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Abstract. In 1960 Markus and Yamabe made the conjecture that if a C1

differential system ẋ = F (x) in Rn has a unique equilibrium point and DF (x)

is Hurwitz for all x ∈ Rn, then the equilibrium point is a global attractor.
This conjecture was completely solved in 1997 and it turned out to be true in

R2 and false in Rn for all n ≥ 3.

In [17] the authors extended the Markus–Yamabe conjecture to continuous
and discontinuous piecewise linear differential systems in Rn separated by a

hyperplane, they proved for the continuous systems that the extended conjec-
ture is true in R2 and false in Rn for all n ≥ 3, but for discontinuous systems

they proved that the conjecture is false in Rn for all n ≥ 2.

In this paper first we show that there are no continuous piecewise linear
differential systems separated by a conic×Rn−2 except the linear differential

systems in Rn. And after we prove that the extended Markus–Yamabe con-

jecture to discontinuous piecewise linear differential systems in Rn separated
by a conic×Rn−2 is false in Rn for all n ≥ 2.

1. Introduction and statement of the results

Consider a C1 differential system ẋ = F (x) defined in Rn and having an equilib-
rium point at the origin of coordinates. If DF (0) is Hurwitz (i.e. the eigenvalues of
DF (0) have negative real part), then by the Hartman-Grobman Theorem [11, 14]
the origin is locally asymptotically stable. A natural question arises: which are the
additional hypotheses that one may add to the function F in order that the origin
is a global attractor.

Markus and Yamabe in 1960 (see [18]) made the following conjecture: If we have
a C1 differential system ẋ = F (x) defined in Rn such that DF (x) is Hurwitz for all
x ∈ Rn, and having a unique equilibrium point at the origin of coordinates, then
the origin is a global attractor.

This conjecture follows easily when n = 1. This conjecture when n = 2 was
proved independently by Gutierrez [12, 13] in 1993 and by Fessler [6, 7] in 1995.
A simpler proof was then given by Glutsyuk in [9, 10]. The counterexample to
Markus-Yamabe conjecture for n > 3 was given by Bernat and Llibre in [3] and the
counterexample for n ≥ 3 was given by Cima, van den Essen, Gasull, Hubbers and
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Mañosas in [4]. In short, the Markus–Yamabe conjecture is true in R2 and false in
Rn for n ≥ 3.

We recall that an equilibrium point p is a global attractor if it is globally asymp-
totically stable that is, every solution tends to p as the time goes to infinity.

The natural step is to ask whether this conjecture is true for continuous systems
and even more for discontinuous ones. Since the study of such systems is much more
complicated, one natural thing to do is to start with the simpler ones, that is the
continuous or discontinuous piecewise linear differential systems. The study of this
class of continuous and discontinuous differential systems started with Andronov,
Vitt and Khaikin in [1]. Due to the fact that these systems model many real
phenomena and different modern devices, they have became a topic of great interest
these last twenty years. For more details see for instance [2, 19] and the references
therein.

In [?, 17] the authors extended the Markus–Yamabe conjecture to continuous
and discontinuous piecewise linear differential systems formed by two pieces of Rn

separated by a hyperplane. A Markus–Yannabe piecewise linear differential system
is a piecewise linear differential system of the form

(1) ẋ =

{
A+x + b+ if x1 ≥ 0,

A−x + b− if x1 ≤ 0,

such that x = (x1, . . . , xn), the matrices A+ and A− are Hurwitz, and either only
one of the systems ẋ = A+x + b+ and ẋ = A−x + b− has a real equilibrium point,
or both systems have the same equilibrium point in {x1 = 0}.

We recall that if A+x + b+ = A−x + b− in all points x = (0, x2, . . . , xn), then
we say that system (1) is a continuous piecewise linear differential system, and
otherwise we say that it is a discontinuous linear differential system.

We recall that a linear differential system ẋ = A+x + b+ has a real equilibrium
point if the equilibrium point −(A+)−1b+ exits, and it is in the closed half-space
{x1 ≥ 0}, otherwise we say that the equilibrium point is virtual. Similarly for the
linear differential system ẋ = A−x + b−. More concretely in [17] it was proved the
following result.

