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Abstract. In this paper we study polynomial vector fields on C2 of degree larger
than 2 with n2 isolated singularities. More precisely, we show that if two poly-
nomial vector fields share n2 − 1 singularities with the same spectra (trace and
determinant) and from these singularities n2 − 2 have the same positions, then
both vector fields have identical position and spectra at all the singularities. More-
over we also show that if two polynomial vector fields share n2 − 1 singularities
with the same positions and from these singularities n2−2 have the same spectra,
then both vector fields have identical position and spectra at all the singularities.

Moreover we also prove that generic vector fields of degree n > 2 have no twins
and that for any n > 2 there exist two uniparametric families of twin vector fields,
i.e. two different families of vector fields having exactly the same singular points
and for each singular point both vector fields have the same spectrum.

1. Introduction and statement of the main results

Consider the polynomial vector fields on the affine plane C2 and denote by Pn the
space of all polynomial vector fields

χ = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

such that P and Q are polynomials and have degree at most n. By Bezout’s theorem,

a generic element of Pn has exactly n2 isolated singularities. We denote by P̂n the
space of vector fields Pn that have n2 isolated singularities. Since χ has the maximum
number of singularities the determinant of the linear part of χ at each singular point
is nonzero. So the eigenvalues at any singular point are nonzero, i.e. all singular

points are non degenerate (see for more details [7]). The space P̂n is endowed with
a structure of a complex affine space identifying all the (n + 1)(n + 2) coefficients
of the polynomials P and Q with a point of C(n+1)(n+2). This topology in the set of
the polynomial vector fields of degree n is called the topology of the coefficients and

P̂n is an open subset of Pn.

We will say that a property is a generic property for the class of vector fields P̂n

if the set of vector fields having this property contains a (non-empty) Zariski open

and dense subset of P̂n.

We say that two vector fields χ1 and χ2 are affine equivalent if there exists an
affine map T so that

χ2(x, y) = DT · χ1(T
−1(x, y)).
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We denote by Sing (χ) the set of singular points of the vector field χ. If p ∈
Sing (χ), we define the spectrum of χ at p as the two eigenvalues of the linearization
matrix (

Px Qy

Qx Qy

) ∣∣∣∣∣
(x,y)=p

,

that is, the spectrum is the unordered set of eigenvalues of Dχ(p).

Note that if M ∈ GL2(C) then the spectrum of M carries exactly the same
information as the pair

Spec (M) = (trM, detM)

being trM the trace of the matrix M and detM the determinant of the matrix M .
In all the paper the spectrum of a vector field χ will be thought as the pair of the
trace and the determinant.

If X is a topological space and m ≥ 1 let Sm denote the symmetric group of m
elements. Then Xm/Sm is the quotient of the usual action of Sm on Xm permuting
its components. The set of spectra of singularities of a generic polynomial vector
field χ of degree n belongs to the space Sn = (C2)n

2
/Sn2 which is an irreducible

affine algebraic variety. We have a well defined map Specn : P̂n → Sn.

We say that two vector fields from the class P̂n have the same spectra of singu-
larities if they have the same image under the map Specn. Note that the above
definition takes into account the spectra of singularities and does not take into ac-
count the position of them. Our main aim is to understand the pair of vector fields
that share both position and spectra of singularities, that is, our main aim is to
provide results in the following spirit: consider two polynomial vector fields χ and
χ̂ having each of them n2 isolated singularities and label these points as p1, . . . , pn2

and p̂1, . . . , p̂n2 , respectively. Assume that

(1) pi = p̂i for i = 1, . . . ,M and Dχ(pi) ∼ Dχ̂(p̂i) for i = 1, . . . , N

where A ∼ B denotes that the matrices A and B are similar that is, they have the
same spectrum. Then for certain values of M and N we want to see when

pi = p̂i and Dχ(pi) ∼ Dχ̂(p̂i) for all i = 1, . . . , n2.

Once it has been established that two vector fields agree on position of their sin-
gularities and their corresponding spectra, it is natural to ask whether these vector
fields are identical or not. This question gives rise to the concept of twin vector
fields : two different vector fields are said to be twins if they agree on position and
spectra at all their singular points. This corresponds to M = N = n2 in (1).

