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Abstract. In order to understand the dynamics of the differential
systems the limit cycles play a main role, but in general their study
is not easy. These last years an increasing interest appeared for
studying the limit cycles of some classes of discontinuous piecewise
differential systems, due to the rich applications of this kind of
differential systems.

Very few papers studied the limit cycles of the discontinuous
piecewise differential systems in spaces different from the plane R2.
Here we study the limit cycles of a class of discontinuous piecewise
differential systems on the cylinder.

1. Introduction and statement of the main

Consider the following differential equation on the cylinder (r, θ) ∈
R× S1

(1)
dr

dθ
= a0(θ) + a1(θ)r + a2(θ)r

2 + ...+ an(θ)r
n.

All the functions ai(θ) are continuous and 2π-periodic in the variable
θ. Equation (1) with n = 1 is a linear differential equation having at
most one limit cycle, see for instance [4]. While for n = 2 it is a Riccati
equation with at most two limit cycles, see [6]. For n = 3 it is an Abel
equation. If a3(θ) > 0 Pliss [9] proved that the Abel equation has at
most three limit cycles (see also [3, 8]). For n ≥ 4 a constant sign in the
leading coefficient an is not sufficient to bound uniformly the number
of limit cycles (see [6, 8]). Lins Neto in [8] gave a example with at least
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n+ 3 limit cycles for suitable functions a and f , for the Abel equation

dx

dθ
= εf(θ)x3 + a(θ)x2 + δx,

where |δ| is small, a(θ) is a trigonometric polynomial of degree 1, and
f(θ) is a trigonometric polynomial of degree 2n. Calanchi and Ruf [2]
proved that if in equation (1) n is odd, the leading term is fixed and
the remaining terms are small enough, then the number of limit cycles
is at most n.

In [1] Bakhshalizadeh and Llibre considered the discontinuous piece-
wise differential systems of the form

ẋ = a0(θ) + a1(θ)x+ · · ·+ an(θ)x
n, if 0 ≤ θ ≤ π,

ẋ = b0(θ) + b1(θ)x+ · · ·+ bm(θ)x
m, if 0 ≤ θ ≤ 2π,

(2)

where a0(θ), a1(θ), · · · , an(θ) and b0(θ), b1(θ), · · · , bm(θ) are 2π-periodic,
and gave exact bounds for the maximum number of limit cycles. On
the lines of discontinuity x = 0 and x = π of systems (2), the flow
is defined following the rules of Filippov [5]. In the rest of the paper
always the flow on the lines of discontinuity is defined according with
Filippov. The objective of this paper is to extend the results on the
maximum number of limit cycles obtained in [1] for the discontinuous
piecewise differential systems on the cylinder with two straight lines of
separation, to the discontinuous piecewise differential systems on the
cylinder with an arbitrary number of lines of separation.

Let C be the cylinder {(θ, x) ∈ S1 ×R}. Consider the discontinuous
piecewise differential systems on the cylinder

ẋ =
m1∑
l=0

a1l(θ)x
l, if 0 ≤ θ ≤ 2π/n,

ẋ =
m2∑
l=0

a2l(θ)x
l, if 2π/n ≤ θ ≤ 2 · 2π/n,

...

ẋ =
mk∑
l=0

akl(θ)x
l, if 2π(k − 1)/n ≤ θ ≤ 2kπ/n,

...

ẋ =
mn∑
l=0

anl(θ)x
l, if 2π(n− 1)/n ≤ θ ≤ 2π,

(3)
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where akl(θ), for k = 1, · · ·n and l = 0, 1, · · · ,mk, are 2π-periodic
functions in the variable θ. Then H(m1, · · · ,mn) denotes the maxi-
mum number of limit cycles that the discontinuous piecewise differen-
tial systems (3) can exhibit.

