ON THE RESTRICTED THREE-BODY PROBLEM WHEN THE MASS PARAMETER IS SMALL*

JAUME LLIBRE

Secció de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Abstract. We study some aspects of the restricted three-body problem when the mass parameter μ is sufficiently small. First, we describe the global flow of the two-body rotating problem, $\mu = 0$, and we use it for the analysis of the collision and parabolic orbits when $\mu \ge 0$. Also we show that for any fixed value of the Jacobian constant and for any $\varepsilon > 0$, there exists a $\mu_0 > 0$ such that if the mass parameter $\mu \in [0, \mu_0]$, then the set of bounded orbits which are not contained in the closure of the set of symmetric periodic orbits has Lebesgue measure less than ε .

1. Introduction

We consider the circular planar restricted three-body problem (usually, the restricted three-body problem) in a rotating coordinate system $q = (q_1, q_2)$ of rotational frequency equal to 1. In this frame we put the larger primary m_1 of mass $1 - \mu$ at the origin and the smaller primary m_2 of mass μ at the position $e_2 = (-1, 0)$. The Hamiltonian which governs the motion of the zero mass particle m_3 is given by

$$H = \|p\|^{2}/2 + q_{2}p_{1} - q_{1}p_{2} - \|q\|^{-1} + \mu(\|q\|^{-1} - \|q - e_{2}\|^{-1} - p_{2})$$
(1.1)

where $p = (p_1, p_2)$ are the momentum variables conjugate to the q. It is clear that C = -2H is a first integral of the Hamiltonian system associated with H. This integral is called the Jacobi integral. Note that our Jacobian constant differs from the usual in the constant $\mu(1 - \mu)$ (see [12]).

The goal of this paper is to study some aspects of the restricted three-body problem as the mass parameter μ is sufficiently small. First, in Section 2 we describe the global flow of the two-body rotating problem, $\mu = 0$, and use it, in Section 3, for the analysis of the collision and parabolic orbits when μ is small enough.

A solution of the restricted three-body problem has a collision with m_1 (resp. m_2) in the instant t_0 if the distance between m_3 and m_1 (resp. m_2) tends to zero as $t \to t_0$.

Our main results about the collision orbits are the following two theorems.

THEOREM A. For the restricted three-body problem and for each value of the Jacobian constant, the set of orbits which end or begin at collision with m_1 or m_2 is topologically homeomorphic to a cylinder.

THEOREM B. For values of the mass parameter μ sufficiently small the following statements hold for the restricted three-body problem.

* Paper presented at the 1981 Oberwolfach Conference on Mathematical Methods in Celestial Mechanics.