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Abstract. Due to their applications to many physical phenomena during these last decades the interest

for studying the continuous or discontinuous piecewise differential systems has increased strongly. The limit

cycles play a main role in the study of any planar differential system. Up to now the major part of papers

which study the limit cycles of the planar piecewise differential systems have considered systems formed by

two pieces separated by one straight line. Here we consider planar continuous piecewise differential systems

separated by a parabola.

We prove that the planar continuous piecewise differential systems separated by a parabola and formed by

a linear center and a quadratic center have at most one limit cycle. Moreover there are systems in this class

exhibiting one limit cycle. So in particular we have solved the extension of the 16th Hilbert problem to this

class of differential systems.

1. Introduction and results

Andronov, Vitt and Khaikin [1] started in a serious way the study of the piecewise differential systems

mainly motivated for their applications to some mechanical systems, and now these systems still continue

to receive the attention of many researchers. Recently these differential systems are widely used to model

processes appearing in mechanics, electronics, economy, etc., see for instance the books [3] and [19], and the

survey [17], as well as the hundreds of references cited there.

While the more studied piecewise differential systems are the discontinuous ones, here we will deal with a

class of the continuous piecewise differential systems in the plane.

The simplest possible continuous but nonsmooth piecewise differential systems are the ones having only

two pieces formed by two linear differential systems separated by a straight line in the plane R2. Thus in

1990 Lum and Chua conjectured in [15, 16] that such continuous piecewise linear differential systems have at

most one limit cycle. In 1998 this conjecture was proved by Freire et al. [6]. In 2013 a new and shorter proof

was done by Llibre, Ordóñez and E. Ponce [12], and recently another proof has been provided by Carmona,

Fernández-Sánchez and Novaes [4]. But in all these papers the authors forgot to analyze the case when the

two linear differential systems which form the piecewise linear differential system have no equilibrium points,

this case was studied in Llibre and Teixeira [13] in 2016 where it is proved that such continuous piecewise

systems have no limit cycles.

Let p(x, y) = 0 be a parabola. A continuous piecewise differential system in the plane with two pieces

separated by a parabola is a differential system of the form

ẋ = f+(x, y), ẏ = g+(x, y), in the region p(x, y) ≥ 0;

and

ẋ = f−(x, y), ẏ = g−(x, y), in the region p(x, y) ≤ 0;
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such that f+(x, y) = f−(x, y) and g+(x, y) = g−(x, y) on the points of the parabola p(x, y) = 0, being the

functions f+, f−, g+ and g− at least C ! functions. As usual the dot on the variables x and y denotes derivative

with respect to the time t.

If we have a continuous piecewise differential system in the plane with two pieces separated by a parabola

doing an affine change of variables it is not restrictive to assume that the parabola is y = x2.

We recall that a center is an equilibrium point p of a planar differential system having a neighborhood U

such that all the orbits of the system in U \ {p} are periodic.

A differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),

with P and Q real polynomials whose maximum degrees is n is called a polynomial differential system of

degree n. When n = 1 system (1) is usually called linear differential system or linear system, and when n = 2

system (1) is simply called quadratic differential system or quadratic system.

When a linear system has a center such system is called linear center, and when a quadratic system has

one or two centers we called it in this paper a quadratic center. It is known that the quadratic systems can

have at most two centers, see for instance Vulpe [20] or Schlomiuk [18].

A limit cycle of a planar differential system is a periodic orbit of the system isolated in the set of all periodic

orbits of the system. In general it is a very difficult problem to know the non-existence or the existence of the

maximum number of limit cycles that a given class of planar differential systems can have, see for instance

the famous 16th Hilbert problem [7, 8, 11].

The main objective of this paper is to study the problem of Lum and Chua extended to the class of

continuous piecewise differential systems in the plane with two pieces separated by a parabola and when in

each piece we have either two linear centers, or a linear center and a quadratic center. That is, what is the

maximum number of limit cycles that such classes of continuous piecewise differential systems can exhibit?

Figure 1. The limit cycle of the planar continuous piecewise differential system separated

by the parabola y = x2 and formed by the linear center (26) and the quadratic center (27).