Theorem 1. The discontinuous piecewise differential systems on the
cylinder C of the form

ẋ = a0(θ) + a1(θ)x, if 0 ≤ θ ≤ 2π/3,

ẋ = b0(θ) + b1(θ)x, if 2π/3 ≤ θ ≤ 4π/3,

ẋ = c0(θ) + c1(θ)x, if 4π/3 ≤ θ ≤ 2π,

(4)

where ai(θ), bi(θ) and ci(θ) for i = 0, 1 are 2π-periodic functions in the
variable θ, have at most one limit cycle, i.e, H(1, 1, 1) = 1.

Corollary 2. The discontinuous piecewise differential systems on the
cylinder C of the form

ẋ = a10(θ) + a11(θ)x, if 0 ≤ θ ≤ 2π/n,

ẋ = a20(θ) + a21(θ)x, if 2π/n ≤ θ ≤ 2 · 2π/n,
...
ẋ = ak0(θ) + ak1(θ)x, if 2π(k − 1)/n ≤ θ ≤ 2kπ/n,

...

ẋ = an0(θ) + an1(θ)x, if 2π(n− 1)/n ≤ θ ≤ 2π,

where ak0(θ) and ak1(θ), for k = 1, · · ·n, are 2π-periodic functions in
the variable θ, have at most one limit cycle, i.e., H(1, · · · , 1) = 1.

Theorem 3. The discontinuous piecewise differential systems on the
cylinder C of the form

ẋ = a0(θ) + a1(θ)x+ a2(θ)x
2, if 0 ≤ θ ≤ π,

ẋ = b0(θ) + b1(θ)x+ b2(θ)x
2, if π ≤ θ ≤ 2π,

(5)

where ai(θ) and bi(θ), for i = 0, 1, 2, are 2π-periodic functions in the
variable θ, have at most two limit cycles, i.e., H(2, 2) = 2.
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Corollary 4. The discontinuous piecewise differential systems on the
cylinder C of the form

ẋ = a10(θ) + a11(θ)x+ a12x
2, if 0 ≤ θ ≤ 2π/n,

ẋ = a20(θ) + a21(θ)x+ a22x
2, if 2π/n ≤ θ ≤ 2 · 2π/n,

...
ẋ = ak0(θ) + ak1(θ)x+ ak2x

2, if 2π(k − 1)/n ≤ θ ≤ 2kπ/n,
...

ẋ = an0(θ) + an1(θ)x+ an2x
2, if 2π(n− 1)/n ≤ θ ≤ 2π,

where ak0(θ), ak1(θ) and ak2(θ), for k = 1, · · ·n, are 2π-periodic func-
tions in the variable θ, have at most two limit cycles, i.e., H(2, · · · , 2) =
2.

Theorem 5. The discontinuous piecewise differential systems on the
cylinder C of the form

ẋ = a0(θ) + a1(θ)x, if 0 ≤ θ ≤ 2π/3,

ẋ = b0(θ) + b1(θ)x+ b2(θ)x
2, if 2π/3 ≤ θ ≤ 4π/3,

ẋ = c0(θ) + c1(θ)x, if 4π/3 ≤ θ ≤ 2π,

(6)

where ai(θ), bi(θ) and ci(θ), for i = 0, 1 or 2, are 2π-periodic functions
in the variable θ, have at most two limit cycles, i.e., H(1, 2, 1) = 2.

According to the above Theorems 1, 3, 5 and Corollaries 2, 4, we
can conclude the following corollary.

Corollary 6. The discontinuous piecewise differential systems on the
cylinder C of the form (3) with max{m1, · · · ,mn} ≤ 2 have at most
one limit cycle if m1 = · · · = mn = 1, i.e., H(1, · · · , 1) = 1, otherwise
H(m1, · · · ,mn) = 2.

Theorem 7. For every positive integer k there are discontinuous piece-
wise differential systems on the cylinder C of the form

ẋ = a(θ)x, if 0 ≤ θ ≤ 2π/3,

ẋ = b2(θ)x
2 + εb3(θ)x

3, if 2π/3 ≤ θ ≤ 4π/3,

ẋ = c(θ)x, if 4π/3 ≤ θ ≤ 2π,

(7)

where a(θ), c(θ) and bi(θ) for i = 2, 3, are 2π-periodic functions in
the variable θ, having at least k limit cycles on the cylinder, i.e.,
H(1, 3, 1) = +∞.

