltonian saddles it is known
that they have at most one limit cycle.

1. Introduction and statement of the main results

A limit cycle is a periodic orbit of a differential system isolated in the set of all
periodic orbits of that system. The study of the limit cycles goes back essentially to
Poincaré [24] at the end of the nineteenth century.

The existence of limit cycles became important in the applications to the real world,
because many phenomena are related with their existence, see for instance the Van der
Pol oscillator [27, 28], or the Belousov–Zhabotinskii reaction which is a classical reaction
of non-equilibrium thermodynamics appearing in a non- linear chemical oscillator [3, 29].
The study of the continuous piecewise linear differential systems separated by one or two
parallel straight lines appears in a natural way in the control theory, see for instance
the books [2, 10, 12, 13, 18, 23]. The easiest continuous piecewise linear differential
systems are formed by two linear differential systems separated by a straight line. It is
known that such systems have at most one limit cycle, see [8, 15, 20, 21].

The study of the discontinuous piecewise linear differential systems separated by
straight lines goes back to Andronov et al. [1] and until nowadays they have special
attention from the mathematicians, mainly because these systems appear in mechanics,
electrical circuits, economy, etc, see for instance the books [7, 25] and the surveys
[22, 26].
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In the planar discontinuous piecewise differential systems here considered, the limit
cycles can be of three kinds: those limit cycles placed at just one zone and the limit
cycles placed in two or three zones, such limit cycles can be either sliding limit cycles
or crossing limit cycles. We recall that the sliding limit cycles contain some segment of
the lines of discontinuity, and the crossing limit cycles only contain isolated points of
the lines of discontinuity. We will not treat the ones placed at just one zone because in
our case since the systems in one zone are linear differential systems it is well known
that such systems have no limit cycles. In this paper we only studied the crossing limit
cycles, here also denoted simply limit cycles.

Again the easiest discontinuous piecewise linear differential systems are formed by two
linear differential systems separated by a straight line. It is known that such systems
can have three limit cycles, see [4, 5, 6, 9, 11, 14, 16]. It remains open to know if three
is the maximum number of limit cycles that such systems can exhibit.

We now state the main results of the paper.

Theorem 1. A continuous or discontinuous piecewise linear differential system sep-
arated by one straight line formed by one center and one Hamiltonian saddle has no
limit cycles.

The proof of Theorem 1 is given in section 3. The case where in the two regions
there is a center, or in the two regions there is a saddle was studied in [17] and [19],
respectively. In these papers the authors show that there are also no limit cycles in
these cases.

Theorem 1 in the case of continuous or discontinuous piecewise differential systems
can be extended to continuous or discontinuous piecewise linear differential systems
separated by two parallel straight lines formed by either one center and two linear
Hamiltonian saddles or one linear Hamiltonian saddle and two centers. The case in
which in the three regions there is a center or in the three regions there is a saddle
was studied in [17] and [19], respectively. In these papers the authors show that these
systems have at most one limit cycle.

Theorem 2. The following statements hold.

(a) A continuous piecewise linear differential system separated by two parallel straight
lines formed by two centers and one Hamiltonian saddle has no limit cycles.

(b) A discontinuous piecewise linear differential system separated by two parallel
straight lines formed by two centers and one Hamiltonian saddle can have at
most one limit cycle. Moreover there are systems in this class having one limit
cycle, see Figures 1 and 2.

Theorem 2 is proved in section 4.

Theorem 3. The following statements hold.

(a) A continuous piecewise linear differential system separated by two parallel straight
lines formed by one center and two Hamiltonian saddles has no limit cycles.
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Figure 1. The limit cycle of the discontinuous piecewise differential system
formed by the two linear centers (8) and (10), and the linear Hamiltonian
saddle (9). This limit cycles is travelled in counterclockwise sense.

Figure 2. The limit cycle of the discontinuous piecewise differential system
formed by the two linear centers (14) and (15), and the linear Hamiltonian
saddle (16). This limit cycles is travelled in counterclockwise sense.

(b) A discontinuous piecewise linear differential system separated by two parallel
straight lines formed by one center and two Hamiltonian saddles can have at
most one limit cycle. Moreover there are systems in this class having one limit
cycles, see Figures 3 and 4.

Theorem 3 is proved in section 5.

The paper is organized as follows: We first present a normal form of a linear dif-
ferential system having a center (proved in [17]), and second we also present a normal
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Figure 3. The limit cycle of the discontinuous piecewise differential system
formed by two linear Hamiltonian saddles by the two linear Hamiltonian sad-
dles (19) and (21), and the linear center (20). This limit cycles is travelled in
counterclockwise sense.

Figure 4. The limit cycle of the discontinuous piecewise differential system
formed by two linear Hamiltonian saddles by the two linear Hamiltonian sad-
dles (24) and (25), and the linear center (26). This limit cycles is travelled in
counterclockwise sense.



PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH HAMILTONIAN SADDLES 5

form of a linear differential system having a linear Hamiltonian saddle (proved in [19]).
These normal forms will be widely used in the proofs of the main results.

2. Preliminaries

The following propositions, proved in [17, Lemma 1] and [19, Proposition 1], respec-
tively, prove the normal forms mentioned in the introduction.