This limit cycle is traveled in counterclockwise.

Our main results are the following.

Proposition 1. The continuous piecewise differential systems in the plane with two pieces separated by a

parabola and having in each piece two arbitrary linear centers have no limit cycles.
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Theorem 2. The continuous piecewise differential systems in the plane with two pieces separated by a parabola

and having in one piece an arbitrary linear center and in the other piece an arbitrary quadratic center have

at most one limit cycle. Moreover there are systems in this class exhibiting one limit cycle, see for instance

Figure 2.

Proposition 1 and Theorem 2 are proved in section 3. In section 2 we recall some well known results that

we shall need for proving Proposition 1 and Theorem 2 .

2. Preliminaries

Let U be an open subset of R2 and H : U → R be a C1 function. We recall that H is a first integral of a

differential system (1) if
dH

dt
=
∂H

∂x
P +

∂H

∂y
Q = 0 in all the points of U.

In other words if the function H is constant on the orbits of system (1) contained in U .

In the next lemma we give a normal form for an arbitrary linear center, for a proof see Lemma 1 of [14].

Lemma 3. A linear differential system having a center can be written as

(2) ẋ = −ax− a2 + w2

d
y + b, ẏ = dx+ ay + c,

with d > 0 and w > 0.

The quadratic centers where characterized in the following theorem, for a proof see Kapteyn [9, 10] and

Bautin [2].

Theorem 4 (Kapteyn–Bautin Theorem). Any quadratic system candidate to have a center can be written in

the form

(3) ẋ = −y −Bx2 − Cxy −Dy2, ẏ = x+Ax2 + Exy −Ay2.

This system has a center at the origin if and only if one of the following conditions holds

A− 2B = C + 2A = 0,

C = A = 0,

B +D = 0,

C + 2A = E + 3B + 5D = A2 +BD + 2D2 = 0.

3. The proofs

Proof of Proposition 1. Under the assumptions of this proposition let (2) be one of the two linear centers of a

continuous piecewise differential system in the plane with two pieces separated by the parabola y = x2. The

other arbitrary linear center can be

(4) ẋ = −αx− α2 + ω2

δ
y + β, ẏ = δx+ αy + γ,

with δ > 0 and ω > 0.

Now when we impose that on the points of the parabola systems (2) and (4) coincide, i.e.

−ax− a2 + w2

d
x2 + b = −αx− α2 + ω2

δ
x2 + β,

and

dx+ ax2 + c = δx+ αx2 + γ,
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for all x ∈ R. Then we obtain that both differential systems coincide. So we have a unique linear center in the

whole plane R2, and it is well known that the linear centers have no limit cycles. This completes the proof of

the proposition. �

Proof of Theorem 2. Under the hypotheses of this theorem let (2) be the linear center of a continuous piecewise

differential system in the plane with two pieces separated by the parabola y = x2. The other arbitrary

quadratic center will be the quadratic differential system

(5)
ẋ = c0 + c1x+ c2y + c3x

2 + c4xy + c5y
2,

ẏ = d0 + d1x+ d2y + d3x
2 + d4xy + d5y

2,

for convenient values of its parameters that we shall determine in order that the piecewise differential system

formed by the differential systems (2) and (5) be continuous, and system (5) be a quadratic center.

We start imposing that the piecewise differential system formed by the differential systems (2) and (5) and

separated by the parabola y = x2 be continuous, i.e.

−ax− a2 + w2

d
x2 + b = c0 + c1x+ (c2 + c3)x2 + c4x

3 + c5x
4,

and

dx+ ax2 + c = d0 + d1x+ (d2 + d3)x2 + d4x
3 + d5x

4,

for all x ∈ R. Therefore system (5) becomes

(6)
ẋ = b− ax− a2 + c3d+ w2

d
y + c3x

2,

ẏ = c+ dx+ (a− d3)y + d3x
2.

We define

R = d2
(
ad3 + c3d+ w2

)2 − 4
(
a2d3 + ac3d+ d3w

2
) (
a2c+ abd− bdd3 + c

(
c3d+ w2

))
,

and assume that

(7) R > 0 and adc3 + d3(a2 + w2) 6= 0.

