
GLOBAL CENTERS OF THE GENERALIZED
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Abstract. The global centers started to be studied seriously at the
end of the XX century. In the last decades, the generalized polynomial
Liénard differential systems have been studied intensively. In this pa-
per we characterize all the generalized polynomial Liénard differential
systems having a global center at the origin. In particular we provide
the explicit expressions of all the generalized polynomial Liénard dif-
ferential systems of degree 3 having a global center at the origin, and
the explicit expression of a generalized polynomial Liénard differential
system of degree 5 having a global center at the origin.

1. Introduction and statement of the main results

We say that p is a center of a differential system in R2 if there exists a
neighborhood U of p such that U \ {p} is filled up with periodic orbits. The
notion of center goes back to the works of Poincaré [12] and Dulac [5].

The maximal connected set of periodic orbits surrounding the center p
and having p in its boundary is called the period annulus of the center p.
Moreover we say that p is a global center if its period annulus is R2 \ {q}.

As far as we know, the study on global centers was initiated by a group
of researchers, see Conti et al. [3,4,7]. Although some works on global
centers appeared in the literature before Conti et al., global centers were
not named or defined. In [7] it is proved that the polynomial differential
systems having a global center must have odd degrees. In [3] it is proved
that the linear differential centers are the unique centers of the polynomial
differential systems which are rigid and global. ‘We recall that a center p is
rigid if its differential system in polar coordinates with the origin at p has
its angular velocity constant. Different results on the global centers were
obtained in [4]. Other studies on global centers for polynomial differential
systems can be found in [8, 9, 10, 13].
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In this paper we deal with the real generalized polynomial Liénard differ-
ential equation

(1) ẍ+ f(x)ẋ+ g(x) = 0,

where f and g are non-zero polynomials such that g(x) = x + g2(x) with
g2(0) = 0 and g′2(0) = 0. As usual the dot denotes derivative with respect to
time t. There is no doubt about the importance of the differential equation
(1) and this is one of the reasons why it has been studied by so many authors.
For instance, if one enters the four words Liénard, polynomial, differential,
equation or system into MathSciNet, one would receive 157 articles at the
time that this paper is being written.

The differential equation (1) of second order can be written as the follow-
ing differential system of first order

(2) ẋ = −y, ẏ = x+ g2(x)− f(x)y,

where

g2(x) =

ℓ∑
j=2

ajx
j , f(x) =

m∑
j=0

bjx
j ,

with aℓbm ̸= 0. Clearly the origin (0, 0) is a singular point of the differential
system (2).

The differential system (2) is called a generalized polynomial differential
Liénard system or simply Liénard system.

The next result characterize the generalized polynomial differential Liénard
system (2) having a global center at the origin.

Theorem 1. The generalized polynomial differential Liénard system (2)
with f(x) and g(x) such that g(0) = 0, g′(0) > 0 has a global center at the
origin if and only if the following conditions hold:

(i) The unique real root of the polynomial g(x) is x = 0.

(ii) There exist real polynomials h, f1 and g1 such that

f(x) = f1(h(x))h
′(x), g(x) = g1(h(x))h

′(x),

with h′(0) = 0 and h′′(0) ̸= 0.

(iii) deg g = ℓ is odd, and deg g > 1 + deg f .

(iv) The local phase portrait of the singular point localized at the origin
of the polynomial differential system

(3) u̇ = uvℓ−1f
(u
v

)
− uvℓg

(u
v

)
− vℓ−1, v̇ = vℓ

(
f
(u
v

)
− vg

(u
v

))
,

is formed by two hyperbolic sectors.

Theorem 1 will be proved in section 3.
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Now we shall prove that there exist Liénard system (2) satisfying the
three conditions of Theorem 1. In other words, we shall prove that there
are Liénard system (2) having a global center.

It follows from condition (iii) of Theorem 1 that 3 is the lowest degree
of the Liénard systems (2) which can have a global center. The next result
classifies all Liénard systems (2) of degree 3 having a global center.

Theorem 2. All Liénard systems (2) of degree 3 having a global center at
the origin of coordinates after a rescaling of the variables x, y and t can be
written as

(4) ẋ = −y, ẏ = x+ bx3 − xy,

with b > 1/8.

Theorem 2 will be proved in section 4.

In the next proposition, we present a Liénard system (2) of degree 5
having a global center.