The corresponding question for quadratic polynomial vector fields, that is, when
n = 2 was studied in [8]. There the author proved that if two quadratic vector fields
have the same spectra (namely M = n2 = 4 in equation (1)), then after an affine
transformation we can achieve that all points share the same position and spectra
(that is M = N = 4 in (1)). Furthermore it is proved that a generic quadratic
vector field indeed admits a unique twin vector field. The results of [8] are inspired
in the papers [5, 6]. Similar results for polynomial vector fields of degree greater
than n = 2 are not currently available in the literature and this is the main aim of
this paper. The fact that n > 2 makes the analysis much more intricate in particular
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because even when n = 3 after an affine transformation we can achieve that three
points share the same position but there are still six free points.

The following are our results. We always assume that we are under the assump-
tions of equation (1).

Theorem 1. The following statements hold for n ≥ 2:

(i) If two vector fields have the same spectra at N = n2−1 singular points, then
they have the same spectra at all n2 singular points;

(ii) If in addition they have the same position at the original M = n2− 1 points,
then they also have the same position for the final singular point.

Note that it follows from Theorem 1 that if n ≥ 2 and equation (1) is satisfied
with M = N = n2−1, then both vector fields χ and χ̂ have the same singular points
and the same spectra. This corresponds to M = N = n2 in equation (1), with the
additional constraint that χ 6= χ̂.

The proof of Theorem 1 is given in section 2. The particular case for n = 2 was
first treated in [8] and the proof for any n follows the same lines but we include it
in the paper for completeness.

Theorem 2. Consider equation (1) with M = n2 − 2 and N = n2 − 1 with n > 2.
Then both vector fields χ and χ̂ have the same singular points and the same spectra
and so M = N = n2 in equation (1).

The proof of Theorem 2 is given in section 3.

Theorem 3. Consider equation (1) with M = n2 − 1 and N = n2 − 2 with n > 2.
Then both vector fields χ and χ̂ have the same singular points and the same spectra
and so M = N = n2 in equation (1).

The proof of Theorem 3 is given in section 4.

We recall here that as mentioned above, the space P̂n has dimension (n+1)(n+2).

Let χ be a given vector field from the class P̂n. Requiring that another vector field

χ̂ ∈ P̂N agrees on position on M points imposes 2M conditions on the parameters of
χ̂ (that is on the polynomials defining χ̂). Similarly, requiring that Dχ(pi) ∼ Dχ̂(p̂i)
at N singular points imposes 2N conditions on the parameters. Thus we impose
2M + 2N conditions on (n + 1)(n + 2) parameters. For the values of M and N in
Theorems 2 and 3, we have

2M + 2N = 4n2 − 6 > (n+ 1)(n+ 2).

Even on the cubic case the gap is quite big. The problem of finding the smallest
value of 2M + 2N that guarantees that if equation (1) is satisfied then all singular
points agree on position and spectra, although is an interesting question, it is a very
hard problem and is out of the scope of this paper.

In Theorems 2 and 3 we provide conditions and study the situation of having
two vector fields agree on position and spectra at all their singularities. Now we
want to establish whether the two vector fields are identical or not. We will see
that when n > 2 vector fields that are twin vector fields are rather uncommon. The
proof of this claim is the content of the following result. We set Rx = ∂R/∂x and
Ry = ∂R/∂y for any polynomial R.
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Theorem 4. Let χ = P (x, y) ∂
∂x

+Q(x, y) ∂
∂y
∈ P̂n. The following statements hold:

(a) If this vector field has a twin vector field then the four polynomials

(2) Px, Qx, Py, Qy

are linearly dependent over C.
(b) If the polynomials in (2) are linearly dependent over C and admit a non-

trivial linear combination

(3) (a− 1)Px + bQx + cPy + (d− 1)Qy ≡ 0

satisfying ad− bc = 1, then χ admits a twin vector field.

The proof of Theorem 4 is given in section 5.

We have the following corollary from Theorem 4.

Corollary 5. A generic vector field of degree n > 2 has no twins.

Note that the polynomials Px, Qx, Py and Qy will generically be of degree n− 1.
The space of polynomials of two variables of degree n−1 has dimension n(n+1)/2 >
4, whenever n > 2. That is the reason why twin vector fields are uncommon in higher
degrees while in the quadratic case Px, Qx, Py and Qy are always linearly dependent
and it is not surprising that in [8] the author proves that generic quadratic vector
fields admit always a twin vector field.