According to the above Theorem 7, we can conclude the following
corollary.
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Corollary 8. The discontinuous piecewise differential systems on the
cylinder C of the form (3) with max{m1, · · · ,mn} ≥ 3 have at least k
limit cycles for any positive integer k, i.e., H(m1, · · · ,mn) = +∞.

2. Proof of the main results

In this section we will prove the main results as stated in Theorems
1, 3, 5, 7 and Corollaries 2, 4, 6.

Proof of Theorem 1. Consider the discontinuous piecewise differential
systems (4). The solution of the first equation of (4) satisfying x(0) = ρ
is

x1(θ, ρ) = (I1(θ) + ρ) eK1(θ),

I1(θ) =

∫ θ

0

a0(s)e
−K1(s)ds,

K1(s) =

∫ s

0

a1(w)dw.

The solution of the second equation of (4) satisfying x(2π/3) = x1(2π/3, ρ)
is

x2(θ, x1(π/3, ρ)) = (I2(θ) + x1(π/3, ρ)) e
K2(θ),

I2(θ) =

∫ θ

2π
3

b0(s)e
−K2(s)ds,

K2(s) =

∫ s

2π
3

b1(w)dw,

and the solution of the third equation of (4) satisfying x(4π/3) =
x2(4π/3, x1(2π/3, ρ)) is

x3(θ, x2(4π/3, x1(2π/3, ρ))) = (I3(θ) + x2(4π/3, x1(2π/3, ρ))) e
K3(θ),

I3(θ) =

∫ θ

4π
3

c0(s)e
−K3(s)ds,

K3(s) =

∫ s

4π
3

c1(w)dw.

Define the function

Π1(ρ) = x3(2π, x2(4π/3, x1(2π/3, ρ)))− ρ

= eK3(2π)
(
eK1(2π/3)+K2(4π/3)I1(2π/3)+eK2(4π/3)I2(4π/3)+I3(2π)

)
+(eK1(2π/3)+K2(4π/3)+K3(2π) − 1)ρ.

Thus the periodic orbits of the discontinuous piecewise differential sys-
tems (4) are associated with the zeros of the linear equation Π1(ρ) = 0.
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Clearly there is at most one zero. Thus the discontinuous piecewise
differential systems (4) have at most one limit cycle. □

The proof of Corollary 2 is similar to the proof of Theorem 1.

Proof of Theorem 3. Consider the discontinuous piecewise differential
systems (5). On the two bands of the cylinder with θ ∈ [0, π] and
θ ∈ [π, 2π] we have a Riccati differential equation.

Suppose that we have a periodic solution x(θ) = xp(θ)|θ∈[0,π]∪xq(θ)|θ∈[π,2π].
Then doing the change of variable x → X1 where

X1(θ) =
1

x(θ)− xp(θ)
,

we write the first differential equation in (5) with θ ∈ [0, π] as

dX1

dθ
= −a2(θ)−

(
2a2(θ)xp(θ) + a1(θ)

)
X1.(8)

Then the solution of the linear equation (8) with θ ∈ [0, π] is written
as

X1(θ) = (N1(θ) +X1(0)) e
M1(θ),

N1(θ) =

∫ θ

0

−a2(s)e
−M1(s)ds,

M1(θ) =

∫ θ

0

−
(
2a2(w)xp(w) + a1(w)

)
dw.

Undoing the change of variables we obtain that the solution of the first
equation of (5) satisfying x(0) = ρ is

x1(θ, ρ) =
A1(θ) +B1(θ)ρ

C1(θ) +D1(θ)ρ
,

where

A1(θ) = xp(θ)e
M1(θ) (1− xp(0)N1(θ))− xp(0),

B1(θ) = xp(θ)N1(θ)e
M1(θ) + 1,

C1(θ) = eM1(θ) (1− xp(0)N1(θ)) ,

D1(θ) = eM1(θ)N1(θ).