Proposition 3. The following Liénard system

(5) ẋ = −y, ẏ = x+ 2x5 − 2xy,

has a global center at the origin of coordinates.

The proof of Proposition 3 is given in section 5.

2. Preliminary results

We introduce some preliminary results necessary for proving Theorem 3.

The centers are classified in three types. If the Jacobian of the system
evaluated at a center has purely imaginary eigenvalues then we say that it
is a linear type center. If it has both eigenvalues zero but its linear part is
not identically zero we call it a nilpotent type center. Finally if it has its
linear part identically zero then it is a degenerate center.

First we recall Theorem 6 of Christopher [2] in which he gave an algebraic
and effective characterization in order that a polynomial differential Liénard
system (2) has a linear type center at the origin of coordinates.

Theorem 4. The polynomial differential Liénard system (2) with f(x) and
g(x) real polynomials with g(0) = 0, g′(0) > 0 has a linear type center at the
origin if and only if there exist real polynomials h, f1 and g1 such that

f(x) = f1(h(x))h
′(x), g(x) = g1(h(x))h

′(x),

with h′(0) = 0 and h′′(0) ̸= 0.
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We need the notion of Poincaré disc. Roughly speaking the Poincaré disc
D2 is the unit closed disc centered at the origin of coordinates whose interior
is diffeomorphic with R2 and whose boundary, the circle S1 is identified with
the infinity of R2. Note that we can go to the infinity in the plane R2 in as
many as directions as points has the circle S1. Any polynomial differential
system can be extended analytically to the whole Poincaré disc, being the
circle of the infinity invariant by this extended flow. This extension is called
the Poincaré compactification, see for details Chapter 5 of [6].

Consider a polynomial differential system in R2 whose line at infinity is
not filled of singular points and with a unique finite singular point which is
a center (of any type). The following result characterizes when this center
is global.

Proposition 5. Consider a polynomial differential system in R2 whose line
at infinity is not filled of singular points and with a unique finite singular
point which is a center of a given type. Then this center is global if and only
if all the infinite singular points in the Poincaré disc, if they exist, are such
that their local phase portraits are formed by two hyperbolic sectors, having
their two separatrices on the infinite circle.

Proof. Assume that the polynomial differential system in R2 has a unique
finite singular point which is a center of a given type and that this center
is global. Then the exterior boundary of the period annulus of this center
is the circle at infinity. Consequently, since the infinite circle is not filled
up with singular points, if there is some infinite singular point this must be
formed by two hyperbolic sectors having all of them both separatrices on
the infinite circle.

Now assume that the polynomial differential system in R2 has a unique
finite singular point which is a center of any type, and that all the infinite
singular points, if they exist, are such that their local phase portraits are
formed by two hyperbolic sectors having all of them both separatrices on
the infinite circle. Then consider the period annulus of the center. Its inner
boundary is the center, its outer boundary γ is a curve homeomorphic to
a circle. If the circle γ is contained in R2, since the unique finite singular
point is the center, it must be a periodic orbit, but we claim that this is
not possible. Indeed consider a local transversal section Σ to the periodic
orbit γ and the Poincaré map π defined on Σ. Then π on the part of
Σ contained in the period annulus is the identity. Since π is an analytic
function of one variable, because the polynomial differential system is an
analytic differential system, it follows π is also the identity on the part of Σ
outside the period annulus. So γ is contained in the interior of the period
annulus, a contradiction. Hence the claim is proved.

Since the boundary of the period annulus, the circle γ cannot be contained
in R2, this boundary must contain some points of the infinite circle, but since
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all the infinite singular points, if they exist, its local phase portrait is formed
by two hyperbolic sectors having all of them both separatrices on the infinite
circle, the boundary γ is the infinite circle. Hence the center is global. □

In order to be able to apply Proposition 5 we need to study the infinite
singular points of system (2). Using the notation of Chapter 5 of [6] we
must study the infinite singular points of the local chart U1 and the origin of
the local chart U2 the remaining infinite singular points are the diametrally
opposite singular points in the Poincaré disc. From [6] we know that in order
to study the infinite singular points of the extended polynomial differential
system

(6) ẋ = P (x, y), ẏ = Q(x, y),

of degree n (i.e. n is the maximum degree of the polynomials P and Q) in
the local chart U1 we must study the singular points of the form (u, 0) of
the polynomial differential system

u̇ = vd
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
,

v̇ = −vd+1P

(
1

v
,
u

v

)
,

(7)

and to study the origin of the local chart U2 of the polynomial system (6)
we must study the origin of the polynomial differential system

u̇ = vd
[
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
,

v̇ = −vd+1Q

(
u

v
,
1

v

)
.