Proposition 4. Any linear differential system having a center can be written as

(1) ẋ = −bx− Ωy + d, ẏ = x+ by + c,

where Ω = b2 + ω2 with ω ̸= 0.

The first integral of system (1) is

(2) F (x, y) = −1

2
x2 − bxy − Ω

2
y2 − cx+ dy.

Proposition 5. A differential system having a linear Hamiltonian saddle can be written
as

(3) ẋ = −βx− δy + µ, ẏ = αx+ βy + γ,

with α ∈ {0, 1}. Moreover, when α = 0 then γ = 0, b ̸= 0, and when α = 1 then
δ = β2 − ω2 with ω ̸= 0.

The first integral of system (3) is

(4) H(x, y) = −α

2
x2 − βxy − δ

2
y2 − γx+ µy.

3. Proof of Theorem 1

Assume that we have a continuous piecewise linear differential system separated by
one straight line and formed by one center and one Hamiltonian saddle. Without loss
of generality we can assume that the straight line of separation is x = 0 and that we
have system (1) in x < 0 with first integral in (2) and system (3) with first integral (4)
in x > 0.

Note that if such piecewise linear differential systems (either continuous or discon-
tinuous) have a periodic orbit candidate to be a limit cycle, such a periodic orbit must
intersect the line x = 0 in exactly two points, namely (0, y1) and (0, y2) with y1 < y2.
Since F and H are two first integrals, we have that

F (0, y1) = F (0, y2) and H(0, y1) = H(0, y2)

that is

(5) (y1 − y2)(2d− Ω(y1 + y2)) = 0 and (y1 − y2)(2µ− δ(y1 + y2)) = 0.
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If the piecewise differential system is continuous, then both systems must coincide in
x = 0, and so we have that β = b, γ = c, µ = d and δ = Ω. Then the solutions (y1, y2)
of this last system satisfying the necessary condition y1 < y2 are

y1 =
2d

Ω
− y2.

If the piecewise differential system is discontinuous, then the solutions (y1, y2) of system
(5) satisfying the necessary condition y1 < y2 are

µ1 =
dδ

Ω
, y1 =

2d

Ω
− y2.

So the periodic orbits of either the discontinuous or the continuous piecewise differential
systems are in a continuum of periodic orbits and consequently this differential system
has no limit cycles. This completes the proof of the theorem.

4. Proof of Theorem 2

Assume that we have a piecewise linear differential system separated by two parallel
straight lines and formed by two centers and one Hamiltonian saddle. Without loss of
generality we can assume that the straight lines of separation are x = −1 and x = 1.
We have to consider only two different cases (the other combination of systems in the
different zones that are not contained in the cases given below are equivalent to one of
them doing the symmetry with respect to the y-axis).

(i) We have a linear center in the regions x < −1 and x > 1; and we have a linear
Hamiltonian saddle in the region x ∈ (−1, 1).

(ii) We have a linear center in the regions x < −1 and x ∈ (−1, 1); and we have a
linear Hamiltonian saddle in the region x > 1.

We will study each of the cases separately.

Case (i). Note that if the piecewise linear differential system has a periodic orbit
candidate to be a limit cycle, such a periodic orbit must intersect the lines x = ±1
in exactly four points, namely (−1, y1), (−1, y2), (1, y3) and (1, y4), with y1 > y2 and
y3 < y4. Since F1, F2 and H1 are three first integrals and we denote the parameters
of the first integrals F1 and H1 with subindexes one, and the parameters of the first
integral F2 with subindexes 2, we have that

F1(−1, y1)− F1(−1, y2) = 0, H1(−1, y2)−H1(1, y3) = 0,

F2(1, y3)− F2(1, y4) = 0, H1(1, y4)−H1(−1, y1) = 0,

that is

(y1 − y2)(2(b1 + d1)− Ω1(y1 + y2)) = 0,

4γ1 + 2(β1 + µ1)y2 + 2(β1 − µ1)y3 − δ1(y
2
2 − y23) = 0,

(2(b2 − d2) + Ω2(y3 + y4))(y3 − y4) = 0,

− 4γ1 − 2(β1 + µ1)y1 − 2(β1 − µ1)y4 + δ1(y
2
1 − y24) = 0.

(6)
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Assume first that it is a continuous piecewise differential system. Then both systems
(1) (with i = 1) and (3) must coincide in x = −1 and systems (3) and (1) (with i = 2)
must coincide in x = 1. Doing so we get

Ωi = δi, bi = βi, i = 1, 2, d1 = µ1, d2 = µ1+β2−β1, c1 = 1+γ1−α1, c2 = −1+γ2+α2.

Then the solutions (y1, y2, y3, y4) of this last system satisfying the necessary condition
y1 < y2 are

y2 =
2(β1 + µ1)

δ1
− y1, y3 =

µ1 − β1

δ1
±

√
∆

δ1
, y4 =

µ1 − β1

δ1
±

√
∆

δ1
,

where ∆ = β2
1 − 4γ1δ1 + (µ1 − y1δ1)

2 − 2β1(µ1 + y1δ1). Hence all the periodic orbits of
the continuous piecewise differential system are in a continuum of periodic orbits and
consequently this differential system has no limit cycles. This completes the proof of
the theorem for the continuous piecewise differential systems in Case (i).

