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Abstract

In this paper we study the appearance of bifurcations of limit cycles in an epidemic model with
two types of aware individuals. All the transition rates are constant except for the alerting
decay rate of the most aware individuals and the rate of creation of the less aware individuals,
which depend on the disease prevalence in a non-linear way. For the ODE model, the numerical
computation of the limit cycles and the study of their stability are made by means of the
Poincaré map. Moreover, sufficient conditions for the existence of an endemic equilibrium are
also obtained. These conditions involve a rather natural relationship between the transmissibility
of the disease and that of awareness. Finally, stochastic simulations of the model under a very
low rate of imported cases are used to confirm the scenarios of bistability (endemic equilibrium
and limit cycle) observed in the solutions of the ODE model.
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1. Introduction

The role of human behaviour has been increasingly considered in epidemiological modelling
since the early 2000s [7]. The spread of COVID-19 has highlighted even more its important role
in the progress of infectious diseases. Besides institutional measures as mobility restrictions,
mandatory use of facemasks, or school closings, self-initiated individual behaviours related to
risk aversion are recognized as a driving force in epidemic dynamics [15, 21].

One way to model such behavioural changes in deterministic models is to modify the incidence
term βSI where β denotes the rate of disease transmission, and S and I are the number of
susceptible and infected individuals, respectively. The simplest way to modify it is by assuming
that β is no longer constant but a decreasing function of the prevalence of the disease ([4, 18, 2,
21]). In this mean-field formulation of the incidence term, β depends on the contact rate as well
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as on the probability of transmission during an infectious contact. So, its reduction can reflect
a diminution in the number of social contacts (social distancing), the adoption of measures to
prevent infection while keeping the same contact rate (decrease of the infection probability), or
both.

On the other hand, it is well known that the perception of infection risk is uneven among sus-
ceptible individuals [9]. One way to introduce some heterogeneity in risk-taking propensity has
been to include more types of uninfected individuals characterised by their level of responsive-
ness to risk. For instance, the Susceptible-Aware-Infectious-Susceptible (SAIS) model considers
a new class of non-infected individuals with a higher risk aversion than the susceptible ones, the
so-called aware or alerted individuals, who are characterized by a lower transmission rate [19].

A basic ingredient in such a modelling approach is the transmission of awareness among
individuals [5]. In [11] the authors considered an SAIS model where alerted individuals were
able to transmit awareness by convincing non-aware individuals to take preventive measures
against the infection, which is an example of self-initiated individual behaviour. Moreover, a
new class of aware individuals, the so-called unwilling (U) individuals, is also introduced. They
are characterized by a lower level of alertness which is translated into a lack of willingness
to transmit awareness to susceptible individuals. The existence of this second class of aware
individuals turns out to be necessary to have oscillatory solutions of the SAUIS model with no
births and deaths in the population.

The inflow of new susceptible individuals in the population is a key factor in mean-field
epidemic models to observe periodic solutions [18]. In dynamic networks models, link dynamics
can also play this role [20]. However, even without demographic processes, behaviourally-induced
epidemic oscillations can also be expected to occur when individuals experience a decline in
awareness as a result of preventive measures taken over long periods of time combined with
low disease prevalence. This fact was, indeed, proved in [11] by analysing the occurrence of a
Hopf bifurcation from an endemic equilibrium of the SAUIS model. Later, the robustness of
such oscillations was confirmed in [10] under the assumption of a low rate ε of imported cases
(infections contracted from abroad) by means of stochastic simulations on random networks.

In this paper, we explore an extended version of the SAUIS-ε model in [10] which considers
that awareness dynamics changes abruptly when disease prevalence crosses a threshold value η.
Precisely, the rate νa of creation of unwilling individuals and the rate of awareness decay δa are
modulated by the following function σm(i) of the fraction i of infected individuals:

σm(i) =
1

1 + (i/η)m
, m ≥ 1.

The sharpness of the reduction of these two rates is controled by the parameter m, while η is the
half-saturation constant (see Figure 1). In particular, for m � 1, 1 − σm(i) becomes closer to
the unit step function θ(i−η). An extreme example of such abrupt behavioural responses could
be the occurrence of panic waves when new cases of an emerging disease appear in a population.