(8)

Proposition 6. An infinite singular point p in the local chart U1 (respec-
tively U2) whose local phase portrait is formed by two hyperbolic sectors
having both separatrices on the infinite circle satisfies that the linear part of
system (7) (respectively (8)) at p is identically zero.

Proof. It is well known that if the linear part of an isolated singular point p of
a differential system in R2 has some eigenvalue non-zero, or both eigenvalues
zero but the linear part is not identically zero, the local phase portrait of p
cannot be formed by two hyperbolic sectors having both separatrices tangent
to the same straight line L through p, with one separatrix tangent to one
component of L \ {p} and the other tangent to the other component of
L \ {p}. See for details Theorems 2.15, 2.19 and 3.5 of [6]. □

Theorem 7. A polynomial differential system ẋ = P (x, y), ẏ = Q(x, y), of
even degree has no global centers.

Galeotti and Villarini [7] proved that every polynomial differential system
of even degree has at least one unbounded orbit. Therefore if a polynomial
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differential system has a global center its degree must be odd, this proves
Theorem 7. For a different and shorter proof of this result see [11].

3. Proof of Theorem 1

If system (2) has a global center at the origin, the origin must be the
unique finite singular point, and from (2) this is equivalent to say that
x = 0 is the unique real root of the polynomial g(x), i.e. the polynomial
g(x)/x = 1+ g2(x)/x has no real roots. Note that in particular de degree of
the polynomial g(x) must be odd.

From Theorem 7 if a system (2) has a global center we must assume that
the degree of such polynomial differential is odd.

In summary, in order that system (2) has a global center we need that
x = 0 be the unique real root of the polynomial g(x) (condition (i)), that
the degree d = max{ℓ = 2n− 1,m+ 1} of system (2) be odd, and that the
origin be a center, i.e. from Theorem 4 that condition (ii) holds.

The polynomial Liénard differential system (2) in the local chart U1 using
(7) becomes

u̇ =u2vd−1 + vd−1 +
2n−1∑
j=2

ajv
d−j − u

m∑
j=0

bjv
d−1−j ,

v̇ =uvd.

(9)

We consider three different cases.

Case 1: 2n − 1 > m + 1. In this case we have that d = 2n − 1 and
a2n−1 ̸= 0. So u̇|v=0 = a2n−1 ̸= 0. Therefore there are no infinite singular
points in the local chart U1.

Case 2: 2n − 1 = m + 1. In this case we have that d = 2n − 1 = m + 1
and a2n−1bm ̸= 0. So u̇|v=0 = a2n−1−ubm. Hence there is a unique singular
point (u∗, 0) = (a2n−1/bm, 0) in the local chart U1. The linear part of system
(9) at the singular point (u∗, 0) is−bm a2n−2 −

a2n−1

bm
bm−1

0 0

 .

Since this linear part is not identically zero, by Propositions 5 and 6 we know
that the singular point (u∗, 0) cannot be formed by two hyperbolic sectors
having both separatrices on v = 0, i.e. on the line of infinity. Therefore in
this case the origin of coordinates cannot be a global center.

Case 3: 2n− 1 < m+1. In this case we have that d = m+1 and bm ̸= 0.
So u̇|v=0 = −ubm. Hence there is a unique singular point (u∗, 0) = (0, 0) in
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the local chart U1. The linear part of system (9) at the singular point (0, 0)
is (

−bm ∗
0 0

)
where ∗ can be zero or not. Since this linear part is not identically zero,
again the singular point (0, 0) cannot be formed by two hyperbolic sectors
having the separatrices on the line of infinity. Therefore in this case the
origin O is not a global center.

In short, in order that a polynomial Liénard differential system (2) can
have a global center it must be in Case 1, i.e. condition (iii).

The unique infinite singular point under condition (iii) can be the origin
of the local chart U2. Using (8) the expression of system (2) in the local
chart U2 is the system (4), from it is clear that the origin is a singular point.
Then from Proposition 5 the local phase portrait of the origin of coordinates
of the local chart U2 must be formed by two hyperbolic sectors having both
separatrices contained in the infinite circle, i.e. condition (iv).