Similarly we write the second differential equation of (6) in θ ∈ [π, 2π]
as

dX2

dθ
= −b2(θ)−

(
2b2(θ)xq(θ) + b1(θ)

)
X2(9)

doing the change

X2(θ) =
1

x(θ)− xq(θ)
.
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Both changes of variables the change of variables x → X1 when x ∈
[0, π] and the change of variables x → X2 when x ∈ [π, 2π] coincide on
the periodic orbits intersection with the straight lines x = 0 and π, so
the structure of the discontinuous piecewise differential systems (5) is
preserved. Indeed,

X1(0) = X2(2π) =
1

x(0)− xp(0)
=

1

x(2π)− xq(2π)
,

X1(π) = X2(π) =
1

x(π)− xp(π)
=

1

x(π)− xq(π)
,

because x(0) = x(2π), xp(0) = xq(2π) and xp(π) = xq(π) on the peri-
odic orbits.

Then the solution of the differential equation (9) is

X2(θ) = (N2(θ) +X2(π)) e
M2(θ),

N2(θ) =

∫ θ

π

−b2(s)e
−M2(s)ds,

M2(s) =

∫ s

π

−
(
2b2(w)xq(w) + b1(w)

)
dw.

Undoing the change of variables we get the solution of the second equa-
tion of (5) satisfying x(π) = x1(π, ρ) is

x2(θ, ρ) =
A2(θ) +B2(θ)x1(π, ρ)

C2(θ) +D2(θ)x1(π, ρ)

=
C1(π)A2(θ) + A1(π)B2(θ) + (D1(π)A2(θ) +B1(π)B2(θ))ρ(
C1(π)C2(θ) + A1(π)D2(θ) + (B1(π)D2(θ) +D1(π)D2(θ))ρ

,

where

A2(θ) = xq(θ)e
M2(θ) (1− xq(π)N2(θ))− xq(π),

B2(θ) = xq(θ)N2(θ)e
M2(θ) + 1,

C2(θ) = eM2(θ) (1− xq(π)N2(θ)) ,

D2(θ) = eM2(θ)N2(θ).

Define the function Π2(ρ) = x2(2π, x1(π, ρ))− ρ, which is

A2C1 + A1B2 + (A2D1 +B1B2 − C1C2 − A1D2)ρ− (B1D2 +D1D2)ρ
2

C1C2 + A1D2 + (B1D2 +D1D2)ρ
,

with A1 = A1(π), B1 = B1(π), C1 = C1(π), D1 = D1(π) and A2 =
A2(2π), B2 = B2(2π), C2 = C2(2π), D2 = D2(2π). Thus the periodic
orbits of the discontinuous piecewise differential systems (5) are asso-
ciated with the zeros of the equation Π2(ρ) = 0. It follows that the
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discontinuous piecewise differential systems (5) have at most two limit
cycles. □

The proof of Corollary 4 is similar to the proof of Theorem 3.

Proof of Theorem 5. Consider the discontinuous piecewise differential
systems (6). On the second band of the cylinder, i.e., θ ∈ [2π/3, 4π/3],
we have a Riccati differential equation.

Suppose that there is a periodic solution x(θ) = xr(θ)|θ∈[0,2π/3] ∪
xs(θ)|θ∈[2π/3,4π/3] ∪ xt(θ)|θ∈[4π/3,2π]. In what follows for studying the
limit cycles on the cylinder of systems (7) we will do three changes of
variables, in each strip of cylinder defined by the straight lines θ = 0,
θ = 2π/3 and θ = 4π/3. Later on we will show that these changes
of variables coincide on the three straight lines θ = 0, θ = 2π/3 and
θ = 4π/3. Then doing the change of variable x → Xr, where

Xr(θ) =
1

x(θ)− xr(θ)
,

we write the first differential equation of (6) with θ ∈ [0, 2π/3] as

dXr

dθ
= −a1(θ)Xr.(10)

Then the solution of the linear equation (10) with θ ∈ [0, 2π/3] with
an initial value Xr(0) is written as

Xr(θ,Xr(0)) = Xr(0)e
K1(θ),

K1(θ) =

∫ θ

0

(−a1(s))ds.