Theorem 1. The following statements hold.

(a) The equilibrium point of all continuous Markus–Yamabe piecewise linear
differential systems in R2 is a global attractor. Moreover, for all n ≥ 3
there are continuous Markus–Yamabe piecewise linear differential systems
in Rn for which their equilibrium point is not a global attractor.

(b) For all n ≥ 2 there are discontinuous Markus–Yamabe piecewise linear
differential systems in Rn for which their equilibrium point is not a global
attractor.

Using an affine change of coordinates, any conic can be written in one of the
following nine canonical forms:

(p) x2
1 + x2

2 = 0 two complex straight lines intersecting at a real point;
(CL) x2

1 + 1 = 0 two complex parallel straight lines;
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(CE) x2
1 + x2

2 + 1 = 0 complex ellipse;
(DL) x2

1 = 0 one double straight line;
(PL) x2

1 − 1 = 0 two real parallel straight lines;
(LV) x1x2 = 0 two real straight lines intersecting a real point;

(E) x2
1 + x2

2 − 1 = 0 ellipse;
(H) x2

1 − x2
2 − 1 = 0 hyperbola;

(P) x2 − x2
1 = 0 parabola.

We do not consider conics of type (p), (CL) or (CE) because they do not separate
the plane in connected regions. Moreover the case (DL) is completely analogous to
the one proved in [17] and so we do not consider it here. In short we are left with
cases (PL), (LV), (E), (H) and (P).

These conics (PL), (LV), (E), (H) and (P) are extended to hyperconics as follows.
The hyperconic (PL) is

{x = (x1, . . . , xn) ∈ Rn : x2
1 − 1 = 0}.

In a similar way are defined the hyperconics (LV), (E), (H) and (P).

In this paper we will focus on continuous and discontinuous piecewise linear
differential systems formed by the pieces of Rn separated by a hyperconic C(x) =
0. Following the definition in [17] a Markus–Yamabe piecewise linear differential
system separated by a hyperconic C(x) = 0 is a piecewise linear differential system
in Rn of the form

(2) ẋ =

{
A+x + b+ if C(x) ≥ 0,

A−x + b− if C(x) ≤ 0,

such that the matrices A+ and A− are Hurwitz and either only one of the systems
ẋ = A+x + b+ and ẋ = A−x + b− has a real equilibrium point, or both systems
have the same equilibrium point in {C(x) = 0}.

Again if A+x + b+ = A−x + b− in all points x such that C(x) = 0, then we say
that system (2) is a continuous piecewise linear differential system. Otherwise we
say that it is a discontinuous linear differential system separated by the hyperconic
C(x) = 0. The dynamics of the discontinuous piecewise differential systems on the
hyperconic of discontinuity is defined according with the definitions of the book
of Filippov [8]. Moreover, a linear differential system ẋ = A+x + b+ has a real
equilibrium point if the equilibrium point −(A+)−1b+ exists, and it is contained in
{C(x) ≥ 0}, otherwise we say that the equilibrium point is virtual. Similarly for
the linear differential system ẋ = A−x + b−.

Proposition 2. There are no continuous Markus–Yamabe piecewise linear differ-
ential systems in Rn separated by a hyperconic of the form (PL), (LV), (H), (E) or
(P), other than the linear differential systems.

The proof of Proposition 2 is given in section 2.

Our main result is the following.

Theorem 3. For all n ≥ 2 there are discontinuous Markov-Yamabe piecewise linear
differential systems separated by a hyperconic (PL), (LV), (E), (H) and (P) in Rn

for which their equilibrium point is not a global attractor.
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The proof of Theorem 3 is given in section 2.

2. Proof of the results

Proof of Proposition 2. We will do it only for (P) since for the others the proof is
completely analogous.

Note that setting A+x + b+ = A−x + b− in all points x such that C(x) = 0,
that is, in the points (x1, . . . , xn) with x2 = x2

1, and if A+ = (a+ij)1≤i,j≤n and

A− = (a−ij)1≤i,j≤n we get from ẋ1 the equality

a+11x1 +a+12x
2
1 +a+13x3 + . . .+a+1nxn + b+1 = a−11x1 +a−12x

2
1 +a−13x3 + . . .+a−1nxn + b−1

must be satisfied for all x1, x3, . . . , xn. Therefore a+1i = a−1i for i = 1, . . . , n and
b+1 = b−1 .