This completes the proof of Theorem 1.

4. Proof of Theorem 2

We are looking for the system (2) satisfying the four conditions of Theo-
rem 1 having the minimum degrees for the polynomials f(x) and g(x).

The minimum degree for the polynomial h(x) satisfying condition (ii) of
Theorem 1 is 2, so for obtaining the minimum degrees for the polynomials
f(x) and g(x) we must take h(x) = cx2 with c ̸= 0.

From condition (iii) of Theorem 1 we know that in order that system (2)
can have a global center ℓ > m + 1 with ℓ odd. The minimum values of ℓ
and m satisfying this relation are ℓ = 3 and m = 0.

From condition (ii) of Theorem 1 we have that f(x) = f1(cx
2)2cx and

g(x) = g1(cx
2)2cx. Since the degree m of the polynomial f(x) is zero,

f(x) = a1 with a1 ∈ R \{0} ( note that a1 cannot be zero, otherwise system
(2) would not be a polynomial Liénard differential system). Since the degree
ℓ of the polynomial g(x) = g1(cx

2)2cx = x + g2(x) is 3, we have that and
g1(x) = b1x+ 1/(2c) with b1 ̸= 0. In summary,

g(x) = x+ b1c
2x3 = x+ bx3, f(x) = 2a1c1x = ax.

Therefore system (2) having the polynomials f(x) and g(x) with the mini-
mum degrees satisfying conditions (i), (ii) and (iii) of Theorem 1 are

(10) ẋ = −y, ẏ = x+ bx3 − axy,

with b > 0, by condition (i), and a ̸= 0 in order to have a polynomial Liénard
differential system.
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In order to reduce the number of parameters from two to one, we do the
rescaling (x, y, t) = (X/a, Y/a) and system (10) becomes

(11) ẋ = −y, ẏ = x+ bx3 − xy,

with b > 0, where we have written x and y instead of X and Y , respectively.

Now we shall study when system (11) satisfies condition (iv) of Theorem
1. So we write system (11) in the local chart U2 using (11) and we get

(12) u̇ = −v2 + u2v − bu4 − u2v2, v̇ = −bu3v + uv2 − uv3.

Clearly the origin (u, v) = (0, 0) is an infinite singular point whose linear
part is identically zero, so for studying its local phase portrait we must do
the changes of variables called blow ups, see for more details [1].

The characteristic directions are the directions in which the orbits of a
differential system can reach or escape from a singular point, see for more
details the definition of characteristic orbit in [6]. Since u = 0 is not a
characteristic direction because the unique characteristic direction at the
origin of system (12) is v = 0, we start the study of the local phase portrait
at the origin of system (12) doing a vertical blow up, i.e. we pass from the
variables (u, v) to the variables

(13) (u, v) → (u1, v1), where u1 = u and v1 = v/u.

Then system (12) becomes

u̇1 = −u21(bu
2
1 − u1v1 + v21 + u21v

2
1), v̇1 = u1v

3
1.

We rescale the independent variable as follows dt1 = u1dt in order to elimi-
nate the common factor u1 between u̇1 and v̇1, and we obtain the system

(14) u̇1 = −u1(bu
2
1 − u1v1 + v21 + u21v

2
1), v̇1 = v31,

where now the dot denotes derivative with respect to the new independent
variable t1. Again the origin of system (14) is the unique singular point of
this system on the straight line u1 = 0, and its linear part continues being
linearly zero. So we need to do another blow up.

The characteristic directions at the origin of system (14) are u1 = 0 and
v1 = 0. Since u1 = 0 is a characteristic direction if we do a new vertical blow
up in general we cannot control the orbits of the local phase portrait at the
origin of system (14) which arrive or exit tangent to u1 = 0. So before doing
a vertical blow we translate the direction u1 = 0 to the direction u1 = v1
doing the change of variables

(15) (u1, v1) → (u2, v2), where u2 = u1 + v1 and v2 = v1.