Taking Py = 0 or Qx = 0 in Theorem 4 we have the family of twin vector fields
provided in the following theorem.

Theorem 6. Let P (x) and Q(y) be polynomials each having n distinct roots. Let

χ = P (x)
∂

∂x
+Q(y)

∂

∂y

and consider the following one-parameter family of vector fields{
(P (x) + bQ(y))

∂

∂x
+Q(y)

∂

∂y
, b ∈ C

}
,{

P (x)
∂

∂x
+ (cP (x) +Q(y))d ∂

∂y
, b ∈ C

}
.

Then each vector field in each family is a twin vector field of χ (except for b = 0 or
c = 0) when the vector fields are identical.

Our final comment is the following: whenever N = n2 − 1 in system (1) the
Euler-Jacobi formula (see section 2 for its explicit statement) easily implies that the
two vector fields have the same spectra (see the first part of the proof of Theorem
1). Moreover, when M = n2 − 1 in system (1), the Cayley-Bacharach theorem (see
section 4 for its explicit statement) easily implies that the two vector fields have the
same singular set (see the first part in the proof of Theorem 3). Therefore, the first
non trivial cases are M = n2− 1 with N = n2− 2 and M = n2− 2 with N = n2− 1
which are precisely the two cases treated in Theorems 2 and 3, respectively.



TWIN POLYNOMIAL VECTOR FIELDS 5

2. Proof of Theorem 1

The main result that we use for proving Theorems 2, 3 and 6 is the Euler-Jacobi
formula which can be stated as follows.

Theorem 7 (Euler-Jacobi formula). If P and Q are polynomials in C[x, y] of degree
n whose divisors intersect transversally in n2 different points p1, . . . , pn2 ∈ C2 and
g(x, y) is a polynomial of degree at most 2n− 3, then

n2∑
k=1

g(pk)

J(pk)
= 0,

where J(x, y) is the Jacobian determinant of P and Q, that is,

J(x, y) = det
∂(P,Q)

∂(x, y)
= det

(
Px Qy

Qx Qy

)
= det

(
Dχ(x, y)

)
.

For a proof of Theorem 7 see [1].

Proof of Theorem 1. Assume that two vector fields χ and χ̂ have the same spectra
at N = n2 − 1 singular points. Denote by an2 and ân2 the determinant of Dχ and

Dχ̂ at pn2 , and by bn2 and b̂n2 the traces of Dχ and Dχ̂ at pn2 , respectively. Note
that from the Euler-Jacobi formula with g1(x, y) = 1 and g2(x, y) = tr(Dχ(x, y)) we
get

1

an2

=
1

ân2

which yields an2 = ân2 ,

and
bn2

an2

=
b̂n2

ân2

which yields bn2 = b̂n2 .

Therefore, both vector fields χ and χ̂ have the same spectra at all n2 singular points.
This completes the proof of statement (i).

Now assume that in addition we haveM = n2−1 and we denote by pn2 = (xn2 , yn2)
and p̂n2 = (x̂n2 , ŷn2) the positions of pn2 of χ and of p̂n2 of χ̂, respectively. Applying
the Euler-Jacobi formula with g1(x, y) = x and g2(x, y) = y we get

xn2

an2

=
x̂n2

ân2

and
yn2

an2

=
ŷn2

ân2

which yields xn2 = x̂n2 and yn2 = ŷn2 . Therefore, both vector fields χ and χ̂ have
the same singular locus and the proof of statement (ii) is complete. �

3. Proof of Theorem 2

We continue to denote by an2 and ân2 the determinant of Dχ(pn2) and Dχ̂(pn2),

respectively, and by bn2 and b̂n2 the traces of Dχ(pn2) and Dχ̂(pn2), respectively. It

follows from the proof of Theorem 1 (i) that an2 = ân2 and bn2 = b̂n2 . Therefore,
the spectrum of pn2 and p̂n2 is the same and so M = n2.

