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Limit cycles bifurcating from a zero-Hopf equilibrium
of a 3–dimensional continuous differential system
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Abstract A zero–Hopf equilibrium of a differential system in R3 is an equi-
librium point whose linear part has eigenvalues 0 and ±ωi with ω > 0. We
provide necessary and sufficient conditions for the existence of two or one limit
cycles bifurcating from a zero–Hopf equilibrium of the following 3–dimensional
Lypschizian differential systems

ẋ = y,
ẏ = z,
ż = −a|x| − y + 3y2 − xz − b,

when a = b = 0. Note that due to the existence of an absolute value the vector
field associated to this system is only Lypschitz. We shall prove that these
limit cycles persist for ab > 0 with a and b sufficiently small, i.e. when the
differential system has no equilibria. Additionally we provide an estimation of
the size of the bifurcating small limit cycles and also characterize their kind
of stability or instability.

We remark that there are no works which study the zero-Hopf bifurcation of
nonsmooth differential systems as we do in this paper, and that the algorithm
that we use here can be applied for studying the zero-Hopf bifurcation of an
arbitrary nonsmooth differential system.

Keywords continuous differential system · periodic orbit · limit cycle ·
averaging theory · zero–Hopf bifurcation · zero–Hopf equilibrium
2010 Mathematics Subject Classification. 37G15.

S. Kassa and A. Makhlouf
Department of Mathematics, University of Annaba, Laboratory LMA, P.O.Box 12, Annaba
23000, Algeria
E-mail: kassasara03@outlook.com, makhloufamar@yahoo.fr

J. Llibre
Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra,
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1 Introduction and statements of the main results

Jafari, Sprott and Golpayegani in [7] introduced continuous differential sys-
tems without equilibria, and studied the existence of chaotic motions in the
dynamics of such systems. Azar et al. [1] motivated by the paper of Jafari,
Sprott and Golpayegani consider the continuous differential systems

ẋ = y,
ẏ = z,
ż = −a|x| − y + 3y2 − xz − b,

(1)

with a > 0 and b > 0. Since the equation |x| = −b/a has no solution if ab > 0,
differential systems (1) has no equilibrium points when ab > 0. Azar et al.
analyzed the dynamical properties and the synchronization of the differential
system (1), and they implemented a physical realization of this differential
system in order to illustrate its feasibility.

Our objective is to enrich the dynamical properties of the differential sys-
tem (1) found in [1], showing that this system can exhibit for convenient values
of its parameters a zero–Hopf equilibrium from which can bifurcate two or one
limit cycles.

A zero-Hopf equilibrium of system (1) is an equilibrium point whose linear
part has eigenvalues 0 and ±ωi with ω > 0. A limit cycle of system (1) is a
periodic orbit isolated in the set of all periodic orbits of system (1).

Define the functions

f1(r, w) =
1

2π

(
2w

√
1− w2

r2
− πrw + 2r arcsin

(w
r

))
,

and

f2(r, w) = − 1

π

(
πβ + 2r

√
1− w2

r2
− 2πr2 + 2w arcsin

(w
r

))
.

Then our main result is the following one.

Theorem 1 Consider the Lipchitz differential system (1) with a = ε, b = ε2β
and |ε| sufficiently small. Then for each zero (r0, w0) with r0 > 0 of the func-
tion (f1, f2) such that the determinant of the Jacobian matrix ∂(f1, f2)/∂(r, w)
evaluated at (r0, w0) is non–zero, there exist a limit cycle (x(t, ε), y(t, ε), z(t, ε))
of system (1) such that

(x(0, ε), y(0, ε), z(0, ε)) = ε(r0 + w0, 0,−r0) +O(ε2).

If the two eigenvalues of the matrix

∂(f1, f2)

∂(r, w)
|(r,w)=(r0,w0) (2)

have negative real parts then the periodic solution (x(t, ε), y(t, ε), z(t, ε)) is
stable. If some of the eigenvalues has positive real part the periodic solution
(x(t, ε), y(t, ε), z(t, ε)) is unstable.
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Theorem 1 is proved in section 3 using the averaging theory for computing
periodic solutions developed in [2] and [3] for Lipschitz differential systems.
We remark that the classical averaging theory for computing periodic solutions
needs that the differential system be of class C2, see for instance Theorems
11.5 and 11.6 of the book of Verhulst [9].

For another study of the limit cycles of a Lipschitz system see for instance
[5].

Corollary 1 Consider the Lipchitz differential system (1) with a = ε, b = ε2β
and |ε| sufficiently small.