In this new variables system (14) writes

(16)

u̇2 = −bu32 + (1 + 3b)u22v2 − 3(1 + b)u2v
2
2 + (3 + b)v32 − u32v

2
2

+3u22v
3
2 − 3u2v

4
2 + v52,

v̇2 = v32,



GLOBAL CENTERS OF THE POLYNOMIAL LIÉNARD DIFFERENTIAL SYSTEMS 9

The origin is the unique singular point of system (21) on the straight line
u2 = 0, and since its linear part is identically zero for studying its local
phase portrait we do the vertical blow up

(17) (u2, v2) → (u3, v3), where u3 = u2 and v3 = v2/u2,

Therefore system (16) becomes

u̇3 = u33(−b+ (1 + 3b)v3 − 3(1 + b)v23 + (3 + b)v33 − u23v
2
3

+3u23v
3
3 − 3u23v

4
3 + u23v

5
3),

v̇3 = −u23(−1 + v3)v3(b− (1 + 2b)v3 + (3 + b)v23 + u23v
2
3

−2u23v
3
3 + u23v

4
3),

We rescale the independent variable as follows dt2 = u23dt1 in order to
eliminate the common factor u23 between u̇3 and v̇3, and we obtain the
system

(18)

u̇3 = u3(−b+ (1 + 3b)v3 − 3(1 + b)v23 + (3 + b)v33 − u23v
2
3

+3u23v
3
3 − 3u23v

4
3 + u23v

5
3),

v̇3 = −(−1 + v3)v3(b− (1 + 2b)v3 + (3 + b)v23 + u23v
2
3

−2u23v
3
3 + u23v

4
3),

Case 1: Assume b > 1/8. Then system (18) has the two singular points
(0, 0) and (0, 1) on the straight line u3 = 0. The eigenvalues of the linear
part of the system at (0, 0) are ±b, so this point is a saddle (see for instance
Theorem 2.15 of [6]). While the eigenvalues of the linear part of the system
at (0, 1) are 1 and −2, so it is also a saddle.

If b > 8 the unique two singular points of system (18) on the straight line
u3 = 0 are the two saddles (0, 0) and (0, 1). Therefore the local phase por-
trait near the straight line u3 = 0 for system (18) is topologically equivalent
to the one of Figure 1(a).

Now undoing the rescaling dt2 = u23dt1 and going back through the change
of variables (17) the phase portrait of Figure 1(a) provides the local phase
portrait at the origin of system (16) which is topologically equivalent to the
one of Figure 1(b).

Going back through the change of variables (15) the phase portrait of
Figure 1(b) provides the local phase portrait at the origin of system (14)
which is topologically equivalent to the one of Figure 1(c).

Undoing the rescaling dt1 = u1dt and going back through the change
of variables (13) the phase portrait of Figure 1(c) provides the local phase
portrait at the origin of system (12) which is topologically equivalent to the
one of Figure 1(d). Hence the local phase portrait at the origin of the local
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(a) (b)

(c) (d)

Figure 1. The local phase portraits of the blow ups for ob-
taining the local phase portrait at the origin of the local chart
U2 of system (12).

chart U2 is formed by two hyperbolic sectors having the two separatrices on
the infinite circle.

In summary, from Theorem 1 it follows that Theorem 2 is proved if we
show that when b ∈ (0, 1/8] the local phase portrait at the origin of system
(12) is not formed by two hyperbolic sectors having the two separatrices on
the infinite circle.

Case 2: Assume b = 1/8. Then system (18) has the three singular points
(0, 0), (0, 1/5) and (0, 1) on the straight line u3 = 0. As in Case 1 the
singular points (0, 0) and (0, 1) are saddles. Since the two eigenvalues of the
linear part of the system at the singular point (0, 1/5) are 0 and 1/25, this
singular point is semihyperbolic. Using Theorem 2.19 of [6] the local phase
portrait at (0, 1/5) is a saddle-node. Then the parabolic sector providing
the nodal part of the saddle-node is not destroyed going back to system (12),
consequently the origin of the local chart at U2 has a parabolic sector, and
it cannot be formed by two hyperbolic sectors.

Case 3: Assume b ∈ (0, 1/8). Then system (18) has the four singular points
(0, 0), (0, 1) and p± = (0, (1 + 2b ±

√
1− 8b)/(6 + 2b)) on the straight line

u3 = 0. As in Cases 1 and 2 the singular points (0, 0) and (0, 1) are saddles.
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The determinat of the linear part of the system at the singular points p±
is

det
±

=
(8b− 1)(b((b− 12)b− 4)− 2)

2(b+ 3)4
±

√
1− 8b(b(b(17b− 20)− 4) + 2)

2(b+ 3)4
.