Correspondingly we obtain the solution of the first differential equation
of (6) with θ ∈ [0, 2π/3] satisfying x(0) = ρ is

x1(θ, ρ) =
xr(θ)e

K1(θ) − xr(0)

eK1(θ)
+

ρ

eK1(θ)
.

Note that on the cylinder with θ ∈ [2π/3, 4π/3] we have a Riccati
differential equation. Then doing the change of variable x → Xs, where

Xs(θ) =
1

x(θ)− xs(θ)
,

we write the second differential equation of (6) with θ ∈ [2π/3, 4π/3]
as

dXs

dθ
= −b2(θ)−

(
2b2(θ)xs(θ) + b1(θ)

)
Xs.(11)
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The solution of the linear equation (11) with θ ∈ [2π/3, 4π/3] is written
as

Xs(θ) = (I2(θ) +Xs(2π/3)) e
K2(θ),

I2(θ) =

∫ θ

2π
3

−b2(s)e
−K2(s)ds,

K2(s) =

∫ s

2π
3

−
(
2b2(w)xs(w) + b1(w)

)
dw.

Undoing the change of variables the solution of the second equation of
(6) satisfying x(2π/3) = x1(2π/3, ρ) is

x2(θ, ρ) =
A(θ) +B(θ)ρ

C(θ) +D(θ)ρ
,(12)

where

A(θ) = xs(θ)e
K2(θ)

(
eK1(2π/3) − I2(θ)xr(0)

)
− xr(0)

B(θ) = I2(θ)xs(θ)e
K2(θ) + 1,

C(θ) = eK2(θ)
(
eK1(2π/3) − I2(θ)xr(0)

)
,

D(θ) = I2(θ)e
K2(θ).

Similarly, doing the change of variable x → Xt, where

Xt(θ) =
1

x(θ)− xt(θ)
,

we write the third differential equation of (6) with θ ∈ [4π/3, 2π] as

dXt

dθ
= −c1(θ)Xt.(13)

Then the solution of the linear equation (13) with an initial value
Xt(4π/3) is written as

Xt(θ,Xt(4π/3)) = Xt(4π/3)e
K3(θ),

K3(θ) =

∫ θ

0

(−c1(s))ds.

Correspondingly the solution of the third differential equation of (6)
with θ ∈ [4π/3, 2π] satisfying x(4π/3) = x2(4π/3, ρ) is

x3(θ, ρ) =
xt(θ)e

K3(θ) + x2(4π/3, ρ)− xt(4π/3)

eK3(θ)
.(14)

Note that we need to check that the change of variables x → Xr when
x ∈ [0, 2π/3], the change of variables x → Xs when x ∈ [2π/3, 4π/3],
the change of variables x → Xt when x ∈ [4π/3, 2π] coincide on the
periodic orbits intersection with the straight lines θ = 0, 2π/3 and
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4π/3, and consequently the structure of the discontinuous piecewise
differential systems (6) is preserved. Indeed,

Xr(0) = Xt(2π) =
1

x(0)− xr(0)
=

1

x(2π)− xt(2π)
,

Xr(2π/3) = Xs(2π/3) =
1

x(2π/3)− xr(2π/3)
=

1

x(2π/3)− xs(2π/3)
,

Xs(4π/3) = Xt(4π/3) =
1

x(4π/3)− xs(4π/3)
=

1

x(4π/3)− xt(4π/3)
,

because x(0) = x(2π), xr(0) = xt(2π) and xr(2π/3) = xs(2π/3) and
xs(4π/3) = xt(4π/3) on the periodic orbits.