Assume now that it is a discontinuous piecewise differential system. Since Ω1,Ω2 > 0
the solution of the first and third equations of (6) is

y1 =
2(b1 + d1)

Ω1

− y2, y3 =
2(d2 − b2)

Ω2

− y4.

Introducing these solutions into the second and fourth equations of (6) we get

e1 = 4((d2 − b2)β1Ω2 + γ1Ω
2
2 + (b2 − d2)Ω2ν1 + (b2 − d2)

2δ1) + 2Ω2
2(β1 + µ1)y2

− 2Ω2(β1Ω2 − Ω2µ1 − 2(b2 − d2)δ1)y4 − Ω2
2δ1(y

2
2 − y24) = 0

(7)

and

e2 = 4(−(b1 + d1)β1Ω1 − γ1Ω
2
1 − (b1 + d1)Ω1ν1 + (b1 + d1)

2δ1)− 2Ω2
1(β1 − ν1)y4

+ 2Ω1((β1 + Ω1)ν1 − 2(b1 + d1)δ1)y2 + Ω2
1δ1(y

2
2 − y24) = 0.

Taking e3 = Ω2
1e1 − Ω2

2e2, and solving e3 = 0 in y4 we get

y4 =
A0

A1

+
A2

A1

y2,

where

A0 = −Ω1Ω2((µ1 − β1)d2Ω1 + β1(b1 + d1)Ω2 + b2Ω1(β1 − µ1) + (b1 + d1)Ω2µ1)

+ ((b2 − d2)
2Ω2

1 + (b1 + d1)
2Ω2

2)δ1,

A1 = Ω2
1Ω2((β1 − µ1)Ω2 + (d2 − b2)δ1), A2 = Ω1Ω

2
2((β1 + µ1)Ω1 − (d1 + b1)δ1),

whenever A1 ̸= 0. The case with A1 = 0 yields β1 = µ1 + (b2 − d2)δ1/Ω2. Introducing
it into e3 = 0 and solving in y2 we obtain y2 = y1 = (b1 + d1)/Ω1 which is not possible.
So we can assume that A1 ̸= 0. Now introducing y4 into equation (7) and solving in y2
we get

y2± =
b1 + d1
Ω1

±
√
∆

2A3

,
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where

A3 = Ω2
1Ω

2
2δ1(2Ω1Ω2µ1 + (b2 − d2)Ω1δ1 − (b1 + d1)Ω2δ1)(2β1Ω1Ω2 − ((b2 + d2)Ω1

+ (b1 + d1)Ω2)δ1),

∆ = 4Ω4
1Ω

2
2δ1((β1 − µ1)Ω2 + (−b2 + d2)δ1)

2(2Ω1Ω2µ1 + (b2 − d2)Ω1δ1 − (b1 + d1)Ω2δ1)

(−2β1Ω1Ω2 + (b2Ω1 − d2Ω1 + (b1 + d1)Ω2)δ1)(2Ω1Ω2((β1 − µ1)d2Ω1 + β1(b1 + d1)Ω2

+ 2γ1Ω1Ω2 + (b1 + d1)Ω2µ1 + b2Ω1(−β1 + µ1)) + (b2 − d2)Ω1 − (b1 + d1)Ω2)

((b2 − d2)Ω1 + (b1 + d1)Ω2)δ1),

whenever A3 ̸= 0, and if A3 = 0 then there is at most one solution y2.

When A3 ̸= 0,since

y1± =
2(d1 + b1)

Ω1

− y2± =
d1 + b1
Ω1

∓
√
∆

2A3

= y2∓,

there is at most one solution with y1 > y2 and y3 < y4. In summary, we have proved
that at most we can have one limit cycle.

Now we shall prove that the discontinuous piecewise linear differential system having
a center, a saddle and a center has one limit cycle. This will complete the proof of
Theorem 2 in Case (i) when it is discontinuous.

The Hamiltonians of the three linear systems in Case (i) are

F1(x, y) = −8y − y2

4
− 4(x+ 2y)2,

H1(x, y) = x− y + x2 − y2,

F2(x, y) = −8x8y − 4x2 − 8xy − 5y2,

where the Hamiltonian system in the half-plane x < −1 is

(8) ẋ = 8 + 16x+
65

2
y, ẏ = −8(x+ 2y);

the Hamiltonian system in the strip −1 < x < 1 is

(9) ẋ = −1− 2y, ẏ = −1− 2x;

and the Hamiltonian system in the half-plane x > 1 is

(10) ẋ = 8− 8x− 10y, ẏ = 8 + 8x+ 8y.

These three linear differential systems are a center, a saddle and a center because the
determinant of their linear part are 4, −4 and 16, respectively.

The discontinuous piecewise differential system formed by the three linear differential
systems (8), (9) and (10) in order to have one limit cycle intersecting the two discon-
tinuous straight lines x = ±1 at the points (−1, y1), (−1, y2), (1, y3) and (1, y4), these
points must satisfy system (6), and this system has a unique solution satisfying y1 > y2
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and y3 < y4, namely

(11) (y1, y2, y3, y4) =

(
16

65
+

√
4873

36
√
2
,
16

65
−

√
4873

36
√
2
,−97

√
4873

2340
√
2
,
97
√
4873

2340
√
2

)
.

Drawing the corresponding limit cycle associated to this solution we obtain the limit
cycle of Figure 1.