In contrast to other papers where awareness is considered in terms of non-constant infection
transmission rates (see, for instance, [2, 4, 13, 18, 21]), here we will focus on the awareness dy-
namics themselves and their role in the appearance of periodic solutions (oscillatory epidemics).
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In particular, we are interested in how the behaviour of solutions is affected by the reduction of
both the decay of awareness and the creation of unwilling individuals.

2. SAUIS-ε model with varying coefficients

Each individual in a population can be in one of the following four states: S (susceptible),
A (aware), U (unwilling), and I (infected). The model assumes that aware individuals are
created at alerting rates αi and αa from susceptible ones after being in contact with infected
and aware individuals, respectively. Aware individuals experience an alerting decay and become
unwilling at a rate δa, while unwilling individuals also appear at rate νa from contacts between
susceptibles and aware individuals (nodes) and they become susceptible at a rate δu. The
infection transmission rates for susceptible, aware, and unwilling individuals are β, βa, and βu,
respectively, while the recovery rate from infection is δ.

Moreover, following the SAUIS-εmodel introduced in [10], we consider the arrival of imported
cases (infections contracted abroad) at a very low rate ε > 0. This fact prevents stochastic
epidemic oscillations from extinction and, at the same time, the dynamical properties of the
solutions remain close to those of the deterministic ODE model with ε = 0.

Finally, as explained in the introduction, we assume that the rate of awereness decay δa and
the rate νa at which susceptible hosts become unwilling due to a contact with an aware host both
depend on the fraction of infected individuals through a reduction factor given by the function
σm(i). The resulting ODE system governing the epidemic dynamics is then given by:

da

dt
= αi s i+ αa s a− βaa i− δa σm(i) a− εa, βa < β,

du

dt
= δa σm(i) a+ νa σm(i) s a− βuu i− δuu− εu, βu < β,

di

dt
= (β s+ βaa+ βuu− δ)i+ (1− i)ε, s+ a+ u+ i = 1,

(1)

where s, a, u, and i denote the fractions of hosts in the S, A, U , and I compartments, respectively.
The differential equation for s has been omitted because it is redundant.

3. Equilibria

The natural state space of system (1) is Ω := {(a, u, i) ∈ R3 : 0 ≤ a + u + i ≤ 1}. The
existence of imported cases from abroad guarantees that the vector field defined by this system
on the boundary of Ω points strictly towards its interior. In particular, this implies that Ω is
positively invariant under the flow defined by the solutions of system (1) and, moreover, the
non-existence of disease-free equilibria for this model.

On the other hand, since σm(0) = 1, the same analysis of the bifurcations from the two
disease-free equilibria (DFE) of the model with ε = 0 done in [10] works for our system. For
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Figure 1: Shape of function σm(i) with η = 0.4 for different values of m.

instance, taking ε as a bifurcation parameter, it follows that one interior equilibrium of (1)
comes from the bifurcation of a DFE of the system with ε = 0 when β < δ. Precisely, either
the DFE e∗1 = (0, 0, 0) enters Ω for ε > 0 if αa < δa, or the DFE e∗2 = (a∗0, u

∗
0, 0) with a∗0 =

δu (1− δa/αa) / (δa (1 + νa/αa) + δu) and u∗0 = δa/δu (1 + νa/αa) a
∗
0 enters Ω for ε > 0 if αa > δa.

In both cases, the interior equilibrium of system (1) bifurcates from an asymptotically stable
DFE and is only maintained by the presence of imported cases. So, such an equilibrium is not a
proper endemic equilibrium because it does not result from the disease transmission within the
population.

For β > δ and taking βa as a bifurcation parameter, it follows that e∗2 is still asymptotically
stable if βa < βca := β − (β − δ − (β − βu)u∗0) /a

∗
0. In this case, an interior equilibrium fed by

the imported cases bifurcates from it. So, from now on we will assume that β > δ and βa > βca
to guarantee that no interior equilibrium for ε > 0 arises from a DFE with ε = 0 and, hence,
that any interior equilibrium corresponds to the perturbation of an endemic equilibrium of the
system with ε = 0.

