Tranversality of the Invariant Manifolds Associated to the Lyapunov Family of Periodic Orbits near L₂ in the Restricted Three-Body Problem

JAUME LLIBRE AND REGINA MARTÍNEZ

Secció de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain

AND

CARLES SIMÓ

Facultat de Matemàtiques, Universitat de Barcelona, Barcelona, Spain Received July 7, 1983; revised January 19, 1984

The restricted three-body problem is considered for values of the Jacobi constant C near the value C_2 associated to the Euler critical point L_2 . A Lyapunov family of periodic orbits near L_2 , the so-called family (c), is born for $C = C_2$ and exists for values of C less than C_2 . These periodic orbits are hyperbolic. The corresponding invariant manifolds meet transversally along homoclinic orbits. In this paper the variation of the transversality is analyzed as a function of the Jacobi constant C and of the mass parameter μ . Asymptotical expressions of the invariant manifolds for $C \leq C_2$ and $\mu \geq 0$ are found. Several numerical experiments provide accurate information for the manifolds and a good agreement is found with the asymptotical expressions. Symbolic dynamic techniques are used to show the existence of a large class of motions. In particular the existence of orbits passing in a random way (in a given sense) from the region near one primary to the region near the other is proved. © 1985 Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let S and J be two bodies called Sun and Jupiter, of masses $m_S = 1 - \mu$ and $m_J = \mu$, $\mu \in (0, 1)$, respectively, describing circular orbits. The center of masses is placed at the origin. In a rotating frame (synodical coordinates) the equations of motion of a massless particle P under the gravitational action of S and J are

$$\begin{aligned} \ddot{x} - 2\dot{y} &= \Omega_x, \\ \ddot{y} + 2\dot{x} &= \Omega_y, \\ 104 \end{aligned}$$
(1.1)