Now we also continue to denote by pn2 = (xn2 , yn2) and pn2−1 = (xn2−1, yn2−1) the
positions of the points for the vector field χ, and by p̂n2 = (x̂n2 , ŷn2) and p̂n2−1 =
(x̂n2−1, ŷn2−1) the positions of the points for the vector field χ̂. Applying the Euler
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Jacobi formula with g1(x, y) = x, g2(x, y) = y, g3(x, y) = tr(Dχ(p))x, g4(x, y) =

tr(Dχ(p))y and taking into account that ai = âi and bi = b̂i for i = 1, . . . , n2, we get

xn2−1

an2−1
+
xn2

an2

=
x̂n2−1

an2−1
+
x̂n2

an2

,

yn2−1

an2−1
+
yn2

an2

=
ŷn2−1

an2−1
+
ŷn2

an2

,

bn2−1xn2−1

an2−1
+
bn2xn2

an2

=
bn2−1x̂n2−1

an2−1
+
bn2x̂n2

an2

,

bn2−1yn2−1

an2−1
+
bn2yn2

an2

=
bn2−1ŷn2−1

an2−1
+
bn2 ŷn2

an2

.

(4)

Multiplying by bn2−1 the first equality in (4) and subtracting the third from it, and
doing the same with the second and the fourth equalities we get

(bn2−1 − bn2)xn2

a2n
=

(bn2−1 − bn2)x̂n2

a2n
,

(bn2−1 − bn2)yn2

a2n
=

(bn2−1 − bn2)ŷn2

a2n
.

We have two cases: either bn2−1 − bn2 6= 0 or bn2−1 − bn2 = 0.

If bn2−1 − bn2 6= 0, then xn2 = x̂n2 and yn2 = ŷn2 . Then the third and second
equalities in (4) imply that xn2−1 = x̂n2−1 as well as yn2−1 = ŷn2−1. In short
pn2−1 = p̂n2−1, pn2 = p̂n2 and so N = n2. This completes the proof of the theorem
in this case.

If bn2−1 = bn2 then we apply the Euler-Jacobi formula with g1(x, y) = x2, g2(x, y) =
x3, g3(x, y) = y2 and g4(x, y) = y3 and we get

x2n2−1

an2−1
+
x2n2

an2

=
x̂2n2−1

an2−1
+
x̂2n2

an2

, i.e
x2n2−1 − x̂2n2−1

an2−1
=
x̂2n2 − x2n2

an2

,

x3n2−1

an2−1
+
x3n2

an2

=
x̂3n2−1

an2−1
+
x̂3n2

an2

, i.e
x3n2−1 − x̂3n2−1

an2−1
=
x̂3n2 − x3n2

an2

,

y2n2−1

an2−1
+
y2n2

an2

=
ŷ2n2−1

an2−1
+
ŷ2n2

an2

, i.e
y2n2−1 − ŷ2n2−1

an2−1
=
ŷ2n2 − y2n2

an2

,

y3n2−1

an2−1
+
y3n2

an2

=
ŷ3n2−1

an2−1
+
ŷ3n2

an2

, i.e
y3n2−1 − ŷ3n2−1

an2−1
=
ŷ3n2 − x3n2

an2

.

(5)

Note that the first and second relations in (4) can be written as

(6)
xn2−1 − x̂n2−1

an2−1
=
x̂n2 − xn2

an2

,
yn2−1 − ŷn2−1

an2−1
=
ŷn2 − yn2

an2

.

It follows from the first identity in (6) that either x̂n2−1 = xn2−1 and so x̂n2 = xn2 ,
or x̂n2−1 6= xn2−1 and x̂n2 6= xn2 . In this last case from the first and second relations
in (5) we get

x̂n2−1 + xn2−1 = x̂n2 + xn2 ,

x̂2n2−1 + x̂n2−1xn2−1 + x2n2−1 = x̂2n2 + x̂n2xn2 + x2n2

(7)

So taking the square of the first relation in (7) and substracting it in the second one
we obtain

x̂n2xn2 = x̂n2−1xn2−1.
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Therefore, using (6) and (7) we have

1

a2n2

(x̂n2 − xn2)2 =
1

a2n2−1
(x̂n2−1 − xn2−1)

2

=
1

a2n2−1
(x̂2n2−1 − 2x̂n2−1xn2−1 + x2n2−1)

=
1

a2n2−1
(x̂2n2 − 2x̂n2xn2 + x2n2) =

1

a2n2−1
(x̂n2 − xn2)2

and so an2−1 = ±an2 .