Endemic equilibria are, in general, very difficult to determine analytically. When ε = 0 we
can easily see that any endemic equilibrium lies inside the plane

1− δ

β
−
(

1− βa
β

)
a−

(
1− βu

β

)
u− i = 0. (2)

The following result gives sufficient conditions for the existence of at least one endemic equilib-
rium point of the model (1) with ε = 0. The proof relies on a version of the Poincaré-Miranda
theorem in a triangular domain, which we include in the Appendix for completeness.

Lemma 3.1. System (1) with ε = 0 has an endemic equilibrium point in Ω if 0 ≤ βa < βu <
δ < β and αa

δa
< β−βa

δ−βa .

Proof. Substituting (2) into the first and second equations of (1) we obtain two continuous
functions in the variables (a, u), f1 and f2, respectively. We find endemic equilibria in the
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common zeros of f1(a, u) and f2(a, u). The intersection of the plane (2) with Ω projected to
the (a, u)-plane is the right triangle with vertex (0, 0), ( β−δ

β−βa , 0) and (0, β−δ
β−βu ). Notice that

β−δ
β−βa ,

β−δ
β−βu < 1 since βu, βa < δ. The hypothenusa of the triangle is given by substituting i = 0

in the equation (2).

On the one hand, f1(0, u) = αiβu(β−βu)
β2 u2 − αi(ββu+βδ−2βuδ)

β2 u + αiδ(β−δ)
β2 is positive for u ∈

[0, β−δ
β−βu ) and vanishes at u = β−δ

β−βu . On the hypothenusa, f1 takes the value

f1(a,
β−δ−(β−βa)a

β−βu ) =
a

β − βu
(αa(βu − βa)a+ αa(δ − βu)− δa(β − βu))

which vanishes at a = 0 and a = δa(β−βu)−αa(δ−βu)
αa(βu−βa) . Elementary computations show that this

second root is greater than β−δ
β−βa if and only if

(β − βu)(δa(β − βa)− αa(δ − βa)) > 0,

which follows from the hypotheses. Thus f1 < 0 on the hypothenusa (note that the coefficient
of a2 is strictly positive since βu > βa).

On the other hand, f2(0, u) = βu(β−βu)
β u2− (β−δ)βu+βδu

β u is negative for all u ∈ (0, β−δ
β−βu ) and

vanishes at u = 0, and

f2(a, 0) =
σm(i)

β

(
−βaνaa2 + (βδa + δνa)a

)
vanishes at a = 0 and a = βδa+δνa

βaνa
> 1, so f2(a, 0) > 0 for all a ∈ (0, β−δβ−βa ).

Therefore, f(a, u) := (f1(a, u), f2(a, u)) satisfies the assumptions of Theorem 6.2 (see Ap-
pendix) and there exists a common zero of f1(a, u) and f2(a, u) inside the triangle formed by
the plane (2) inside Ω, which corresponds to an endemic equilibrium.

Note that, if αa
δa
< β

δ and the first hypothesis of the lemma is fulfilled, then the second one

is guaranteed because g(x) = β−x
δ−x is an increasing funtion of x and, hence, we have

αa
δa

<
β

δ
<
β − βa
δ − βa

.

In other words, if the basic reproduction number of the disease in an awareness-free popula-
tion, β/δ, is larger than 1 and, also, is larger than that of the awareness transmission in a
wholly susceptible population, αa/δa, then the existence of an endemic equilibrium for ε = 0 is
guaranteed.