Define the function Π3(ρ) = x3(2π, ρ)−ρ. Then by (12) and (14) we
obtain

Π3(ρ) =
E(2π) + F (2π)ρ− eK3(2π)D(4π/3)ρ2

eK3(2π) (C(4π/3) +D(4π/3)ρ)
,

where

E(θ) = (xt(θ)e
K3(θ) − xt(4π/3))C(4π/3) + A(4π/3),

F (θ) = (xt(θ)e
K3(θ) − xt(4π/3))D(4π/3) +B(4π/3)− eK3(θ)C(4π/3).

Thus the periodic orbits of the discontinuous piecewise differential sys-
tems (6) are associated with the zeros of the equation Π3(ρ) = 0.
Clearly there is at most two zeros, and therefore the discontinuous
piecewise differential systems (6) have at most two limit cycles. □

Proof of Theorem 7. We consider the discontinuous piecewise differen-
tial systems

ẋ = a(θ)x, if 0 ≤ θ ≤ 2π/3,

ẋ = b2(θ)x
2, if 2π/3 ≤ θ ≤ 4π/3,

ẋ = c(θ)x, if 4π/3 ≤ θ ≤ 2π.

(15)

The solution of the first differential equation of (15) with θ ∈ [0, 2π/3]
satisfying x(0) = ρ is

x1(θ, ρ) = ρeJ1(θ), J1(θ) =

∫ θ

0

a(s)ds.

On the other hand the solution of the second differential equation of
(15) with θ ∈ [2π/3, 4π/4] satisfying x(2π/3) = x1(2π/3, ρ) is

x2(θ, ρ) =
ρeJ1(2π/3)

1− ρeJ1(2π/3)J2(θ)
, J2(θ) =

∫ θ

2π
3

b2(s)ds.
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Eventually the solution of the third differential equation of (15) with
θ ∈ [4π/3, 2π] satisfying x(4π/3) = x2(4π/3, ρ) is

x3(θ, ρ) =
ρeJ1(2π/3)+J3(θ)

1− ρeJ1(2π/3)J2(4π/3)
, J3(θ) =

∫ θ

4π
3

c(s)ds.

Define the function

Π4(ρ) = x3(2π, ρ)− ρ =
ρeJ1(2π/3)+J3(2π)

1− ρeJ1(2π/3)J2(4π/3)
− ρ.

Then Π4(ρ) ≡ 0 if we assume

J1(2π/3) + J3(2π) = J2(4π/3) = 0,(16)

where we choose the functions a(θ), b2(θ) and c(θ) in order that the
equalities (16) hold. We obtain that the discontinuous piecewise dif-
ferential systems (15) has a continuum of periodic solutions in the
neighborhood of ρ = 0.

In what follows we consider the discontinuous piecewise differen-
tial systems (7) with a small parameter ε. The solution of the first
differential equation of (7) with θ ∈ [0, 2π/3] satisfying x(0) = ρ is
x1(θ, ρ) given in (12). Let x2(θ, ρ, ε) denote the solution of the second
differential equation with initial value x2(2π/3, ρ, ε) = x1(2π/3, ρ) =
ρeJ1(2π/3) = x̄1. Then the solution x2(θ, x̄1, ε) can be expanded with
respect to ε as follows

x2(θ, x̄1, ε) = x20(θ, x̄1) + x21(θ, x̄1)ε+O(ε2),

where

x20(θ, x̄1) = x2(θ, x̄1, ε)|ε=0

and

x21(θ, x̄1) = ∂x2(θ, x̄1, ε)/∂ε|ε=0.

Similarly the solution x3(θ, ρ, ε) of the third differential equation of sys-
tems (7) with θ ∈ [4π/3, 2π] satisfying x3(4π/3, ρ, ε) = x2(4π/3, x̄1, ε) =
x̄2 is

x3(θ, x̄2, ε) = x2(4π/3, x̄1, ε)e
J3(θ).