Now proceeding exactly as we did with x but now with y using (6) and (7) we
get that either ŷn2−1 = yn2−1 and so ŷn2 = yn2 , or ŷn2−1 6= yn2−1 and ŷn2 6= yn2 and
again an2−1 = ±an2 .

In short we have four possibilities that we will study separately. As we will see,
only Case 1 may occur.

Case 1: x̂n2−1 = xn2−1, x̂n2 = xn2 , ŷn2−1 = yn2−1 and ŷn2 = yn2 . In this case,
p̂n2−1 = pn2−1, p̂n2 = pn2 , and so N = n2, as claimed in the statement of the
theorem.

Case 2: x̂n2−1 = xn2−1, x̂n2 = xn2 , ŷn2−1 6= yn2−1, ŷn2 6= yn2 and an2−1 = ±an2 . Note
that from (7) we have x̂n2−1 = xn2−1 = xn2 = x̂n2 . Moreover, if an2−1 = an2 then
from (6) and (7) we obtain

ŷn2−1 − yn2−1 = ŷn2 − yn2 and ŷn2−1 + yn2−1 = ŷn2 + yn2

and so ŷn2−1 = ŷn2 and yn2−1 = yn2 , but then p̂n2−1 = p̂n2 and pn2−1 = pn2 which is
not possible.

On the other hand, if an2−1 = −an2 then

ŷn2−1 − yn2−1 = −ŷn2 + yn2 and ŷn2−1 + yn2−1 = ŷn2 + yn2

which yields ŷn2−1 = yn2 and yn2−1 = ŷn2 , but then p̂n2−1 = pn2 and pn2−1 = p̂n2

and in this case both vector fields χ and χ̂ have the same singular points and the
determinants of pn2−1 and pn2 have different signs. Now it follows from the second
and fourth relations in (5) with an2−1 = −an2 and x̂n2−1 = xn2 , and xn2−1 = x̂n2 ,
ŷn2−1 = yn2 and yn2−1 = ŷn2 that

−
x̂3n2 − x̂3n2−1

a2n
=
x̂3n2 − x̂3n2−1

a2n

and

−
ŷ3n2 − ŷ3n2−1

a2n
=
ŷ3n2 − ŷ3n2−1

a2n

which yields x̂3n2 = x̂3n2−1 and ŷ3n2 = ŷ3n2−1 and so x̂n2 = x̂n2−1 and ŷn2 = ŷn2−1, but
then p̂n2−1 = p̂n2 and pn2−1 = pn2 which is not possible.

Case 3: x̂n2−1 6= xn2−1, x̂n2 6= xn2 , ŷn2−1 = yn2−1, ŷn2 = yn2 and an2−1 = ±an2 .
In this case interchanging the roles of x and y in Case 2 we arrive to the same
conclusions as in Case 2, that is, this case is not possible.
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Case 4: x̂n2−1 6= xn2−1, x̂n2 6= xn2 , ŷn2−1 6= yn2−1, ŷn2 6= yn2 and an2−1 = ±an2 . If
an2−1 = an2 then from (6) and (7) we get

x̂n2−1 − xn2−1 = x̂n2 − xn2 and x̂n2−1 + xn2−1 = x̂n2 + xn2 ,

which yields x̂n2−1 = x̂n2 and xn2−1 = xn2 and proceeding analogously as in Case
2 we get that ŷn2−1 = ŷn2 and yn2−1 = yn2 . But then p̂n2−1 = p̂n2 and pn2−1 = pn2

which is not possible.

If an2−1 = −an2 then

x̂n2−1 − xn2−1 = −x̂n2 + xn2 and x̂n2−1 + xn2−1 = x̂n2 + xn2

which yields x̂n2−1 = xn2 and xn2−1 = x̂n2 , and proceeding analogously as in Case
2 we get that ŷn2−1 = yn2 and yn2−1 = ŷn2 . But then p̂n2−1 = pn2 and pn2−1 = p̂n2

and in this case both vector fields χ and χ̂ have the same singular points and the
determinants of pn2−1 and pn2 have different signs. Proceeding as in Case 2 we reach
a contradiction. This concludes the proof of the theorem.