With respect to the endemic equilibria of system (1) for ε > 0, we know that any equilibrium
whose existence is guaranteed by Lemma 3.1 will persist inside Ω for ε > 0 small enough under
the classical transversal condition thanks to the implicit function theorem.
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4. Saddle-node bifurcation of limit cycles

A bifurcation that passes from the exhibition of two hyperbolic limit cycles of different
stability in the phase portrait to the absence of such limit cycles through their collision in a
non-hyperbolic semistable limit cycle is called a saddle-node bifurcation of limit cycles. A classic
scenario in the plane where this bifurcation appears is through a bistable configuration, when
a stable equilibrium point is surrounded by an also stable limit cycle. Therefore a second limit
cycle, in this case unstable, separates the basins of attraction of both stable objects. A continuous
dependence on parameters may cause the two limit cycles collide and initial solutions that were
attracted to the oscillatory motion are then attracted to the equilibrium. This bifurcation is not
exclusive of the plane, although for greater dimensions the existence of the equilibrium is not
required.

In order to find limit cycles and to determine their stability, the Poincaré map is used. In
three-dimensional vector fields, as it is the case for the model under consideration, the Poincaré
map (also known as first-return map) is a two-dimensional discrete map from a plane transversal
to the flow of the system located near the periodic orbit to itself. The image by the Poincaré
map of each point on the transversal plane is the next intersection point of the flow on the plane.
Fixed points of the Poincaré map correspond to limit cycles and the stability of such fixed points
gives the stability of the periodic orbit.

4.1. Numerical computation of limit cycles and its stability

Analytic treatment of bifurcations involving limit cycles are only available when the expres-
sion of the periodic orbit is known as a function of the parameter producing the bifurcation.
Since such expression is usually not computable in applications, numerical methods are the
common technique for the detection of saddle-node bifurcations of limit cycles.

Consider a system of differential equations ẋ = f(x) for x ∈ Rn and the associated flow
ϕt(x), t ∈ R. Consider a hypersurface Σ of Rn transversal to the vector field and assume there
exists x0 ∈ Σ such that ϕT0(x0) ∈ Σ for some minimal time T0 > 0. Continuous dependence
on initial conditions of the system provides the existence of a neighbourhood U of x0 and a
function T : U → R such that ϕT (x)(x) ∈ Σ for all x ∈ U , the so-called time-return map. The
map P : Σ → Σ defined by P (x) = ϕT (x)(x) is the Poincaré map or first-return map of the
section Σ.

Fixed points of P correspond to limit cycles of the system. So, in order to locate them, the
Newton-Raphson’s method can be applied to the distance function F (x) = P (x)− x near the
limit cycle we wish to locate. The iterative procedure

xn+1 = xn −DF (xn)−1F (xn),

where DF denotes the Jacobian matrix of F and xn ∈ Σ, produces successively better approx-
imations of the periodic orbit. Rather than computing the inverse of the Jacobian matrix, the
usual and more numerically stable procedure is to solve the linear system

DF (xn)(xn+1 − xn) = −F (xn). (3)
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Figure 2: Two solutions of system (1) for m = 3.5 tending to the limit cycle (in green) whose dynamics is close
to the plane (2) (in light blue).

Newton-Raphson’s method is an effective way to find isolated periodic orbits as long as the
Jacobian matrix DF is non-singular. In order to integrate the solution we use Runge-Kutta’s
method RK45. At the same time the solution ϕt(x) is integrated, we also integrate the varia-
tional equation

Ẏ = Df(ϕt(x))Y , Y (0) = In

obtaining the monodromy matrix DϕT (x)(x). Therefore the differential of the Poincaré map
can be computed as

DP (x) =
d

dt

(
ϕT (x)(x)

)
+DϕT (x)(x) = f(P (x))DT (x) +DϕT (x)(x).

If the hypersurface Σ is defined by {g(x) = 0} and it is traversed from {g(x) < 0} to {g(x) > 0},
by implicit derivation of g(x) = 0 we can find the differential of the time-return map

DT (x) = −
Dg(P (x))DϕT (x)(x)

Dg(P (x))f(P (x))
.

Then the Jacobian matrix of the Poincaré map can be written as

DP (x) = −f(P (x))
Dg(P (x))DϕT (x)(x)

Dg(P (x))f(P (x))
+DϕT (x)(x).