Then system (6) has two finite equilibria, namely p± = (x±, y±) where

x± =
±
√
R− d(ad3 + c3d+ w2)

2(adc3 + d3(a2 + w2))
,

y± =
d(ad3 + c3d)

(
ad3(2b+ d) + c3

(
d2 − 2ac

)
∓
√
R
)

+ dw2
(
d3(ad+ 2bd3) + c3

(
d2 − 2cd3

))
2 (adc3 + d3(a2 + w2))

2 .

Note that condition adc3 + d3(a2 + w2) 6= 0 of (7) is necessary in order that system (6) has finite equilibria,

and we will see that condition R > 0 of (7) will be necessary for having a quadratic center.

Since the determinant of the linear part of system (6) at the equilibria p± are ±
√
R/d and d > 0, we have

that p+ is either a node, a focus or a center, and p− is a saddle. Note that when R = 0 the equilibria p±

coincide producing a saddle-node, and consequently the quadratic system cannot have a center. So R must

be positive. For more details on the results of this paragraph see Chapter 2 of [5].

Now we must determine the coefficients of system (6) in such a way that the equilibrium p+ be a center.
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The eigenvalues of the linear part of system (6) at p+ are (T ±
√
T 2 − 4D/2 where

T = −c3(add3 + c3d
2 + dw2 −

√
R)

adc3 + d3(a2 + w2)
− d3,

T 2 − 4D =
c23(
√
R− d(ad3 + c3d+ w2))2

(adc3 + d3(a2 + w2))2
+

2(2d3(a2 + w2) + c3d(2a+ d3))(d(ad3 + c3d+ w2)−
√
R)

d(adc3 + d3(a2 + w2))

−4ad3 − 4c3d+ d23 − 4w2.

Of course, T and D are the trace and the determinant of the linear part of system (6) at p+. In order that p+

can be a center we must have T = 0 and T 2 − 4D < 0, see again Chapter 2 of [5]. Isolating
√
R from T = 0

and substituing it into T 2 − 4D we get that

(8) T 2 − 4D =
−4(ad3 + dc3)2 − 4w2(dc3 + d23)

dc3
.

We note that c3 6= 0, otherwise the trace of system (6) is constant and equal to −d3, and then system (6)

would have a center if and only if d3 = 0, but then the system becomes linear instead of quadratic.

In order to simplify the computations we change the parameter w > 0 by the new parameter k > 0 defined

from T 2 − 4D = −k2, i.e.

w =
1

2

√
dk2c3 − 4(ad3 + dc3)2

dc3 + d23
.

Note that dc3 + d23 6= 0, otherwise from (8) we obtain that T 2− 4D = 4(ad3 + dc3)2/d23 ≥ 0, and consequently

system (6) would not have a center. Moreover (dk2c3 − 4(ad3 + dc3)2)(dc3 + d23) > 0, because w > 0.

For forcing that R > 0 we also change the parameter c by a new parameter L > 0 taking R = L2. Now

from T = 0 we obtain

−
(
c3d+ d23

) (
dk2 − 4L

)
d
(
4(a− d3)(ad3 + c3d) + d3k2

) = 0,

and of course d
(
4(a − d3)(ad3 + c3d) + d3k

2
)

cannot be zero, otherwise system (6) would not have a center.

Since c3d+ d23 is not zero, we obtain that

(9) L =
dk2

4
.

Now from R = L2 we obtain that

c =
4(a− d3)

(
d23(ad3 + c3d)− 4bc3

(
c3d+ d23

))
− d3k2

(
2c3d+ d23

)
4c23 (4(a− d3)2 + k2)

.