4. Proof of Theorem 3

To prove Theorem 3 we state the well-known Cayley-Bacharach theorem for poly-
nomials. See [3, Theorem CB5] for a proof.

Theorem 8 (Cayley-Bacharach Theorem). Let X1, X2 ∈ P2 be plane curves of de-
grees d1 and d2 respectively, intersecting in d1d2 points Γ = X1∩X2 = {p1, . . . , pd1d2},
and assume that Γ is the disjoint union of subsets Γ′ and Γ′′. Set s = d1 + d2 − 3.
If k ≤ s is a non-negative integer, then the dimension of the vector space of polyno-
mials of degree k vanishing on Γ′ modulo those containing Γ is equal to the failure
of Γ′′ to impose independent conditions on the polynomials of degree s− k.

We recall that the failure of Γ′′ to impose independent conditions on polynomials
of degree s − k is the difference between the cardinality of Γ′′ and the rank of the
linear conditions on the polynomials of degree s− k imposed by Γ′′.

Proof of Theorem 3. Take χ = P (x, y) ∂
∂x

+ Q(x, y) ∂
∂y
∈ P̂n. Taking into account

that since n > 2 the curves of degree n passing through the n2 points of P ∩ Q
provide an overdetermined linear system, it follows from Theorem 8 (with X1 = P ,
X2 = Q, d1 = d2 = k = n, Γ′ being n2 − 1 points and Γ′′ only one point) that any
polynomial R of degree n which vanishes on n2 − 1 points in P ∩ Q also vanishes
on the remaining one. Therefore, since by assumption M = n2− 1, we immediately
conclude that the two vector fields χ and χ̂ have the same singular locus and so
M = n2.

We take the same notation as in the proof of Theorem 2. More precisely, we denote
by an2−1, an2 , ân2−1, ân2 the determinants of Dχ(pn2−1), Dχ(pn2), Dχ̂(pn2−1) and

Dχ̂(p̂n2), respectively, and by bn2−1, bn2 , b̂n2−1, b̂n2 the traces ofDχ(pn2−1), Dχ(pn2),Dχ̂(pn2−1)
and Dχ̂(p̂n2), respectively. Moreover, the points will be denoted as pk = (xk, yk) for
k = 1, . . . , n2.

Note that from the Euler-Jacobi fromula with g1(x, y) = 1, g2(x, y) = tr(Dχ(x, y)),
g3(x, y) = tr(Dχ(p)x, g4(x, y) = x, g5(x, y) = tr(Dχ(p)y) and g6(x, y) = y we also
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get

1

an2−1
+

1

an2

=
1

ân2−1
+

1

ân2

bn2−1

an2−1
+
bn2

an2

=
b̂n2−1

ân2−1
+
b̂n2

ân2

,

bn2−1xn2−1

an2−1
+
bn2xn2

an2

=
b̂n2−1xn2−1

ân2−1
+
b̂n2x̂n2

ân2

,

xn2−1

an2−1
+
xn2

an2

=
xn2−1

ân2−1
+
x̂n2

ân2

,

bn2−1yn2−1

an2−1
+
bn2yn2

an2

=
b̂n2−1yn2−1

ân2−1
+
b̂n2 ŷn2

ân2

,

yn2−1

an2−1
+
yn2

an2

=
yn2−1

ân2−1
+
ŷn2

ân2

(8)

Multiplying the first equation in (8) by xn2−1 and subtracting it to the fourth iden-
tity, and multiplying the first equation in (8) by yn2−1 and subtracting it to the sixth
identity we get

(9)
xn2−1 − xn2

an2

=
xn2−1 − x̂n2

ân2

and
yn2−1 − yn2

an2

=
yn2−1 − ŷn2

ân2

.

Since either xn2−1 6= xn2 or yn2−1 6= yn2 , we get from (9) that an2 = ân2 and then
the first identity in (8) implies that also an2−1 = ân2−1.

Now multiplying the second equation in (8) by xn2−1 and subtracting it to the
third identity, and multiplying the second equation in (8) by yn2−1 and subtracting
it to the fifth identity we get

bn2−1(xn2−1 − xn2)

an2

=
bn2−1(xn2−1 − x̂n2)

an2

,

bn2−1(yn2−1 − yn2)

an2

=
bn2−1(yn2−1 − ŷn2)

an2

.