Finally, DF = DP − I and the iterative procedure (3) can be used to locate limit cycles (we
refer the reader to [16] for more details). Once the limit cycle is located, the eigenvalues of the
monodromy matrix DϕT (x)(x) at the limit cycle, the so-called Floquet characteristic multipliers,
give the stability of the limit cycle found.

4.2. The saddle-node bifurcation of limit cycles in the model

The version of the SAUIS-ε model (1) exhibits a saddle-node bifurcation of limit cycles in a
certain region of the parameter space using m as a bifurcation parameter. All along the paper
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Figure 3: Projections on the (a, u)-plane of some solutions of system (1) for m = 3.69 (top left), m = 3.73 (top
middle), m = 3.76 (top right), m = 3.76082 (bottom left), m = 3.77 (bottom middle) and m = 3.8 (bottom
right). The orbit in green corresponds to the hyperbolic attractive limit cycle, the orbit in red to the hyperbolic
repulsive limit cycle and the orbit in blue to the non-hyperbolic semistable limit cycle. Blue circles mark the
initial conditions.

we use the following values for the parameters, which we consider fixed: β = 2, βa = 0, βu = 0.5,
αa = 0.015, αi = 0.001, νa = 3, δa = 0.01, δu = 0.03, δ = 1, ε = 10−5 and η = 0.4. For those
parameters Lemma 3.1 ensures the existence of one equilibrium, e∗(m) = (a∗(m), u∗(m), i∗(m)),
which in this case is unique and lies inside the plane (2). For the computation of the Poincaré
map we consider the plane Σ := {g(a, u, i) = a−a∗(m) = 0} as a Poincaré section near the limit
cycles.

For values of the parameter m < mh ≈ 3.698, the equilibrium e∗(m) is unstable and the
system presents an attractive limit cycle that is mostly restricted to that plane (see Figure 2).
As the parameter increases, the stability of the equilibrium changes, producing a subcritical
Hopf bifurcation at m = mh and a bistability scenario for m > mh: the equilibrium and
the limit cycle (see top panels in Figure 3). As a consequence of the subcritical character of
the Hopf bifurcation, an unstable limit cycle is born from the equilibrium. As long as the
parameter continues increasing, both limit cycles (stable and unstable) start approaching each
other. At the saddle-node bifurcation point m = msn1 ≈ 3.761, both limit cycles collide in a
non-hyperbolic semistable limit cycle and disappear, leaving the equilibrium as the only stable
scenario (see bottom panels in Figure 3). The dynamics remain similar for msn1 < m < msn2

and, at the second bifurcation point m = msn2 ≈ 16.057, a second saddle-node bifurcation of
limit cycles occurs. In this case, a non-hyperbolic semistable limit cycle appears and splits into
two hyperbolic (stable and unstable) limit cycles as m > msn2, and this happens without any
change of the stability of the equilibrium e∗(m) which remains always asymptotically stable
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(see Figure 4). The limit cycles separate each other until a position which is qualitatively
unchanged as m increases. In Figure 5 we show the previous described bifurcation phenomena,
where the amplitudes of the stable limit cycle (solid line) and unstable limit cycle (dashed line)
with respect to the proportion of infected nodes are displayed. The amplitude is computed as
the difference between the largest and smallest value of the proportion of infected nodes along
the orbit. Zero amplitude corresponds to the equilibrium e∗(m). In Figure 6 we represent the
Floquet characteristic multipliers of the monodromy matrix DϕT (x)(x) of the stable (solid blue
line) and unstable (dashed red line) orbits, showing the stability of each limit cycle. We point
out that, since DϕT (x)(x) is the monodromy matrix of a limit cycle, one of its eigenvalues is
always 1 (the one with eigenvector orthogonal to the section Σ). Moreover, since the motion
is rapidly almost captured by the plane (2), a second eigenvalue is close to zero. The stability
of the limit cycles is then given by the remaining third eigenvalue. On the left-hand panel we
can see how the unstable limit cycle appears for m = mh, with its third eigenvalue being larger
than one. When approaching m = msn1 the unstable eigenvalue tends to 1, as it does the third
eigenvalue of the stable limit cycle, producing the saddle-node bifurcation of limit cycles and the
semi-stability of the orbit. On the right-hand panel we can see that at m = msn2 the semi-stable
limit cycle appears giving birth to the stable and unstable limit cycles for m > msn2. We point
out the strenght of the unstability in this case, as we also see on the bottom right panel of
Figure 4, where orbits are rapidly pushed away from the unstable limit cycle.
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Figure 4: Projections on the (a, u)-plane of some solutions of system (1) for m = 16 (top left), m = 16.05 (top
middle), m = 16.0575 (top right), m = 16.05755 (bottom left), m = 16.06 (bottom middle) and m = 17 (bottom
right). The orbit in green corresponds to the hyperbolic attractive limit cycle, the orbit in red to the hyperbolic
repulsive limit cycle and the orbit in blue to the non-hyperbolic semistable limit cycle. Blue circles mark the
initial conditions.
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Figure 5: Bifurcation diagram for ε = 0 (left) and ε = 10−5 (right).
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Figure 6: Floquet characteristic multipliers of the stable limit cycle (solid blue line) and the unstable limit cycle
(dashed red line).