(a) System (1) has two periodic solutions (x±(t, ε), y±(t, ε), z±(t, ε)) such that

(x±(0, ε), y±(0, ε), z±(0, ε)) = ε(r±, 0,−r±)+O(ε2), r± =
1±

√
1 + 2π2β

2π
,

if 1 + 2π2β > 0, 1−
√

1 + 2π2β > 0 and 1 + 2π2β − 7
√

1 + 2π2β 6= 0.
(b) System (1) has one periodic solutions (x(t, ε), y(t, ε), z(t, ε)) such that

(x(0, ε), y(0, ε), z(0, ε)) = ε(r+, 0,−r+) +O(ε2), r+ =
1 +

√
1 + 2π2β

2π
,

if 1 + 2π2β > 0, 1−
√

1 + 2π2β < 0 and 1 + 2π2β − 7
√

1 + 2π2β 6= 0.
(c) If additional to the assumptions of statements (a) and (b) we have that

−1− 2π2β + 7
√

1 + 2π2β > 0, then the periodic solution associated to the
zero (r+, 0) of the function (f1, f2) is unstable.

Corollary 1 is also proved in section 3 using Theorem 2.

2 The averaging theory for Lipschitz differential systems

In this section we present the basic results on the averaging theory for the
Lipschitz differential systems that we need for proving our main result.

The averaging theory reduces the problem of finding isolated periodic solu-
tions to the problem of finding zeros of a function, called the averaged function.
We need the averaging theory of first order for differential systems developed
in [2] and [3] whose associated vector field is Lipschiz but not C1. The sufficient
conditions for the existence of simple isolated zeros of the averaged function
are given in terms of the Brouwer degree, see [6] for precise definitions.

The classical averaging theory for finding isolated periodic solutions of a
differential system needs that the vector field associated to the system be C2.
See for general results on averaging theory the book of Sanders, Verhulst and
Murdock [8].

Theorem 2 We consider the following differential system

ẋ(t) = εF (t,x) + ε2R(t,x, ε), (3)
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where F : R×D → Rn, R : R×D× (−εf , εf )→ Rn are continuous functions,
T–periodic in t, and D is an open subset of Rn. We define f : D → Rn as

f(z) =
1

T

∫ T

0

F (s, z)ds, (4)

and assume that

(i) F and R are locally Lipschitz in x;
(ii) for a ∈ D with f(a) = 0, there exists a neighborhood V of a such that

f(z) 6= 0 for all z ∈ V \ {a} and dB(f, V,a) 6= 0 (where dB(f, V,a) denotes
the Brouwer degree of f in the neighborhood V of a).

Then for |ε| > 0 sufficiently small, there exists an isolated T–periodic solution
x(t, ε) of system (3) such that x(0, ε)→ a as ε→ 0.

If the averaged function f(z) is C1 in some neighborhood of a fixed isolated
zero a of f(z), then we can use the following remark in order to verify the
hypothesis (ii) of Theorem 2. For more details see again [6].

Remark 1 Let f : D → Rn be a C1 function, with f(a) = 0, where D is an
open subset of Rn and a ∈ D. If a is a simple zero of f , i.e the determinant
(det(Df(a)) 6= 0) of the Jacobian matrix of the function f at a is not zero,
then there exists a neighborhood V of a such that f(z) 6= 0 for all z ∈ V \{a}.
Then dB(f,a, V, 0) ∈ {−1, 1}.

In [3] Theorem 2 is improved as follows.

Theorem 3 Under the assumptions of Theorem 2, for small ε the condition
det(Df(a)) 6= 0 ensures the existence and uniqueness of a T−periodic solution
x(t, ε) of system (3) such that x(0, ε) → a as ε → 0, and if all eigenvalues
of the matrix Dh(a) have negative real parts, then the periodic solution x(t, ε)
is stable. If some of the eigenvalue has positive real part the periodic solution
x(t, ε) is unstable.

The averaging theory for studying periodic solutions is very useful see for
instance [4].

3 Proofs of the results

Proof (Proof of Theorem 1) Consider a = ε, b = ε2β and ε ≥ 0 in system (1).
We shall write the differential system (1) in the normal form for applying the
averaging theory, i.e. in the form (3). Firstly we rescale the variables (x, y, z) =
(εX, εY, εZ), we get

Ẋ = Y,

Ẏ = Z, (5)

Ż = −Y + ε(3Y 2 −XZ − |X| − β).
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(X, 0, 0) are the singular points of the differential system (5) when ε = 0. The
linear part of system (5) with ε = 0 at the origin is written as ẊẎ

Ż

 =

0 1 0
0 0 1
0 −1 0

XY
Z

 .
Then we do the change of variables uv

w

 =

0 0 −1
0 −1 0
1 0 1

XY
Z

 ,
which writes the linear part of system (5) with ε = 0 in its real Jordan normal
form. We get the next differential system

u̇ = −v + ε(−3v2 − u(u+ w) + |u+ w|+ β),

v̇ = u, (6)

ẇ = ε(3v2 + u(u+ w)− |u+ w| − β).