In the new variable k, because the variable L disappears using (9), the quadratic differential system (6)

writes

(10)

ẋ = b− ax−
c3y
(
4(a− d3)2 + k2

)
4(c3d+ d23)

+ c3x
2,

ẏ = dx+ (a− d3)y + d3x
2 +

4(a− d3)
(
d23(ad3 + c3d)− 4bc3

(
c3d+ d23

))
− d3k2

(
2c3d+ d23

)
4c23 (4(a− d3)2 + k2)

,

and the equilibrium point p+, which now is a weak focus or a center because the eigevalues of the linear part

of system (10) at p+ are ±ki/2 with k > 0, writes

p+ =

(
d3
2c3

,

(
c3d+ d23

)
(d3(d3 − 2a) + 4bc3)

c23 (4(a− d3)2 + k2)

)
.

In order to decide when the equilibrium p+ is a quadratic center we shall use Theorem 4. Therefore we

need first to translate the equilibrium p+ to the origin of coordinates and after to write the differential system

(10) in the normal form (3).
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For doing the translation of p+ to the origin of coordinates we pass from the coordinates (x, y) to the

coordinates (X,Y ) through

(x, y) =

(
X +

d3
2c3

, Y +

(
c3d+ d23

)
(d3(d3 − 2a) + 4bc3)

c23 (4(a− d3)2 + k2)

)
,

and system (10) becomes

(11)

Ẋ = (d3 − a)X −
c3
(
4(a− d3)2 + k2

)
4 (c3d+ d23)

Y + c3X
2,

Ẏ =

(
d23
c3

+ d

)
X + (a− d3)Y + d3X

2.

The more general linear change of variables from (X,Y ) to (u, v) wich writes the linear part of system (11)

into its real Jordan normal form is

(12)

(
u

v

)
=

 y1 y2
2c3(a− d3)y1 − 2(d23 + c3d)y2

c3k

1

2k

(
c3(4(a− d3)2 + k2)y1

d23 + c3d
+ 4(d3 − a)y2

) ( X

Y

)
,

of course having the determinant of the matrix nonzero. Doing this change of variables we get system (11) in

the new variables (u, v) being the linear part at the origin of system (u̇, v̇) given by the matrix 0 −k
2

k

2
0

 .

Doing the scaling of the time s = kt/2, the differential system (u̇, v̇) in the new time becomes of the form

(13)
u′ = −u+ a0u

2 + a1uv + a2v
2,

v′ = v + b0u
2 + b1uv + b2v

2,

where the prime denotes derivative with respect to the new time s, and the coefficients ai and bi for i = 1, 2, 3

depend on the parameters (a, c3, d, d3, k, y1, y2).

In order that system (13) be into the normal form (3) we need that b0 + b2 = 0, from this equation we get

y2 = −c3(4(a− d3)(ad3 + c3d) + d3k
2)

4 (c3d+ d23) (ad3 + c3d)
y1.

Hence taking y1 = ad3 + c3d the determinant of the matrix of the change of variables (12) is

c3
(
4k(ad3 + c3d)2 + d23k

3
)

8 (c3d+ d23)
6= 0.

Now system (13) writes in the normal form (3):

(14) u′ = −u−Bu2 − Cuv −Dv2, v′ = u+Au2 + Euv −Av2,

where

A = E = 0,

B = −
8c3
(
c3d+ d23

)
4k(ad3 + c3d)2 + d23k

3
,

C =
8c3(4(a− d3)(ad3 + c3d) + d3k

2)

4k2(ad3 + c3d)2 + d23k
4

,

D = −
2c3
(
4(a− d3)(ad3 + c3d) + d3k

2
)2

k3 (c3d+ d23) (4(ad3 + c3d)2 + d23k
2)
.

We know that the denominators of B, C and D do not vanish.
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From Theorem 4 the origin of system (14) is a center if either B +D = 0, or C = 0. Since

B +D = −
2c3
(
4(a− d3)2 + k2

)
k3 (c3d+ d23)

6= 0,

the unique possibility to have a center is that C = 0, or equivalently

4(a− d3)(ad3 + c3d) + d3k
2 = 0.

If a− d3 6= 0 then isolating c3 from this last equation we get either

(15) c3 = −
d3
(
4a(a− d3) + k2

)
4d(a− d3)

.

Later on, in (19), we will see that a − d3 cannot be zero, otherwise the linear system (2) would not have a

center. Hence, from (15) when the quadratic system (14) has a center it becomes

(16) u′ = −v +
2u2

(
4a(a− d3) + k2

)
dk3

, v′ = u.