Doing a similar process with ẋk for k = 2, . . . , n we get that A+ = A− and
b+ = b−. This proves the proposition for the hyperconic (P). The other cases are
analogous. �

We recall that a crossing limit cycle is a periodic solution isolated in the set of all
periodic solutions of the discontinuous piecewise linear differential system, which
only have two points of intersection with the discontinuity set C(x) = 0.

Proof of Theorem 3(PL). It is sufficient to prove the theorem for n = 2, because
then we can extend a discontinuous Markus–Yamabe piecewise linear differential
system in R2 separated by a conic (PL) for which the unique equilibrium point of
the system is not a global attractor, to a discontinuous Markus–Yamabe piecewise
linear differential system in Rn with n ≥ 3 separated by a hyperconic (PL) for
which its unique equilibrium point will not be a global attractor by adding to the
2-dimensional system the equations

ẋk = −xk for k = 3, . . . , n.

We consider the discontinuous piecewise linear differential system in R2 with
coordinates (x1, x2) = (x, y) separated by two real parallel straight lines, a conic
(PL), defined by

ẋ = 2− x, ẏ = −y, in the region |x| ≥ 1,

ẋ = −2− x, ẏ = −y, in the region |x| ≤ 1.

Note that this system is formed by two stable star nodes, i.e. there solutions leave on
invariant straight lines. Clearly this is a discontinuous Markus–Yamabe piecewise
linear differential system.

The star node at (2, 0) of the system in the region |x| ≥ 1 is real, and the start
node at (−2, 0) of the system in the region |x| ≤ 1 is virtual. Since all the orbits
of the system in the region |x| ≤ 1 runs from the right to the left, these orbits
cannot go the stable start node at (2, 0), so this node is not a global attractor. This
completes the proof of Theorem 3 for the discontinuous piecewise linear differential
systems separated by a two real parallel straight lines. �
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Proof of Theorem 3(LV ). As in the proof for the hyperconic (LP) it is sufficient to
prove the theorem for n = 2. Consider the discontinuous piecewise linear differential
system in R2 separated by two real straight lines intersecting in a point, a conic
(LV), defined by

ẋ = 1− x, ẏ = 1− y, in the region xy ≥ 0,

ẋ = −1− x, ẏ = −1− y, in the region xy ≤ 0.

Note that this system is formed by two stable star nodes. Hence it is a discontinuous
Markus–Yamabe piecewise linear differential system.

The star node at (1, 1) of the system in the region xy ≥ 0 is real, and the start
node at (−1,−1) of the system in the region xy ≤ 0 is virtual. Since all the orbits
in the quadrant {(x, y) : x < 0, y > 0} of the system in the region xy ≤ 0 runs from
top to bottom, these orbits cannot go the stable start node at (1, 1), so this node is
not a global attractor. This completes the proof of Theorem 3 for the discontinuous
piecewise linear differential systems separated by two real straight lines intersecting
in a point. �

Proof of Theorem 3(E). As in the proof for the hyperconic (LP) it is sufficient to
prove the theorem for n = 2. Consider a discontinuous piecewise linear differential
system in R2 separated by an ellipse (E) defined by

(3)

ẋ = x + y +
1√
2

+
1

2
, ẏ = −2x− y − 1√

2
, in the region x2 + y2 ≥ 1,

ẋ = x− 5

4
y +

1√
2

+
1

8
, ẏ = x− y − 1√

2
, in the region x2 + y2 ≤ 1.

Note that this discontinuous piecewise linear differential system is formed by two
linear centers, one of them being virtual.

Moreover, the orbits in the region x2 + y2 ≥ 1 are the level curves of the first
integral

H1 = 2x2 + x(2y +
√

2) + y(y +
√

2 + 1),

while in the region x2 + y2 ≤ 1 the orbits are in the level curves of the first integral

H2 = 4x2 − 4x(2y +
√

2) + y(5y − 4
√

2− 1).