Since det+ det− = 2b3(8b− 1)/(b+3)4 < 0, so we have a saddle and a node.
As in Case 2 the parabolic sector of the node persist going back to system
(12), and the origin of the local chart at U2 has a parabolic sector, and it
cannot be formed by two hyperbolic sectors.

In summary the proof of Theorem 2 is complete.

5. Proof of Propostion 3

First we shall prove that the polynomial Liénard differential system (5)
has a unique finite singular point, the origin of coordinates, which is a center.
Indeed, it is easy to check that the origin is the unique finite singular of
system (5). Now note that if h(x) = x2, f1(x) = 1 and g1(x) = x2 + 1/2,
then

f(x) = f1(h(x))h
′(x) = 2x, and g(x) = g1(h(x))h

′(x) = x+ 2x5.

So, since g(0) = 0, g′(0) = 1 > 0, h′(0) = 0, h′′(0) = 2 ̸= 0, by Theorem 2
the Liénard differential system (5) has a center at the origin.

Since we are in the previous Case 1 because using the notation of that case
we have 2n−1 = 5 andm+1 = 1, system (5) has no infinite singular points in
the local chart U1. Then, from the previous arguments done before starting
the proof of Theorem 3, in order to complete the proof of this theorem we
only need to show that the origin of the local chart U2 is a singular point
such that its local phase portrait is formed by two hyperbolic sectors having
their separatrices contained in the infinite circle. Indeed, from (8) system
(5) in the local chart U2 writes

(19)
u̇ = −v4 + 2u2v3 − 2u6 − u2v4,

v̇ = 2uv4 − 2u5v − uv5.

Clearly the origin of system (19) is an infinite singular point whose linear
part is identically zero, so for studying its local phase portrait we must do
the changes of variables called blow ups.

Since u = 0 is not a characteristic direction because the unique charac-
teristic direction at the origin of system (19) is v = 0, we start the study of
the local phase portrait at the origin of system (19) doing a vertical blow
up, i.e. we pass from the variables (u, v) to the variables (u1, v1) using (13).
Then system (19) becomes

u̇1 = −u41(2u
2
1 − 2u1v

3
1 + v41 + u21v

4
1),

v̇1 = u31v
5
1.
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We rescale the independent variable as follows dt1 = u31dt in order to elimi-
nate the common factor u31 between u̇1 and v̇1, and we obtain the system

(20)
u̇1 = −u1(2u

2
1 − 2u1v

3
1 + v41 + u21v

4
1),

v̇1 = v51,

where now the dot denotes derivative with respect to the new independent
variable t1. Again the origin of system (20) is the unique singular point of
this system on the straight line u1 = 0, and its linear part continues being
linearly zero. So we need to do another blow up.

The characteristic directions at the origin of system (20) are u1 = 0 with
multiplicity three and v1 = 0. Since u1 = 0 is a characteristic direction we
translate the direction u1 = 0 to the direction u1 = v1 doing the change of
variables (15). In this new variables system (20) writes

(21)

u̇2 = −2u32 + 6u22v2 − 6u2v
2
2 + 2v32 + 2u22v

3
2 − 5u2v

4
2 + 4v52

−u32v
4
2 + 3u22v

5
2 − 3u2v

6
2 + v72,

v̇2 = v52,

The origin is the unique singular point of system (21) on the straight line
u2 = 0, and since its linear part is identically zero for studying its local phase
portrait we do the vertical blow up (17). Therefore system (21) becomes

u̇3 = u33
(
− 2 + 6v3 − 6v23 + 2v33 + 2u23v

3
3 − 5u23v

4
3 + 4u23v

5
3

−u43v
4
3 + 3u43v

5
3 − 3u43v

6
3 + u43v

7
3

)
,

v̇3 = u23v3(1− v3)
(
2− 4v3 + 2v23 − 2u23v

3
3 + 4u23v

4
3 + u43v

4
3

−u43v
4
3 − 2u43v

5
3 + u43v

6
3

)
,

We rescale the independent variable as follows dt2 = u23dt1 in order to
eliminate the common factor u23 between u̇3 and v̇3, and we obtain the
system