Case (ii). Note that if the piecewise linear differential system has a periodic orbit
candidate to be a limit cycle, such a periodic orbit must intersect the lines x = ±1
in exactly four points, namely (−1, y1), (−1, y2), (1, y3) and (1, y4), with y1 > y2 and
y3 < y4. Since F1, F2 and H1 are three first integrals, we have that

F1(−1, y1)− F1(−1, y2) = 0, F2(−1, y2)− F2(1, y3) = 0,

H1(1, y3)−H1(1, y4) = 0, F2(1, y4)− F2(−1, y1) = 0,

that is
(y1 − y2)(2(b1 + d1)− Ω1(y1 + y2)) = 0,

4c2 + 2(b2 + d2)y2 + 2(b2 − d2)y3 − Ω2(y
2
2 − y23) = 0,

(2(β1 − µ1) + δ1(y3 + y4))(y3 − y4) = 0,

4c2 + 2(b2 + d2)y1 + 2(b2 − d2)y4 − Ω2(y
2
1 − y24) = 0.

(12)

Assume first that it is a continuous piecewise differential system. Then both systems
(1) (with i = 1) and (1) (with i = 2) must coincide in x = −1, and systems (3) and (1)
(with i = 2) must coincide in x = 1. Doing so we get

b2 = b1 = β1, Ω2 = Ω1 = δ1, d2 = d1 = µ1, c2 = c1 = γ1, α2 = 1.

Then the solutions (y1, y2, y3, y4) of this last system satisfying the necessary condition
y1 < y2 are

y2 =
2(β1 + µ1)

δ1
− y1, y3 =

µ1β1

δ1
∓

√
∆

δ1
, y4 =

µ1 − β1

δ1
±

√
∆

δ1
,

where ∆ = β2
1 −4γ1δ1−2β1µ1+µ2

1−2δ1(β1+µ1)y1+δ1y
2
1. Hence all the periodic orbits

of the continuous piecewise differential system are in a continuum of periodic orbits
and consequently this differential system has no limit cycles. This completes the proof
of Theorem 2 for the continuous piecewise differential systems in Case (ii).

Assume now that it is a discontinuous piecewise differential system. If δ1 = 0 then
the third equation in (12) yields β1 = µ1, and any solution of the other three equations
in (12) yield a continuous of solutions. If δ1 ̸= 0, since Ω1 > 0 the solution of the first
and third equations is

y1 =
2(d1 + b1)

Ω1

− y2, y3 =
2(µ1 − β1)

δ1
− y4.

Introducing these solutions into the second and fourth equations in (6) we get

e1 = 4(β1 − µ1)
2Ω2 − 4(b2 − d2)(β1 − µ1)δ1 + 4c2δ

2
1 + 4c2δ

2
1 + 2(b2 + d2)δ

2
1y2

2δ1(2(β1 − µ1)Ω2 + (d2 − b2)δ1)y4 − Ω2δ
2
1(y

2
2 − y24) = 0

(13)



10 J. LLIBRE AND C. VALLS

and

e2 = 4(b1 + d1)(b2 + d2)Ω1 + 4c2Ω
2
1 − 4(b1 + d1)

2Ω2 + 2(b2 − d2)Ω
2
1y4

− 2Ω1((b2 + d2)Ω1 − 2(b1 + d1)Ω2)y2 − Ω2
1Ω2(y

2
2 − y24) = 0.

Taking e3 = Ω2
1e1 − δ21e2 and solving e3 = 0 in y4 we get

y4 =
A0 + A2y2

δ1Ω2
1((b2 − d2)δ1 + (µ1 − β1)Ω2)

,

where

A0 = (β1 − µ1)
2Ω2

1Ω2 − (b2 − d2)(β1 − µ1)Ω
2
1δ1 + (b1 + d1)((b1 + d1)Ω2 − (b2 + d2)Ω1)δ

2
1,

A2 = Ω1((b2 + d2)Ω1 − (b1 + d1)Ω2)δ
2
1,

whenever µ1 ̸= β1 + (d2 − b2)δ1/Ω2. When µ1 = β1 + (d2 − b2)δ1/Ω2 = 0 solving e3 = 0
in y2 we obtain y2 = y1 = 2(µ1 + β1)/δ1 which is not possible. So we can assume that
µ1 ̸= β1 + (d2 − b2)δ1/Ω2. Now introducing y4 into equation (13) and solving in y2 we
get

y2± =
b1 + d1
Ω1

±
√
∆

2A3

,

where

A3 = −Ω2
1Ω2δ

2
1((β1 − µ1)Ω1Ω2 + 2d2Ω1δ1 − (b1 + d1)Ω2δ1)

((β1 − µ1)Ω1Ω2 − 2b2Ω1δ1 + (b1 + d1)Ω2δ1),

∆ = 4Ω4
1Ω2δ

2
1(β1Ω2 − µ1Ω2 + (d2 − b2)δ1)

2((β1 − µ1)Ω1Ω2 + 2d2Ω1δ1 − (b1 + d1)Ω2δ1)

(β1Ω1Ω2 − µ1Ω1Ω2 − 2b2Ω1δ1 + (b1 + d1)Ω2δ1)((β1 − µ1)
2Ω2

1Ω2

− 2(b2 − d2)(β1 − µ1)Ω
2
1δ1 + (2Ω1((b1 + d1)(b2 + d2) + 2c2Ω1)− (b1 + d1)

2Ω2)δ
2
1),

whenever A3 ̸= 0, and if A3 = 0 then there is at most one solution y2.