(10)

Since either xn2−1 6= xn2 or yn2−1 6= yn2 , we get from (10) that bn2 = b̂n2 and then

the second identity in (8) implies that also bn2−1 = b̂n2−1. In short N = n2 and the
proof of the theorem is complete. �

5. Proof of Theorem 4

To prove Theorem 6 we state the well-known Max Noether’s fundamental theorem
and a closely related proposition. For a proof of both of them see [4, Section 5 of
Chapter 5]. Let P2 be the projective plane. For F ∈ C[X, Y, Z] we write F∗ =
F (X, Y, 1). Moreover, when p = [x : y : 1] then Op(P2) is canonically isomorphic to
O(x,y)(C2) can be regarded as an element of the local ring Op(P2). We recall that
Op(P2) is the ring of rational functions on P2 that are defined at p.

Let p ∈ P2, F,G curves with no common component through p and H be another
curve. We say that Noether’s conditions are satisfied at p (with respect to F,G
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and H) if H∗ ∈ (F∗, G∗) ⊂ Op(P2) that is, there are a, b ∈ Op(P2) such that
H∗ = aF∗ + bG∗.

Theorem 9 (Max Noether’s fundamental theorem). Let F,G,H be projective plane
curves. Assume that F and G have no common components. Then there is an
equation H = AF + BG (with A and B forms of degrees deg(H) − deg(F ) and
deg(H) − deg(G), respectively) if and only if Noether’s conditions are satsified at
every p ∈ F ∩G.

Proposition 10. Let P,Q,R ∈ C[X, Y, Z] and p be a point in P ∩Q. If P and Q
intersect transversally at p and R(p) = 0, then the Noether conditions holds at p.

Proof of Theorem 4. Assume that χ has a twin vector field χ̂. Using Max Noether’s
fundamental theorem since χ̂ and χ have the same singular locus, there exist complex
numbers a, b, c, d such that

(11) χ̂ = (aP + bQ)
∂

∂x
+ (cP + dQ)

∂

∂y
.

Consider the polynomial

R(x, y) = trDχ̂− trDχ = (a− 1)Px + bQx + cPx + (d− 1)Qy.

If χ and χ̂ have the same spectra, then

R(pi) = 0 for i = 1, . . . , n2.

Since P and Q intersect transversally at each pi because the maximum number of
their intersection points is n2, it follows from Proposition 10 and Theorem 9 that if
R 6≡ 0 taking into account that the degree of R is n−1, there exist two polynomials
A and B with deg(A) = −1 and deg(B) = 0 such that R = AP +BQ, which is not
possible. So, R ≡ 0 and condition in (3) means that the polynomials Px, Qx, Py

and Qy are C-linearly dependent. This concludes the proof of statement a) of the
theorem.

Assume now that equation (3) is a non-trivial linear combination and satisfies
ad − bc = 1. We claim that the vector field χ̂ given in (11) is a twin vector field
of χ. Note that if equation (3) is a trivial linear combination of Px, Py, Qx, Qy then
a = d = 1 and b = c = 0 which thus gives χ = χ̂ implying that χ̂ is not a twin of χ.

Now we prove the claim. It is clear that if P = Q = 0, then any linear combination
of them will also be zero. For the converse, we note that we already obtained

aP + bQ and cP + dQ by multiplying the vector (P,Q)T by the matrix

(
a b
c d

)
which is invertible since ad− bc = 1. Hence, clearly aP + bQ = cP + dQ = 0 imply
P = Q = 0. Therefore both χ and χ̂ have the same singular locus {p1, . . . , pn2}.
Moreover, since equation (3) is a non-trivial linear combination, for i = 1, . . . , n2 we
have

trDχ(pi)− trχ̂(pi) = (a− 1)Px(pi) + bQx(pi) + cPy(qi) + (d− 1)Qy(pi)

= R(pi) = 0.

Finally, note that for i = 1, . . . , n2

det χ̂(pi) = (ad− bc) detχ(pi) = detχ(pi),



TWIN POLYNOMIAL VECTOR FIELDS 11

and so the vector field χ̂ given in (11) is a twin vector field of χ. This completes the
proof of statement (b) and concludes the proof of the theorem. �
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