If we write the quadratic center (16) in the original coordinates (x, y) going back through the changes of

coordinates we get

(17)

ẋ = b− ax− (4a(a− d3) + k2)

4d
y − d3(4a(a− d3) + k2)

4d(a− d3)
x2,

ẏ =
2d(a− d3)(−8a2b+ 8abd3 + k2(d− 2b))

(4a(a− d3) + k2)2
+ dx+ (a− d3)y + d3x

2.

This system has the center at the point(
2d(d3 − a)

4a(a− d3) + k2
,

4d
(
(a− d3)(2a(2b+ d)− dd3) + bk2

)
(4a(a− d3) + k2)

2

)
,

and the eigenvalues of the linear part of the system at this point are ±ki/2.

The linear system (2), taking into account all the values of the parameters for arriving to have the quadratic

center (16), is

(18)

ẋ = b− ax−
a
(
4a(a− d3) + k2

)
4d(a− d3)

y,

ẏ =
2d(a− d3)

(
−8a2b+ 8abd3 + k2(d− 2b)

)
(4a(a− d3) + k2)

2 + dx+ ay.

This system has the equilibrium point(
2d(d3 − a)

4a(a− d3) + k2
,

4d(a− d3)
(
2a(a− d3)(2b+ d) + bk2

)
a (4a(a− d3) + k2)

2

)
,

and the eigenvalues of the linear part of the system at this point are ±k
√
a/(d3 − a)/2. So in order this

equilibrium be a linear center we need that

(19) a(d3 − a) < 0.

Notice that in order that systems (17) and (18) will be well defined and have centers we need (19) and that

(20) 4a(a− d3) + k2 6= 0.

In summary all the planar continuous piecewise differential systems separated by the parabola y = x2

formed by a linear and a quadratic center are such that the linear center is given in (18) and the quadratic

center is given in (17).
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It is well known that the linear centers have a first integral and that also the quadratic centers have a first

integral, see for instance [18]. Then it is easy to check that

H1(x, y) =
4d2x(a− d3)

(
−8a2b+ 8abd3 + k2(d− 2b)

)
(4a(a− d3) + k2)

2 + (ay + dx)2 +
ak2y2

4a− 4d3
− 2bdy,

and

H2(x, y) =
(
d3

2k4
(
x2 − y

)
+ k3 + k4x+ k5y + k6x

2
)
e

d3(k0 + k1x+ k2y)

2d2k2(a− d3) ,

are first integrals of the systems (18) and (17) respectively, where

k0 = −4d(a− d3)(4ab+ dd3)− 4bdk2,

k1 = 4d(a− d3)(4a(a− d3) + k2),

k2 = (4a(a− d3) + k2)2,

k3 = 2d(a− d3)(8abd3(−a+ d3) + (−ad+ (−2b+ d)d3)k2),

k4 = 4ad(a− d3)d3(4a(a− d3) + k2),

k5 = ad3(16a(a− d3)3 + 8(a− d3)2k2 + k4),

k6 = 8a(a− d3)d23(2a(a− d3) + k2).

If a planar continuous piecewise differential system separated by the parabola y = x2 formed by the linear

center (18) and the quadratic center (17) has a limit cycle intersecting the parabola in the points (x1, x
2
1) and

(x2, x
2
2) with x1 6= x2, the coordinates x1 and x2 must be an isolated solution of the equations

(21) e1 = H1(x1, x
2
1)−H1(x2, x

2
2) = 0, e2 = H2(x1, x

2
1)−H2(x2, x

2
2) = 0,

or equivalently

e1 =
x1 − x2

4(a− d3) (4a2 − 4ad3 + k2)
2 e11e12 = 0,

e2 =
(
k3 + k4x1 + x21(k5 + k6)

)
e

d3
(
k0 + k1x1 + k2x

2
1

)
2d2k2(a− d3)

−
(
k3 + k4x2 + x22(k5 + k6)