Now we pass system (6) to the cylindrical coordinates (u, v, w) = (r cos θ, r sin θ, w),
and we obtain the differential system

ṙ = ε cos θ(r2 cos 2θ − rw cos θ + |w + r cos θ| − 2r2 + β),

θ̇ = 1− ε sin θ

r
(r2 cos 2θ − rw cos θ + |w + r cos θ| − 2r2 + β), (7)

ẇ = ε(3r2 sin2 θ + r cos θ(w + r cos θ)− |w + r cos θ| − β).

Taking θ as a new independent variable in the differential system (7), it be-
comes

dr

dθ
= ε cos θ(r2 cos 2θ − rw cos θ + |w + r cos θ| − 2r2 + β) +O(ε2),

dw

dθ
= ε(r2(2− cos 2θ)− |w + r cos θ|+ rw cos θ − β) +O(ε2).

(8)

Now we calculate the averaged function using the formula (4) with the nota-
tions

x = z = (r, w),

t = θ,

F (t,x) = F (θ, r, w)

T = 2π,

where F (θ, r, w) = (F1(θ, r, w), F2(θ, r, w)) is given by(
F1(θ, r, w)
F2(θ, r, w)

)
=

(
cos θ(r2 cos 2θ − rw cos θ + |w + r cos θ| − 2r2 + β)

r2(2− cos 2θ)− |w + r cos θ|+ rw cos θ − β

)
.
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Then the averaged function f(r, w) = (f11(r, w), f12(r, w)) is

f1(r, w) =
1

2π

(∫ arccos(−w
r )

0

F1(θ, r, w)dθ +

∫ 2π−arccos −w
r

arccos(−w
r )

F1(θ, r, w)dθ

+

∫ 2π

2π−arccos(−w
r )

F1(θ, r, w)dθ

)
,

f2(r, w) =
1

2π

(∫ arccos(−w
r )

0

F2(θ, r, w)dθ +

∫ 2π−arccos −w
r

arccos(−w
r )

F2(θ, r, w)dθ

+

∫ 2π

2π−arccos(−w
r )

F2(θ, r, w)dθ

)
,

and we obtain

f1(r, w) = − rw2 +
w
√

1−w2

r2

π +
r arcsin(w

r )

π ,

f2(r, w) = − 1
π

(
πβ − 2πr2 + 2r

√
1− w2

r2 + 2w arcsin(wr )

)
.

(9)

Then going back through the change of variables from Theorem 2 and 3 it fol-
lows Theorem 1. We solve the system (f1(r, w), f2(r, w)) = (0, 0) with respect
to the variables r and w which is equivalent to solve the system

2w

√
1− w2

r2
− πrw + 2r arcsin

(w
r

)
= 0,

πβ + 2r

√
1− w2

r2
− 2πr2 + 2w arcsin

(w
r

)
= 0,

By Theorem 2 each zero (r0, w0) of the averaged function (f1(r, w), f2(r, w))
given in (9) whose determinant

det(
∂(f1(r, w), f2(r, w))

∂(r, w)
)|(ri,wi) 6= 0, (10)

provides a limit cycle (r(θ, ε), w(θ, ε)) such that

(r(0, ε), w(0, ε)) = (r0, w0) +O(ε),

of system (8), or equivalently a limit cycle (r(t, ε), θ(t, ε), w(t, ε)) such that

(r(0, ε), θ(0, ε), w(0, ε)) = (r0, 0, w0) +O(ε),

of the differential system (7), and consequently a limit cycle (u(t, ε), v(t, ε), w(t, ε))
such that

(u(0, ε), v(0, ε), w(0, ε)) = (r0, 0, w0) +O(ε),

of system (6). So we have a limit cycle (X(t, ε), Y (t, ε), Z(t, ε)) such that

(X(0, ε), Y (0, ε), Z(0, ε)) = (r0 + w0, 0,−r0) +O(ε),
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of system (5). Finally we obtain a limit cycle (x(t, ε), y(t, ε), z(t, ε)) such that

(x(0, ε), y(0, ε), z(0, ε)) = ε(r0 + w0, 0,−r0) +O(ε),

of system (1). This limit cycle tend to the singular point localized at the origin
of coordinates when ε→ 0.

Now the rest of the proof of the theorem follows directly from Theorem 3.

Proof (Proof of Corollary 1) The averaged function f1((r, w), f2(r, w)) given

in (9) has the two zeros (r±, 0) with r± =
1±

√
1 + 2π2β

2π
. The determinant

(10) at these two zeros takes the values

d± =
1 + 2π2β ∓ 7

√
1 + 2π2β

2π2
.

So by Theorem (1) statements (a) and (b) of Corollary 1 follow. Since the
eigenvalues of the matrix (2) evaluated at (r+, 0) are

±−1− 2π2β + 7
√

1 + 2π2β

2π2
,

by Theorem (1) it follows that the periodic solution defined by (r+, 0) is un-
stable. On the other hand since the eigenvalues of the matrix (2) evaluated
at (r−, 0) are purely imaginary we cannot say anything about its stability or
instability.
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