ON THE NUMBER OF CENTRAL CONFIGURATIONS IN THE N-BODY PROBLEM

JAUME LLIBRE
Departament de Matemàtiques
Univesitat Autònoma de Barcelona Bellaterra, 08193 Barcelona, Spain

(Received: 15 June, 1990; accepted: 18 December, 1991)

Abstract

Central configurations are critical points of the potential function of the n body problem restricted to the topological sphere where the moment of inertia is equal to constant. For a given set of positive masses m_{1}, \ldots, m_{n} we denote by $N\left(m_{1}, \ldots, m_{n}, k\right)$ the number of central configurations of the n-body problem in \mathbf{R}^{k} modulus dilatations and rotations. If $N\left(m_{1}, \ldots, m_{n}, k\right)$ is finite, then we give a bound of $N\left(m_{1}, \ldots, m_{n}, k\right)$ which only depends of n and k.

Key words: N-body problem, central configuration

1. Introduction and Statement of the Results

A very old problem in Celestial Mechanics is the study of the central configurations of the n-body problem. Central configurations are initial positions of the bodies that lead to particular solutions of the n-body problem for which the ratios of the mutual distances between the bodies remain constant. There is an extensive literature concerning these solutions. For a classical background, see the sections on central configurations in (Wintner 1941) and (Hagihara 1970). For a modern background one can see (Smale 1970a, 1970b) and (Saari 1980). More recent work can be found in (Buck 1989, 1991; Cedó and Llibre 1989; Elmabsout 1988; Meyer 1987; Meyer and Schmidt 1988a, 1988b; Moeckel 1985, 1989; Palmore 1973, 1975a, 1975b; Pacella 1987; Perko and Walter 1985; Schmidt 1988; Shub 1970 and Simó 1977.

If $r_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ is the position vector of the i th positive mass m_{i} relative to the center of mass of the system, then the particles form a central configuration at time t if and only if there exists some scalar λ such that $\ddot{r}_{i}=-\lambda r_{i}$ for $i=1,2, \ldots, n$. By replacing the acceleration vector \ddot{r}_{i} by the force vector this equation becomes

$$
\lambda r_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{n} m_{j} \frac{r_{i}-r_{j}}{r_{i j}^{3}} \text { for } i=1, \ldots, n
$$

which is an equation which is independent of the dynamics. Here $r_{i j}$ is the mutual distance between the i th and j th particles. It is well known that the constant λ in the above system is positive.