When A3 ̸= 0, since

y1± =
b1 + d1
Ω1

− y2± = (b1 + d1)/Ω1 ∓
√
∆

2A3

= y2∓,

there is at most one solution with y1 > y2 and y3 < y4. In summary, we have proved
that at most we can have one limit cycle.

Now we shall prove that this discontinuous piecewise linear differential system has
one limit cycle. This will complete the proof of Theorem 2 in Case(ii) when it is
discontinuous and so the proof of Theorem 2.

The Hamiltonians of the three linear systems in Case (ii) are

F1(x, y) = −8y − 1

4
y2 − 4(x+ 2y)2,

F2(x, y) = x− y − x2 − y2,

H1(x, y) = −4x+
1

2
x2 − 1

2
y2,
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where the Hamiltonian system in the half-plane x < −1 is

(14) ẋ = −8− 16x− 65

2
y, ẏ = 8(x+ 2y);

the Hamiltonian system in the strip −1 < x < 1 is

(15) ẋ = −1− 2y, ẏ = −1 + 2x;

and the Hamiltonian system in the half-plane x > 1 is

(16) ẋ = −y, ẏ = 4− x.

These three linear differential systems are two centers and a saddle because the deter-
minant of their linear part are 4, 4 and −1, respectively.

The discontinuous piecewise differential system formed by the three linear differential
systems (14), (15) and (16) in order to have one limit cycle intersecting the two discon-
tinuous straight lines x = ±1 at the points (−1, y1), (−1, y2), (1, y3) and (1, y4), these
points must satisfy system (12), and this system has the unique solution (11) satisfying
y1 > y2 and y3 < y4. Drawing the corresponding limit cycle associated to this solution
we obtain the limit cycle of Figure 2.

5. Proof of Theorem 3

Assume that we have a piecewise linear differential system separated by two parallel
straight lines and formed by two Hamiltonian saddles and one center. Without loss of
generality we can assume that the straight lines of separation are x = −1 and x = 1.
We have to consider only two different cases (the other combination of systems in the
different zones that are not contained in the cases given below are equivalent to one of
them doing the symmetry with respect to the y-axis).

(i) We have a linear Hamiltonian saddle in the regions x < −1 and x > 1; and we
have a linear center in the region x ∈ (−1, 1).

(ii) We have a linear Hamiltonian saddle in the regions x < −1 and x ∈ (−1, 1);
and we have a linear center in the region x > 1.

We will study each of these two cases separately.

Case (i). Note that if the piecewise linear differential system has a periodic orbit
candidate to be a limit cycle such a periodic orbit must intersect the lines x = ±1
in exactly four points, namely (−1, y1), (−1, y2), (1, y3) and (1, y4), with y1 > y2 and
y3 < y4. Since F1, H1 and H2 are three first integrals, we have that

H1(−1, y1)−H1(−1, y2) = 0, F1(−1, y2)− F1(1, y3) = 0,

H2(1, y3)−H2(1, y4) = 0, F1(1, y4)− F1(−1, y1) = 0,
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that is

(y1 − y2)(2(β1 + µ1)− δ1(y1 + y2)) = 0,

4c1 + 2(b1 + d1)y2 + 2(b1 − d1)y3 − Ω1(y
2
2 − y23) = 0,

(2(β2 − µ2) + δ2(y3 + y4))(y3 − y4) = 0,

4c1 + 2(b1 + d1)y1 + 2(b1 − d1)y4 − Ω1(y
2
1 − y24) = 0.

(17)

Assume first that it is a continuous piecewise differential system. Then system (3)
(with i = 1) and system (1) (with i = 1) must coincide in x = −1, and system (3)
(with i = 2) and system (1) (also with i = 1) must coincide in x = 1. Doing so we get

βi = b1, µi = d1, δi = Ω1, i = 1, 2, α1 = 1− c1 + γ1, α2 = 1 + c1 − γ2.

Then the solutions (y1, y2, y3, y4) of system (17) satisfying the necessary condition y1 <
y2 are

y2 =
2(b1 + d1)

Ω1

− y1, y3 =
d1 − b1
Ω1

±
√
∆

Ω1

, y4 =
d1 − b1
Ω1

±
√
∆

Ω1

,

where ∆ = b21 − 4c1Ω1 + (d1 −Ω1y1)
2 − 2b1(d1 +Ω1y1). Hence all the periodic orbits of

the continuous piecewise differential system are in a continuum of periodic orbits and
consequently this differential system has no limit cycles. This completes the proof of
Theorem 3 for the continuous piecewise differential systems in Case (i).

Assume now that it is a discontinuous piecewise differential system. If δ1 = 0 the first
equation in (17) yields β1 = −µ1 and any solution of the other three equations in (17)
yield a continuous of solutions. If δ2 = 0 then the third equation in (17) yields β2 = µ2

and any solution of the other three equations in (17) yield a continuous of solutions.

If δ1δ2 ̸= 0, then the solution of the first and third equations is

y1 =
2(β1 + µ1)

δ1
− y2, y3 =

2(µ2 − β2)

δ2
− y4.