It was proved in [16] that this piecewise linear differential system has two crossing
limit cycles. One of the crossing limit cycles has the points (1, 0) and (0, 1) of
intersection with the ellipse (see Figure 1).

Now we shall see that this crossing limit cycle is unstable. The orbit of the
system in the region x2 + y2 ≤ 1 through the point

(cos(−1/100), sin(−1/100)) = (9999500004166..,−0.00999983333416..),

intersects the circle x2+y2 = 1 at the point (−0.0129688565617.., 0.999915900843..).
Then the orbit through this last point of the system in the region x2 +y2 ≥ 1 inter-
sects the circle x2 + y2 = 1 in the point (0.999927123997..,−0.01207255955763..).
So the crossing limit cycle in its inner part is unstable. Consider now the orbit of
the system in the region x2 + y2 ≤ 1 through the point

(cos(1/100), sin(1/100)) = (9999500004166.., 0.00999983333416..),
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Figure 1. The crossing limit cycle of the discontinuous piecewise
linear differential system (3)

intersects the circle x2+y2 = 1 at the point (0.01288913205622.., 0.999916931687..).
Then the orbit through this last point of the system in the region x2 + y2 ≥ 1
intersects the circle x2 + y2 = 1 in the point (0.999927745390.., 0.0120209815765..).
So the crossing limit cycle in its outer part is also unstable.

We perturb the discontinuous piecewise linear differential system (3) as follows

(4)

ẋ = (1− ε)x + y +
1√
2

+
1

2
, ẏ = −2x− y − 1√

2
, in the region x2 + y2 ≥ 1,

ẋ = (1− ε)x− 5

4
y +

1√
2

+
1

8
, ẏ = x− y − 1√

2
, in the region x2 + y2 ≤ 1.

with ε > 0 sufficiently small.

Note that the two matrices A+ and A− of system (4) are Hurwitz. So system
(4) is a discontinuous Markus–Yamabe piecewise linear differential system having
the unique real equilibrium point

P =
( 1

2(1− ε)
,

2 +
√

2(1− ε)

2(1− ε)

)
,

which is a stable focus of the region {x2 + y2 ≥ 1}. Since the crossing limit cycle of
system (3) is unstable, it persists for system (4) for ε sufficiently small and so the
equilibrium point P is not a global attractor. This completes the proof of Theorem
3 for the discontinuous piecewise linear differential systems separated by the ellipse
(E). �

First proof of Theorem 3(H). As in the proof for the hyperconic (LP) it is suffi-
cient to prove the theorem for n = 2. Consider a discontinuous piecewise linear
differential system in R2 separated by a hyperbola (H) defined by

(5)
ẋ = 2− x, ẏ = −y, in the region x2 − y2 ≥ 1,

ẋ = −2− x, ẏ = −y, in the region x2 − y2 ≤ 1.

Note that this system is formed by two stable star nodes. Therefore it is a discon-
tinuous Markus–Yamabe piecewise linear differential system.
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The star node at (2, 0) of the system iin the region x2 − y2 ≥ 1 is real, and the
start node at (−2, 0) of the system in the region x2 − y2 ≤ 1 is virtual. Since all
the orbits of the system in the region x2 − y2 ≤ 1 runs from the right to the left,
these orbits cannot go the stable start node at (2, 0), hence this node is not a global
attractor. This completes the proof of Theorem 3 for the discontinuous piecewise
linear differential systems separated by a hyperbola (H). �

Second proof of Theorem 3(H). As in the proof for the hyperconic (LP) it is suf-
ficient to prove the theorem for n = 2. Consider a discontinuous piecewise linear
differential system in R2 separated by a hyperbola (H) defined by

(6)
ẋ = 1− 1

4
y, ẏ = x, in the region x2 − y2 ≥ 1,

ẋ =
1

40
(89− 5

√
89)− y, ẏ = −1 + x, in the region x2 − y2 ≤ 1.

Note that this system is formed by two linear centers. The linear differential system
in {x2 − y2 ≤ 1} has the real center at the point (0, 4), so it is a real equilibrium
point. The linear differential system in {x2 − y2 ≥ 1} has a virtual equilibrium
point. The first integrals of these systems are

H1(x, y) = (x− 1)2 +

(
1

40
(−89 + 5

√
89) + y

)2

and

H2(x, y) =
1

4
x2 +

(
1

4
y − 1

)2

,

respectively.