5. Stochastic simulations

System (1) is a continuous model for the averaged propagation of an SAUIS-ε epidemics
among the individuals in a fully mixed population. So, we need to perform stochastic simulations
in order to assess in which sense and to which extent the invariant objects exhibited by system
(1) are found also in a discrete context.

5.1. General simulation setup

As usual in the setting of continuous-time stochastic simulations, we use the well-known
Gillespie algorithm (GA in what follows) [8], which was originally designed to simulate a fully
mixed chemically reacting system. We have a population of N individuals and the algorithm
keeps trace of the total numbers S, A, I, U of susceptible, aware, infected and unwilling individ-
uals. In short: at each step, an event is chosen at random according to its weight (for instance,
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an infection I+S → I+I has weight β) over the sum of the weights of all possible events. Once
chosen, the event takes place and A, I, U , S = N − A − I − U are accordingly updated. The
continuous time is increased by a random positive number drawn from a certain exponential
probability distribution [8, 10].

Given a population size N , a combination of model parameters, and an initial condition
a(0), u(0), i(0), we run 50 independent simulations, each corresponding to a random distribution
of a(0)N , u(0)N , i(0)N and (1−a(0)−u(0)− i(0))N nodes having respectively the initial states
of aware, unwilling, infected and susceptible. For any experiment, we store the evolution of a(t),
u(t) and i(t) as three time series of equally-spaced points in the interval [0, T ], where T is the
maximum running continuous-time of the simulation. All along the paper, the caption of each
reported figure obtained by simulation includes the specification of the values of N , a(0), u(0),
i(0) and T .

5.2. Detection of the bistabiliy regime

With the aim of producing an analogous stochastic version of the numerical bifurcation
diagram depicted in Figure 5 we follow the procedure mentioned in the previous section. We
perform 50 independent simulations for each value of the parameter m and initial conditions
starting from the location of the equilibrium e∗(m) = (a∗(m), i∗(m), u∗(m)), keeping a(0) =
a∗(m) fixed, increasing the value of i(0) from i∗(m) by 0.01 and computing u(0) according
to the equality (2). In this way, for each m approximately 20 different initial conditions are
considered inside a straight line lying on the plane (2). The larger i(0), the farther from the
equilibrium the initial condition.

In stochastic epidemic models the average of the data is the usual way to construct a single
signal to compare with the analytic dynamics. This is so because ODE systems are a good ap-
proximation of the mean of realizations of stochastic processes in systems with a large number
of components. However, although the standard mean of trajectories is a good option when
dealing with high prevalence endemic equilibria, it does not always work when a system exhibits
fluctuating dynamics and even less in the presence of bistability. In the three lower panels of
Figure 7 we see two different realizations of the same experiment with identical initial conditions
but different initial random seed. Although they start identically, it is clear that stochasticity
reveals differences in the global behaviour beyond the expected small perturbations. This phe-
nomena is due to the bistability of the system, where small stochastic perturbations may change
a realization from one attraction basin to the other. Of course, the greater the number of nodes
N , the more similitude between realizations, as we can see in the three top panels of Figure 7.
The bistability region in the previous figure is sensitive and very narrow, as shown in Figure 5.
A more clear example is given in Figure 8 for the parameter values m = 17 and m = 18.