)
e

d3
(
k0 + k1x2 + k2x

2
2

)
2d2k2(a− d3) = 0,

where

e11 = x1
(
4a2 − 4ad3 + k2

)
+ x2

(
4a2 − 4ad3 + k2

)
+ 4d(a− d3),

e12 = 4d(a− d3)
(
−8a2b+ 8abd3 + k2(d− 2b)

)
+ ax21

(
4a2 − 4ad3 + k2

)2
+ ax22

(
4a2 − 4ad3 + k2

)2
+4adx1

(
4a3 − 8a2d3 + a

(
4d23 + k2

)
− d3k2

)
+ 4adx2

(
4a3 − 8a2d3 + a

(
4d23 + k2

)
− d3k2

)
.

Remark 5. From the definitions of e1 and e2 it is clear that if (x1, x2) is a solution of system (21), then

(x2, x1) is also a solution of system (21).

For solving system (21) with x1 6= x2 it is sufficient to solve the two following subsystems

(22) e11 = 0, e2 = 0.

and

(23) e12 = 0, e2 = 0.

First we solve subsystem (22). Solving e11 = 0 we get that

x1 =
4d(d3 − a)

4a(a− d3) + k2
− x2.
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Substituting x1 into e2 = 0 we obtain that e2 becomes identically zero, so there is a continuum of solutions,

and consequently these solutions cannot produce limit cycles, only periodic solutions.

(a) f(x2) has a minimum (b) f(x2) has a maximum

Figure 2. The graphic of the function f(x2). The horitzontal straigh line is the x2-axis.

Now we shall study the solutions of subsystem (23). First we write the equation e2 = 0 as

E2 =
(
k3 + k4x1 + x21(k5 + k6)

)
−
(
k3 + k4x2 + x22(k5 + k6)

)
e

d3
(
k1(x2 − x1) + k2(x22 − x21)

)
2d2k2(a− d3) = 0,

Solving e12 = 0 we obtain the two solutions

(24) x±1 =
−2ad(a− d3)

(
4a(a− d3) + k2

)
±
√
U

a (4a(a− d3) + k2)
2 ,

where
U = −a

(
4a(a− d3) + k2

)2 (
4d(a− d3)

(
k2(d− 2b)− a(a− d3)(8b+ d)

)
+4adx2(a− d3)

(
4a(a− d3) + k2

)
+ ax22

(
4a(a− d3) + k2

)2 )
.

Remark 6. It is easy to check that H1(x+1 , (x
+
1 )2) = H1(x−1 , (x

−
1 )2), therefore the ellipses H1(x, y) =

H1(x+1 , (x
+
1 )2) and H1(x, y) = H1(x−1 , (x

−
1 )2) are the same.

Substituting every one of the two solutions x±1 in E2 = 0 we obtain for both that

E2 = −
(
ad3k2x

2
2 + k3 + k4x2

)
e

ad3k2x
2
2 + k4x2 + k7

ad2k2(a− d3) + 4ad2k2(d3 − a)− k3 − k4x2 − ad3k2x22 = 0,

where k7 = 2d(a − d3)d3(−8a2b + 8abd3 + (−2b + d)k2). To study the solutions of x2 satisfying E2 = 0 is

equivalent to study the solutions of x2 of the equation

(25) e

ad3k2x
2
2 + k4x2 + k7

ad2k2(a− d3) =
4ad2k2(d3 − a)

ad3k2x22 + k4x2 + k3
− 1.

Since ad3k2 6= 0 the function f(x2) = e

ad3k2x
2
2 + k4x2 + k7

ad2k2(a− d3) is positive and has a unique extremum which

can be a minimun or a maximum, and then its possible graphics (x2, f(x2)) is shown in Figure 2. The

horitzontal straight line which appears in Figure 2 is the x2-axis.

We define A = ad3k2 and the function g(x2) =
4ad2k2(d3 − a)

ad3k2x22 + k4x2 + k3
− 1. Then in Figure 3 we show the

graphic of the function g(x2) according if A is positive or negative, and according with the different kind of

roots of the quadratic polynomial ad3k2x
2
2 + k4x2 + k3 in the variable x2.