Introducing these solutions into the second and fourth equations in (6) we get

e1 = 4(β2 − µ2)
2Ω1 − 4(b1 − d1)(β2 − µ2)δ2 + 4c1δ

2
2 + 2δ22(b1 + d1)y2

+ 2δ2(2β2Ω1 − 2µ2Ω1 − b1δ2 + d1δ2)y4 − Ω1δ
2
2(y

2
2 − y24) = 0

(18)

and

e2 = 4(β1 + µ1)
2Ω1 − 4(b1 + d1)(β1 + µ1)δ1 − 4c1δ

2
1 − 2δ21(b1 − d1)y4

− 2δ1(2β1Ω1 + 2µ1Ω1 − b1δ1 − d1δ1)y2 + Ω1δ
2
1(y

2
2 − y24) = 0.

Taking e3 = δ21e1 + δ22e2 and solving e3 = 0 in y4 we get

y4 =
A0

A1

+
A2

A1

y2

where

A0 = −(β2 − µ2)
2Ω1δ

2
1 + (b1 − d1)(β2 − µ2)δ

2
1δ2 − (β1 + µ1)((β1 + µ1)Ω1 − (b1 + d1)δ1)δ

2
2,

A1 = δ21δ2(−β2Ω1 + µ2Ω1 + b1δ2 − d1δ2), A2 = (−β1Ω1 − µ1Ω1 + b1δ1 + d1δ1)δ
2
2δ1,
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whenever A1 ̸= 0. The case with A1 = 0 yields β2 = µ2 + δ2(b1 − d1)/Ω1. Introducing
it into e3 = 0, and solving in y2 we obtain y2 = y1 = (β1 + µ1)/δ1 which is not possible.
So we can assume that A1 ̸= 0. Now introducing y4 into equation (18) and solving in
y2 we get

y2± =
β1 + µ1

δ1
±

√
∆

2A3

,

where

A3 = Ω1δ
2
1δ

2
2(β2Ω1δ1 − µ2Ω1δ1 + β1Ω1δ2 + µ1Ω1δ2 − 2b1δ1δ2)

(β2Ω1δ1 − µ2Ω1δ1 − β1Ω1δ2 − µ1Ω1δ2 + 2d1δ1δ2),

∆ = 4Ω1δ
4
1δ

2
2(β2Ω1 − µ2Ω1 + (−b1 + d1)δ2)

2((β2 − µ2)Ω1δ1 + (β1 + µ1)Ω1δ2 − 2b1δ1δ2)

((β2 − µ2)Ω1δ1 − (β1 + µ1)Ω1δ2 + 2d1δ1δ2)((β2 − µ2)
2Ω1δ

2
1 − 2(b1 − d1)(β2 − µ2)δ

2
1δ2

+ (4c1δ
2
1 − (β1 + µ1)

2Ω1 + 2(b1 + d1)(β1 + µ1)δ1)δ
2
2),

whenever A3 ̸= 0, and if A3 = 0 then there is at most one solution y2.

When A3 ̸= 0, since

y1± =
2(β1 + µ1)

δ1
− y2± =

β1 + µ1

δ1
∓

√
∆

2A3

= y2∓,

there is at most one solution with y1 > y2 and y3 < y4. In summary, we have proved
that at most we can have one limit cycle.

Now we shall prove that the discontinuous piecewise linear differential system having
a saddle, a center and a saddle has one limit cycle. This will complete the proof of
Theorem 3 in Case (i) when it is discontinuous.

The Hamiltonians of the three linear systems in Case (i) are

H1(x, y) = 16x+ 2y + x2 − 1

48
(309−

√
157881)xy − 65

1536
(405−

√
157881))y2,

F1(x, y) = x− y − x2 − y2,

H2(x, y) = −8x+ x2 − y2,

where the Hamiltonian system in the half-plane x < −1 is

(19)
ẋ = 2− 1

48
(309−

√
157881)x− 65

768
(405−

√
157881)y,

ẏ = −16− 2x+
1

48
(309−

√
157881)y;

the Hamiltonian system in the strip −1 < x < 1 is

(20) ẋ = −1− 2y, ẏ = −1 + 2x;

and the Hamiltonian system in the half-plane x > 1 is

(21) ẋ = −2y, ẏ = 8− 2x.
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These three linear differential systems are a saddle, a center and a saddle, because
the determinant of their linear part are −8569/48 + 7

√
157881/16 < 0, 4 and −4,

respectively.

The discontinuous piecewise differential system formed by the three linear differential
systems (19), (20) and (21) in order to have one limit cycle intersecting the two discon-
tinuous straight lines x = ±1 at the points (−1, y1), (−1, y2), (1, y3) and (1, y4), these
points must satisfy system (12), and this system has the unique solution (11) satisfying
y1 > y2 and y3 < y4. Drawing the corresponding limit cycle associated to this solution
we obtain the limit cycle of Figure 3.