(22)

u̇3 = u3
(
− 2 + 6v3 − 6v23 + 2v33 + 2u23v

3
3 − 5u23v

4
3 + 4u23v

5
3

−u43v
4
3 + 3u43v

5
3 − 3u43v

6
3 + u43v

7
3

)
,

v̇3 = v3(1− v3)
(
2− 4v3 + 2v23 − 2u23v

3
3 + 4u23v

4
3 + u43v

4
3

−u43v
4
3 − 2u43v

5
3 + u43v

6
3

)
,

This system has two singular points on the straight line u3 = 0, namely the
origin (0, 0) and (0, 1). The eigenvalues of the linear part of the system at
(0, 0) are ±2, so this point is a saddle (see for instance Theorem 2.15 of [6]).
The linear part of the system at (0, 1) is identically zero. Hence in order to
know the local phase portrait at the singular point (0, 1) we must do blow
ups.
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First we translate the singular point (0, 1) at the origin of coordinates
doing the change of variables

(23) (u3, v3) → (u4, v4),where u4 = u3 and v4 = v3 − 1.

In the new variables system (22) becomes

(24)

u̇4 = u4(u
2
4 + 6u24v4 + 2v34 + 16u24v

2
4 + 22u24v

3
4 + 15u24v

4
4 + u44v

3
4

+4u24v
5
4 + 4u44v

4
4 + 6u44v

5
4 + 4u44v

6
4 + u44v

7
4),

v̇4 = −v4(1 + v4)(2u
2
4 + 2v24 + 10u24v4 + 18u24v

2
4 + 14u24v

3
4 + u44v

2
4

+4u24v
4
4 + 4u44v

3
4 + 6u44v

4
4 + 4u44v

5
4 + u44v

6
4).

This system has the two singular points (0, 0) and (0,−1). Since the linear
part of the system at (0, 0) is identically zero, we must study its local phase
portraits doing blow ups, but due to the fact that the origin has the two
characteristic directions u4 = 0 and v4 = 0 we cannot do a vertical blow
up to system (24) because we can lost information around the straight line
u4 = 0. So we pass the straight line u4 = 0 to the straight line u4 = v4
doing the change of variables

(25) (u4, v4) → (u5, v5), where u5 = u4 + v4 and v5 = v4.

Hence system (24) in the new variables writes
(26)

u̇5 = u35 − 5u25v5 + 7u5v
2
5 − 5v35 + 6u35v5 − 30u25v

2
5 + 44u5v

3
5 − 22v45

+16u35v
2
5 − 76u25v

3
5 + 104u5v

4
5 − 44v55 + 22u35v

3
5 − 98u25v

4
5

+130u5v
5
5 − 54v65 − u45v

3
5 + 19u35v

4
5 − 69u25v

5
5 + 85u5v

6
5 − 34v75

+u55v
3
5 − 10u45v

4
5 + 34u35v

5
5 − 56u25v

6
5 + 45u5v

7
5 − 14v85 + 4u55v

4
5

−30u45v
5
5 + 80u35v

6
5 − 100u25v

7
5 + 60u5v

8
5 − 14v95 + 6u55v

5
5

−40u45v
6
5 + 100u35v

7
5 − 120u25v

8
5 + 70u5v

9
5 − 16v105 + 4u55v

6
5

−25u45v
7
5 + 60u35v

8
5 − 70u25v

9
5 + 40u5v

10
5 − 9v115 + u55v

7
5 − 6u45v

8
5

+14u35v
9
5 − 16u25v

10
5 + 9u5v

11
5 − 2v125 ,

v̇5 = −v5(1 + v5)(2u
2
5 − 4u5v5 + 4v25 + 10u25v5 − 20u5v

2
5 + 10v35

+18u25v
2
5 − 36u5v

3
5 + 18v45 + 14u25v

3
5 − 28u5v

4
5 + 14v55 + u45v

2
5

−4u35v
3
5 + 10u25v

4
5 − 12u5v

5
5 + 5v65 + 4u45v

3
5 − 16u35v

4
5 + 24u25v

5
5

−16u5v
6
5 + 4v75 + 6u45v

4
5 − 24u35v

5
5 + 36u25v

6
5 − 24u5v

7
5 + 6v85

+4u45v
5
5 − 16u35v

6
5 + 24u25v

7
5 − 16u5v

8
5 + 4v95 + u45v

6
5 − 4u35v

7
5

+6u25v
8
5 − 4u5v

9
5 + v105 ).

