MINIMAL PERIODIC ORBITS OF CONTINUOUS MAPPINGS OF THE CIRCLE

JAUME LLIBRE

Abstract

Let f be a continuous map of the circle into itself and suppose that $n>1$ is the least integer which occurs as a period of a periodic orbit of f. Then we say that a periodic orbit $\left\{p_{1}, \ldots, p_{n}\right\}$ is minimal if its period is n. We classify the minimal periodic orbits, that is, we describe how the map f must act on the minimal periodic orbits. We show that there are $\varphi(n)$ types of minimal periodic orbits of period n, where φ is the Euler phi-function.

1. Introduction and statement of results. Let $C(X, X)$ denote the set of continuous maps of a space X into itself. A point $p \in X$ is a periodic point of a map $f \in C(X, X)$ if $f^{n}(p)=p$ for some positive integer n. The period of p is the least such integer n, and the orbit of p is the set $\left\{f^{k}(p): k=1, \ldots, n\right\}$. We refer to such an orbit as a periodic orbit of period n.

Let $P(f)$ denote the set of positive integers n such that f has a periodic point of period n. The following theorem for periodic orbits of maps of the closed interval I is proved in [5] (see also [3]).

Theorem (Štefan). Let $f \in C(I, I)$. Suppose $n \in P(f)$ where n is odd and $n>1$, but $j \notin P(f)$ for all $j \in\{3,5, \ldots, n-2\}$. Let $\left\{p_{1}, \ldots, p_{n}\right\}$ be a periodic orbit of f of period n with $p_{1}<p_{2}<\cdots<p_{n}$. Let $t=(n+1) / 2$. Then either (A) or (B) holds:
(A)

$$
\begin{aligned}
f\left(p_{t-k}\right) & =p_{t+k} & & \text { for } k=1, \ldots, t-1, \\
f\left(p_{t+k}\right) & =p_{t-k-1} & & \text { for } k=0, \ldots, t-2, \\
f\left(p_{n}\right) & =p_{t} . & & \\
f\left(p_{t-k}\right) & =p_{t+k+1} & & \text { for } k=0, \ldots, t-2, \\
f\left(p_{t+k}\right) & =p_{t-k} & & \text { for } k=1, \ldots, t-1, \text { and } \\
f\left(p_{1}\right) & =p_{t} . & &
\end{aligned}
$$

In this paper we obtain a similar result for periodic orbits of maps of the circle S^{1}. For distinct points $a, b \in S^{1}$, let (a, b) and $[a, b]$ denote the open and closed intervals, respectively, from a counterclockwise to b.

Theorem A. Let $f \in C\left(S^{1}, S^{1}\right)$. Suppose $n \in P(f)$ where $n>1$, and $j \notin P(f)$ for all $j \in\{1,2, \ldots, n-1\}$. Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be a periodic orbit of f of period n

[^0]
[^0]: Received by the editors November 4, 1980.
 1980 Mathematics Subject Classification. Primary 54H20.