Case (ii). Note that if the piecewise linear differential system has a periodic orbit
candidate to be a limit cycle, such a periodic orbit must intersect the lines x = ±1
in exactly four points, namely (−1, y1), (−1, y2), (1, y3) and (1, y4), with y1 > y2 and
y3 < y4. Since H1, H2 and F1 are three first integrals, we have that

H1(−1, y1)−H1(−1, y2) = 0, H2(−1, y2)−H1(1, y3) = 0,

F1(1, y3)− F1(1, y4) = 0, H2(1, y4)−H2(−1, y1) = 0,

that is

(y1 − y2)(2(β1 + µ1)− δ1(y1 + y2)) = 0,

4γ2 + 2(β2 + µ2)y2 + 2(β2 − µ2)y3 − δ2(y
2
2 − y23) = 0,

(2(b1 − d1) + Ω1(y3 + y4))(y3 − y4) = 0,

− 4γ2 − 2(β2 + µ2)y1 − 2(β2 − µ2)y4 + δ2(y
2
1 − y24) = 0.

(22)

Assume first that it is a continuous piecewise differential system. Then both systems
(3) (with i = 1 and with i = 2) must coincide in x = −1, and system (3) (with i = 2)
and system (1) (with i = 1) must coincide in x = 1. Doing so we get

βi = b1, µi = d1, δi = Ω1, i = 1, 2, α1 = 1 + c1 + γ1 − 2γ2, α2 = 1 + c1 − γ2.

Then the solutions (y1, y2, y3, y4) of system (22) satisfying the necessary condition y1 <
y2 are

y2 =
2(b1 + d1)

Ω1

− y1, y3 =
d1 − b1
Ω1

±
√
∆

Ω1

, y4 =
d1 − b1
Ω1

±
√
∆

Ω1

,

where ∆ = b21 − 4γ2Ω1 + (d1 −Ω1y1)
2 − 2b1(d1 +Ω1y1). Hence all the periodic orbits of

the continuous piecewise differential system are in a continuum of periodic orbits and
consequently this differential system has no limit cycles. This completes the proof of
the theorem for the continuous piecewise differential systems in Case (ii).

Assume now that it is a discontinuous piecewise differential system. If δ1 = 0 then
the first equation in (22) yields β1 = −µ1, and any solution of the other three equations
in (22) yield a continuous of solutions.

If δ1 ̸= 0 since Ω1 > 0, the solution of the first and third equations is

y1 =
2(µ1 + β1)

δ1
− y2, y3 =

2(d1 − b1)

Ω1

− y4.
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Introducing these solutions into the second and fourth equations in (22) we get

e1 = 4Ω1(−(b1 − d1)(β2 − µ2) + γ2Ω1) + 4Ω2
1(b1 − d1)

2δ2 + 2Ω2
1(β2 + µ2)y2

− 2Ω1(β2Ω1 − µ2Ω1 − 2b1δ2 + 2d1δ2)y4 − Ω2
1δ2(y

2
2 − y24) = 0

(23)

and

e2 = −4(β1 + µ1)(β2 + µ2)δ1 − 4γ2δ
2
1 + 4(−β2

1 + 2β1µ1 + µ2
1)δ2 − 2δ21(β2 − µ2)y4

+ 2δ1(β2δ1 + µ2δ1 − 2β1δ2 − 2µ1δ2)y2 + δ21δ2(y
2
2 − y24) = 0.

Taking e3 = δ21e1 + Ω2
1e2 and solving e3 = 0 in y4 we get

y4 =
A0

A1

+
A2

A1

y2,

where

A0 = −Ω1δ1((β1 + µ1)(β2 + µ2)Ω1 − (b1 − d1)(β2 − µ2)δ1)− δ2((β1 + µ1)
2Ω2

1

+ (b1 − d1)
2δ21),

A1 = Ω1δ
2
1(Ω1(β2 − µ2) + (d1 − b1)δ2), A2 = Ω2

1δ1((β2 + µ2)δ1 − (β1 + µ1)δ2),

whenever β2 ̸= µ2 + (b1 − d1)δ2/Ω1. When β2 = µ2 + (b1 − d1)δ2/Ω1 solving e3 = 0
in y2 we obtain y2 = y1 = (µ1 + β1)/δ1 which is not possible. So we can assume that
β2 ̸= µ2 + (b1 − d1)δ2/Ω1. Now introducing y4 into equation (23) and solving in y2 we
get

y2± =
β1 + µ1

δ1
±

√
∆

2A3

where

A3 = Ω2
1δ

2
1δ2(2µ2Ω1δ1 − β1Ω1δ2 − µ1Ω1δ2 + b1δ1δ2 − d1δ1δ2)(2β2Ω1δ1 − β1Ω1δ2

− µ1Ω1δ2 − b1δ1δ2 + d1δ1δ2),

∆ = −4Ω2
1δ

4
1δ2(β2Ω1 − µ2Ω1 + (−b1 + d1)δ2)

2(2β2Ω1δ1 − ((β1 + µ1)Ω1 + (b1 − d1)δ1)δ2)

(2µ2Ω1δ1 − ((β1 + µ1)Ω1 + (d1 − b1)δ1)δ2)(2Ω1δ1((β1 + µ1)(β2 + µ2)Ω1 − (b1 − d1)

(β2 − µ2)δ1 + 2γ2Ω1δ1)− ((β1 + µ1)Ω1 + (b1 − d1)δ1)((β1 + µ1)Ω1 + (d1 − b1)δ1)δ2),

whenever A3 ̸= 0, and if A3 = 0 then there is at most one solution y2.

