Oscillatory Solutions in the Planar Restricted Three-Body Problem

Jaume Llibre ${ }^{1}$ and Carles Simó ${ }^{2}$
1 Secció de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Spain
${ }^{2}$ Facultat de Matemàtiques, Universitat de Barcelona, Spain

1. Introduction

In this paper we prove the existence of oscillatory solutions in the circular planar restricted three-body problem. Let m_{1}, m_{2} be the masses of the primaries normalized in such a way that $m_{1}=1-m, m_{2}=m, m \in(0,1)$. Units of length and time are chosen in order to have one unit of distance between the primaries and a mean motion equal to 1 .

For the position of the infinitesimal body m_{3} we use both the sidereal coordinates (X, Y) and the synodical ones (x, y). In the last system the two primaries are fixed at $(m, 0),(m-1,0)$, respectively. Then the equations of motion are (see Szebehely [7]):

$$
\begin{align*}
& \ddot{x}-2 \dot{y}=\frac{\partial \Omega}{\partial x} \tag{1.1}\\
& \ddot{y}+2 \dot{x}=\frac{\partial \Omega}{\partial y}
\end{align*}
$$

where $\Omega(x, y)=\left(x^{2}+y^{2}\right) / 2+(1-m) / r_{1}+m / r_{2}+m(1-m) / 2$, and $r_{1}^{2}=(x-m)^{2}+y^{2}, r_{2}^{2}=(x+1-m)^{2}+y^{2}$.

System (1.1) has the Jacobi first integral

$$
\begin{equation*}
C=C(x, y, \dot{x}, \dot{y})=2 \Omega(x, y)-\left(\dot{x}^{2}+\dot{y}^{2}\right) \tag{1.2}
\end{equation*}
$$

which equals two times the difference between the angular momentum with respect to the origin, M, and the energy, h, both in sidereal coordinates.

For large values of C the zero velocity curves defined by $2 \Omega(x, y)-C=0$ have three components. We only consider motion in the unbounded component R of the admissible region $2 \Omega(x, y) \geqq C$. Let r be the distance from m_{3} to the origin. An oscillatory solution is characterized by the fact that $\limsup r(t)=+\infty$, but $\liminf _{t \rightarrow+\infty} r(t)<+\infty$. We prove the existence of such orbits by the usual method of symbolic dynamics. Furthermore we prove the existence of all possible types of final evolution.