Clearly that the graphics of Figure 2 with the graphics of Figure 3 can intersect in at most two points.

Hence equaton (25) can have at most two solutions for x2, denote them by x21 and x22. From (24) we obtain
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(a) A > 0, 2 real roots (b) A < 0, 2 real roots

(c) A > 0, 1 doble or 2 complex

roots

(d) A < 0, 1 doble or 2 complex roots

Figure 3. The graphic of the function g(x2). The horitzontal straigh line is the x2-axis. In

the case A < 0, 2 real roots eventually the minimum can be positive.

for each one of these values of x2 produce two values of x1, denoted by x11 and x12 the ones produced by

x21, and by x13 and x14 the ones produced by x22. So if a planar continuous piecewise differential system

separated by the parabola y = x2 formed by the linear center (18) and the quadratic center (17) has a limit

cycle this must intersect the parabola in the two points given for one of the following four pairs of points:

(x11, x
2
11), (x21, x

2
21); (x12, x

2
12), (x21, x

2
21); (x13, x

2
13), (x22, x

2
22); (x14, x

2
14), (x22, x

2
22).

Since the points (x21, x
2
21) and (x22, x

2
22) only can appear in a unique limit cycle, at most two pairs of these

four pairs can produce two limit cycles, assume that they are the pairs

(x11, x
2
11), (x21, x

2
21); (x13, x

2
13), (x22, x

2
22).

This agrees with the remark 6.

In short, at most we have the two solutions (x11, x21) and (x13, x22) of system (21) which can provide limit

cycles of our continuous piecewise differential system formed by a linear center (18) and a quadratic center (17).

But from remark 5 if (x11, x21) is a solution also (x21, x11) is another solution, hence (x21, x11) = (x13, x22).

Consequently at most we have one limit cycle because the solutions (x11, x21) and (x21, x11) define the same

limit cycle.

In order to complete the proof of the theorem we shall prove that the planar continuous piecewise differential

system separated by the parabola y = x2 and formed by the linear center

(26) ẋ = −y, ẏ =
257

5324
+ x,
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and the quadrtic center

(27) ẋ = −1 + 2x+ 11y + 11x2, ẏ =
13

242
− x− y − x2,

has one limit cycle. Indeed, it is easy to see that equation (25), for the piecewise differential system formed

by systems (26) and (27) separated by the parabola y = x2, has for the variable x2 two solutions x21 =

−176− 176
√

14

3872
and x22 =

−176 + 176
√

14

3872
. Then we obtain the limit cycle of Figure 1 which intersects the

parabola y = x2 in the two points (x21, x
2
21) and (x22, x

2
22) according with the previous paragraph. �
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[12] J. Llibre, M. Ordóñez and E. Ponce, On the existence and uniqueness of limit cycles in planar piecewise linear systems

without symmetry, Nonlinear Anal. Series B: Real World Appl. 14 (2013), 2002–2012.

[13] J. Llibre and M. A. Teixeira, Piecewise linear differential systems without equilibria produce limit cycles?, Nonlinear

Dyn. 88 (2017), 157–164.

[14] J. Llibre and M. A. Teixeira, Piecewise linear differential systems with only centers can create limit cycles?, Nonlinear

Dyn. 91 (2018), 249–255.

[15] R. Lum and L. O. Chua, Global properties of continuous piec ewise-linear vector fields. Part I: Simplest case in R2,

Internat. J. Circuit Theory Appl. 19 (1991), 251–307.

[16] R. Lum and L. O. Chua, Global properties of continuous piecewise-linear vector fields. Part II: Simplest symmetric case

in R2, Internat. J. Circuit Theory Appl. 20 (1992), 9–46.

[17] O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: a survey, Phys. D 241 (2012),

1826–1844.

[18] D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center Trans. Amer. Math. Soc. 338

(1993), 799–841

[19] D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Sci. Ser. Nonlinear Sci. Ser. A, vol. 69,

World Scientific, Singapore, 2010.

[20] N. I. Vulpe, Affine–invariant conditions for the topological discrimination of quadratic systems with a center, Differential

Equations 19 (1983), 273–280.



12 J. LLIBRE
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