Now we do the blow up

(27) (u5, v5) → (u6, v6), where u6 = u5 and v6 = v5/u5,
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and system (26) becomes

(28)

u̇6 = −u6(−1 + 5v6 − 6u6v6 − 7v26 + 30u6v
2
6 + 5v36 − 16u26v

2
6

−44u6v
3
6 + 76u26v

3
6 + 22u6v

4
6 − 22u36v

3
6 − 104u26v

4
6 + u46v

3
6

+98u36v
4
6 + 44u26v

5
6 − u56v

3
6 − 19u46v

4
6 − 130u36v

5
6 + 10u56v

4
6

+69u46v
5
6 + 54u36v

6
6 − 4u66v

4
6 − 34u56v

5
6 − 85u46v

6
6 + 30u66v

5
6

+56u56v
6
6 + 34u46v

7
6 − 6u76v

5
6 − 80u66v

6
6 − 45u56v

7
6 + 40u76v

6
6

+100u66v
7
6 + 14u56v

8
6 − 4u86v

6
6 − 100u76v

7
6 − 60u66v

8
6 + 25u86v

7
6

+120u76v
8
6 + 14u66v

9
6 − u96v

7
6 − 60u86v

8
6 − 70u76v

9
6 + 6u96v

8
6

+70u86v
9
6 + 16u76v

10
6 − 14u96v

9
6 − 40u86v

10
6 + 16u96v

10
6 + 9u86v

11
6

−9u96v
11
6 + 2u96v

12
6 ),

v̇6 = (v6 − 1)v6(3− 6v6 + 18u6v6 + 5v26 − 36u6v
2
6 + 44u26v

2
6 + 22u6v

3
6

−88u26v
3
6 + u46v

2
6 + 54u36v

3
6 + 44u26v

4
6 − 4u46v

3
6 − 108u36v

4
6 + 6u56v

3
6

+39u46v
4
6 + 54u36v

5
6 − 24u56v

4
6 − 70u46v

5
6 + 14u66v

4
6 + 44u56v

5
6

+34u46v
6
6 − 56u66v

5
6 − 40u56v

6
6 + 16u76v

5
6 + 84u66v

6
6 + 14u56v

7
6

−64u76v
6
6 − 56u66v

7
6 + 9u86v

6
6 + 96u76v

7
6 + 14u66v

8
6 − 36u86v

7
6

−64u76v
8
6 + 2u96v

7
6 + 54u86v

8
6 + 16u76v

9
6 − 8u96v

8
6 − 36u86v

9
6

+12u96v
9
6 + 9u86v

10
6 − 8u96v

10
6 + 2u96v

11
6 ).

The unique two singular points of system (5) on the straight line u6 = 0
are (0, 0) and (0, 1). The eigenvalues of the linear part of the system at
(0, 0) are 1 and −3, so it is a saddle and the eigenvalues of the linear part
of the system at (0, 1) are ±2, so it is another saddle. Therefore the local
phase portrait near the straight line u6 = 0 for system (5) is topologically
equivalent to the one of Figure 2(a).

Going back through the change of variables (27) the phase portrait of
Figure 2(a) provides the local phase portrait at the origin of system (26)
which is topologically equivalent to the one of Figure 2(b).

Going back through the change of variables (25) from the phase portrait
of Figure 2(b) we obtain the local phase portrait at the origin of system (24)
which is topologically equivalent to the one of Figure 2(c).

Again going back through the change of variables (23) the phase portrait
of Figure 2(c) provides the local phase portrait around the straight line
u3 = 0 of system (22) which is topologically equivalent to the one of Figure
2(d).

Now undoing the rescaling dt2 = u23dt1 and going back through the change
of variables (17) the phase portrait of Figure 2(d) provides the local phase
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2. The local phase portraits of the blow ups for ob-
taining the local phase portrait at the origin of the local chart
U2 of system (19).
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portrait at the origin of system (21) which is topologically equivalent to the
one of Figure 2(e).

Going back through the change of variables (15) the phase portrait of
Figure 2(e) provides the local phase portrait at the origin of system (20)
which is topologically equivalent to the one of Figure 2(f).

Finally undoing the rescaling dt1 = u31dt and going back through the
change of variables (13) the phase portrait of Figure 2(f) provides the local
phase portrait at the origin of system (19) which is topologically equiva-
lent to the one of Figure 2(g). Hence the origin of the local chart U2 has
a local phase portrait formed by two hyperbolic sectors having their two
separatrices on the infinite circle. This completes the proof of Proposition 3
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