Proceeding as in the proof of the ellipse (E) we can prove that this piecewise
linear differential system has one crossing limit cycle Γ with the points (1, 0) and

(
√

89/5, 8/5) of intersection with the hyperbola (see Figure 2). Moreover, proceed-
ing as in the proofs of the conics (LP) and (LV) one can show that Γ is a stable
limit cycle.

Figure 2. The crossing limit cycle of the discontinuous piecewise
linear differential system (6)
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Now we perturb the discontinuous piecewise linear differential system (6) as
follows

ẋ = 1− εx− 1

4
y, ẏ = x− εy, in the region x2 − y2 ≥ 1,

ẋ =
1

40
(89− 5

√
89)− εx− y, ẏ = −1 + x− εy, in the region x2 − y2 ≤ 1.

Note that for ε > 0 sufficiently small the two matrices of this piecewise system A+

and A− are Hurwitz, and that this piecewise system has a unique real equilibrium

p =

(
4ε

4ε2 + 1
,

4

4ε2 + 1

)
,

which is a stable focus, and it has a stable limit cycle near Γ1 near the stable limit
cycle Γ. Hence this local stable focus is not a global attractor. This completes
the proof of Theorem 3 for the discontinuous piecewise linear differential systems
separated by the hyperbola (H).

Note that since the focus p and the limit cycle Γ1 are stable, implies by the
Poincaré–Bendixson Theorem that an unstable limit cycle must exist between them.
For more details on the Poincaré–Bendixson Theorem see Corollary 1.30 of [5]. �

Proof of Theorem 3(P ). As in the proof for the hyperconic (LP) it is sufficient to
prove the theorem for n = 2. Consider a discontinuous piecewise linear differential
system in R2 separated by the parabola (P) defined by

(7) ẋ =
18

5
− y, ẏ = x− 99

50
,

in the region y ≥ x2 and

(8) ẋ =
720042289

205000000
+

189

100
x− 38221

20500
y, ẏ =

8241

2500
+

41

20
x− 189

100
y,

in the region y ≤ x2.

Note that this system is formed by two linear centers. The linear differential
system in the region y ≥ x2 has a virtual center and the linear differential system
in the region y ≤ x2 has the real center at the point

P1 =

(
10096288221

5125000000
,

97022689

25000000

)
.

The first integrals of these systems are

H1(x, y) =

(
x− 99

50

)2

+

(
y − 18

5

)2

and

H2(x, y) = 675762000x− 720042289y + 210125000x2 − 387450000xy

+ 191105000y2,

respectively.

Proceeding as in the proof of the ellipse (E) we can prove that this piecewise
linear differential system has one crossing limit cycle Γ with the points (x1, x

2
1)

and (x2, x
2
2), where x1 = 2.494245365886619.. and x2 = 1.047324356752986.., of
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intersection with the parabola (see Figure 3). Moreover, also as in the proofs of the
ellipse (E) it follows that Γ is stable.

Figure 3. The crossing limit cycle of the discontinuous piecewise
linear differential system (7)–(8)

Now we perturb the discontinuous piecewise linear differential system (6) as
follows

ẋ =
18

5
− εx− y, ẏ = x− 99

50
− εy,

in the region y ≥ x2 and

ẋ =
720042289

205000000
+

(
189

100
− ε

)
x +

38221

20500
y, ẏ =

8241

2500
+

41

20
x− 189

100
y,

in the region y ≤ x2.

Note that for ε > 0 sufficiently small the two matrices of this piecewise system A+

and A− are Hurwitz, and that this piecewise system has a unique real equilibrium
near P1 (still in the region y ≤ x2) which is a stable focus, and it has a stable
limit cycle near Γ2. Hence this local stable focus is not a global attractor. This
completes the proof of Theorem 3 for the discontinuous piecewise linear differential
systems separated by the parabola (P).

Again since the focus p and the limit cycle Γ1 are stable, implies by the Poincaré–
Bendixson Theorem that an unstable limit cycle must exist between them. �
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