When A3 ̸= 0, since

y1± =
2(β1 + µ1)

δ1
− y2± =

β1 + µ1

δ1
∓

√
δ

2A3

= y2∓,

there is at most one solution with y1 > y2 and y3 < y4. In summary, we have proved
that at most we can have one limit cycle.

Now we shall prove that the discontinuous piecewise linear differential system having
two saddles and a center has one limit cycle. This will complete the proof of Theorem
3 in Case (ii) when it is discontinuous and so the proof of Theorem 3.
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The Hamiltonians of the three linear systems in Case (ii) are

H1(x, y) = 16x+ 2y + x2 − 1

48
(309−

√
157881)xy − 65

1536
(405−

√
157881))y2,

H2(x, y) = x− y + x2 − y2,

F1(x, y) = −8x+ 8y − 4x2 − 8xy − 5y2,

where the Hamiltonian system in the half-plane x < −1 is

(24)
ẋ = 2− 1

48
(309−

√
157881)x− 65

768
(405−

√
157881)y,

ẏ = −16− 2x+
1

48
(309−

√
157881)y;

the Hamiltonian system in the strip −1 < x < 1 is

(25) ẋ = −1− 2y, ẏ = −1− 2x;

and the Hamiltonian system in the half-plane x > 1 is

(26) ẋ = 8− 8x− 10y, ẏ = 8 + 8x+ 8y.

These three linear differential systems are two saddles and a center because the deter-
minant of their linear part are −8569/48 + 7

√
157881/16 < 0, −4 and 16, respectively.

The discontinuous piecewise differential system formed by the three linear differential
systems (24), (25) and (26) in order to have one limit cycle intersecting the two discon-
tinuous straight lines x = ±1 at the points (−1, y1), (−1, y2), (1, y3) and (1, y4), these
points must satisfy system (22), and this system has the unique solution (11) satisfying
y1 > y2 and y3 < y4. Drawing the corresponding limit cycle associated to this solution
we obtain the limit cycle of Figure 4.
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de Gestió d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 Euro-
pean Research Council grant MSCA-RISE-2017-777911. The second author is partially
supported by FCT/Portugal through UID/MAT/04459/2019.

References

[1] Andronov, A., Vitt, A., Khaikin, S.: Theory of oscillations. Pergamon Press, Oxford (1966).
[2] Atherton, D.P.: Nonlinear Control Engineering. Van Nostrand Reinhold Co., Ltd., New York

(1982).
[3] Belousov, B.P.: Periodically acting reaction and its mechanism. In: Collection of Abstracts on

Radiation Medicine, pp. 145–147. Moscow (1958).
[4] Braga, D.C., Mello, L.F.: Limit cycles in a family of discontinuous piecewise linear differential

systems with two zones in the plane. Nonlinear Dyn. 73, 1283–1288 (2013).
[5] Buzzi, C., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete

Contin. Dyn. Syst. 9, 3915–3936 (2013).



PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH HAMILTONIAN SADDLES 17

[6] Cardoso, J.L., Llibre, J., Novaes, D.D., Tonon, D,J.: Simultaneous occurrence of sliding and
crossing limit cycles in piecewise linear planar vector fields. Dyn. Syst. 35, 490–514, (2020).

[7] di Bernardo, M., Budd, C. J., Champneys, A. R., Kowalczyk, P.: Piecewise-Smooth Dynamical
Systems: Theory and Applications. Applied mathematical sciences series 163. Springer, London
(2008).

[8] Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear
systems with two zones. Int. J. Bifurcat. Chaos 8, 2073–2097 (1998).

[9] Freire, E., Ponce, E., Torres, F.: A general mechanism to generate three limit cycles in planar
Filippov systems with two zones. Nonlinear Dyn. 78, 251–263 (2014).

[10] Henson, M.A., Seborg, D.E.: Nonlinear Process Control. Prentice-Hall, New Jersey (1997).
[11] Huan, S.M., Yang, X.S.: On the number of limit cycles in general planar piecewise linear systems.

Discrete Contin. Dyn. Syst. Ser. A 32, 2147–2164 (2012).
[12] Isidori, A.: Nonlinear Control Systems. Springer, London (1996).
[13] Katsuhiko, O.: Modern Control Engineering, 2nd edn. Prentice-Hall, Upper Saddle River (1990).
[14] Li, L.: Three crossing limit cycles in planar piecewise linear systems with saddle–focus type.

Electron. J. Qual. Theory Differ. Equ. 70, 1–14 (2014).
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I and II. Rend. Circ. Mat. Palermo 5, 161–191 (1891) 11, 193–239 (1897).

[25] Simpson, D.J.W.: Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series
on Nonlinear Science A, vol. 69. World Scientific, Singapore (2010).

[26] Teixeira, M.A.: Perturbation theory for non-smooth systems. In: Robert, A. M., (ed.) Math-
ematics of Complexity and Dynamical Systems, vol. 1–3, pp. 1325–1336. Springer, New York
(2012).

[27] van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1,
701–710 (1920).

[28] van der Pol, B.: On relaxation-oscillations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(7), 978–992
(1926).

[29] Zhabotinsky, A.M.: Periodical oxidation of malonic acid in solution (a study of the Belousov
reaction kinetics). Biofizika 9, 306–311 (1964).



18 J. LLIBRE AND C. VALLS
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