Then we similarly obtain a function

Πε
4(ρ, ε) = x3(2π, x̄2, ε)− ρ

= x2(4π/3, x̄1, ε)e
J3(2π) − ρ

=
(
x20(4π/3, x̄1)e

J3(2π) − ρ
)
+ x21(4π/3, x̄1)e

J3(2π)ε+O(ε2).
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In order to find the number of zeros of the equation Πε
4 = 0, asso-

ciated with the number of limit cycles of the discontinuous piecewise
differential systems (7), first we have

ẋ2(θ, x̄1, ε) = ẋ20(θ, x̄1) + ẋ21(θ, x̄1)ε+O(ε2)

= b2(θ)
(
x20(θ, x̄1) + x21(θ, x̄1)ε+O(ε2)

)2
+ εb3(θ)(

x20(θ, x̄1) + x21(θ, x̄1)ε+O(ε2)
)3

+O(ε2).

From this equality we get

ẋ20(θ, x̄1) = b2(θ)x
2
20(θ, x̄1),(17)

with the initial value x20(2π/3, x̄1) = ρeJ1(2π/3) and

ẋ21(θ, x̄1) = 2b2(θ)x20(θ, x̄1)x21(θ, x̄1) + b3(θ)x
3
20(θ, x̄1),(18)

with an initial value x21(2π/3, x̄1) = 0, where ẋ2i(θ, x̄1) = ∂x2i(θ, x̄1)/∂θ
for i = 0, 1. Integrating the differential equation (17) in the interval
[2π/3, 4π/3], by (16) we get

x20(4π/3, ρ) =
ρeJ1(2π/3)

1− ρeJ1(2π/3)J2(4π/3)
= ρeJ1(2π/3).

On the other hand we get

b2(θ)x20(θ, x̄1) =
ẋ20(θ, x̄1)

x20(θ, x̄1)
,

from the differential equation (17). Substituting the previous equality
in (18), we have

∂

∂θ

(
x21(θ, x̄1)

x2
20(θ, x̄1)

)
= b3(θ)x20(θ, x̄1).

Integrating this differential equation in the interval [2π/3, 4π/4] and
combining the assumption (16), we obtain

x21(4π/3, x̄1) = x2
20(4π/3, x̄1)

∫ 4π
3

2π
3

b3(θ)x20(θ, x̄1)dθ

= ρ3e3J1(2π/3)
∫ 4π

3

2π
3

b3(θ)

1− ρeJ1(2π/3)J2(θ)
dθ.

We further obtain

Πε
4(ρ, ε) =

(
x20(4π/3, x1)e

J3(2π) − ρ
)
+ x21(4π/3, x1)e

J3(2π)ε+O(ε2)

= ερ3e2J1(2π/3)M(ρ) +O(ε2),

where

M(ρ) =

∫ 4π
3

2π
3

b3(θ)

1− ρeJ1(2π/3)J2(θ)
dθ,
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is a Melnikov function. It follows from the Implicit Function Theorem
that the simple zeros ofM(ρ) which are non-zero can be associated with
the simple zeros of the function Πε

4(ρ, ε) distinct from zero. More con-
cretely, if ρ = ρ0 ̸= 0 satisfying M(ρ0) = 0 and M ′(ρ0) ̸= 0, then there
exists a differential function ϕ such that ϕ(0) = ρ0 and Πε

4(ϕ(ε), ε) ≡ 0
for a small enough ε.

For any n ∈ N we choose

b2(θ) = cos(eJ1(2π/3)θ), b3(θ) = P (sin(eJ1(2π/3)θ)),

where P is a polynomial of degree n in the variable sin(eJ1(2π/3)θ). We
introduce the family of analytic functions

Ik(ρ) =

∫ 4π
3

2π
3

sink t

1− ρ sin t
dt,

where t = eJ1(2π/3)θ and k is a positive integer. By Theorem A of [7]
the maximum number of zeros of M(ρ) is the same as the degree n of
the polynomial P (sin t). □
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