The previous discussion motivates to choose a more useful representation of the different
realizations (see [1] for a similar approach). To this end, and with the aim of producing an
stochastic bifurcation diagram, for each parameter m and each initial condition we represent
the maximum amplitude of each individual realization of the experiment in the time interval
[1000, 10000]. For instance, the maximum amplitude of approximately 1000 different realizations
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Figure 7: On top, two outputs from GA with parameter m = 3.7 with N = 105 (dotted line) and N = 106 (solid
line), and initial conditions a0 = 0.039359, i0 = 0.231104, u0 = 0.306049 (left), a0 = 0.039359, i0 = 0.331104,
u0 = 0.172716 (center), a0 = 0.039359, i0 = 0.431104, u0 = 0.039382 (right) and same initial random seed. On
bottom, two outputs from GA with parameter m = 3.7 with N = 106 and same initial conditions as before with
different initial random seed.

is shown in Figure 9. We omit the first part of the realization seeking for stationarity of the
time series. On the left panel, a transition can be noticed around the parameter value m = 4,
where amplitudes pass from 0.45 to nearly neglectible (around 0.1). On the right panel, a similar
situation occurs near m = 16. These two values are close to the bifurcation points msn1 ≈ 3.761
and msn2 ≈ 16.057 numerically computed for the system (1). However, a clear difference on
the abruptness of the transition can be appreciated between the two bifurcation points. On the
right-hand panel, the bistability scenario is clearly representated and only a small amount of
realizations near msn2 differ from their amplitudes. However, in the left-hand panel the change
in the amplitude seems to be more continuous. This happens for two reasons. The first one is,
as usual, related to the number of nodes. In Figure 10 a zoom near m = 3.8 is given, showing
two panels with N = 105 (left) and N = 106 (right). We note that the region of bistability is
narrower and closer to msn1 in the right-hand panel. Therefore we can expect a better diagram
as N increases. The second reason is dynamical. First, the region of bistability in the parameter
space for mh < m < msn1 is really small compared with m > msn2. Second, the stability of
the limit cycles is also very different. For mh < m < msn1 the unstable limit cycle has very
weak repulsion as shown in the left panel of Figure 6. As a consequence, the dynamics near the
unstable limit cycle can be misunderstood as stochastic periodic solutions due to the slow decay
of the amplitude (even small stochastic perturbations may counter the decay). This is clearly
representated in Figure 3. On the other hand, for m > msn2 the repulsion of the unstable limit
cycle is very strong as shown in the right-hand panel of Figure 6 and this makes the realizations
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Figure 8: On top, two outputs from GA with parameter m = 17 and initial conditions a0 = 0.033240, i0 =
0.437330, u0 = 0.039240 (left), a0 = 0.033240, i0 = 0.447330, u0 = 0.025900 (center), a0 = 0.033240, i0 =
0.457330, u0 = 0.012570 (right). On bottom, a single output from GA with parameter m = 18 and initial
conditions a0 = 0.033240, i0 = 0.437420, u0 = 0.039140 (left), a0 = 0.033240, i0 = 0.447420, u0 = 0.025810
(center), a0 = 0.033240, i0 = 0.457420, u0 = 0.012480 (right). Parameters of the simulation: N = 105.

either stay on the stable limit cycle or rapidly tend to the equilibrium, as shown in Figure 8.

6. Conclusions

The existence of a high number of infectious cases in a population during an epidemic can
modify our individual behaviour and how we relate to others. In turn, behavioural changes
modify the epidemic spread itself. This interplay has long been considered in many papers
dealing with classic compartmental models with incidence functions depending on the disease
prevalence in a nonlinear way ([2, 13, 14, 18]). An alternative approach is based on the addition
of new compartments for alerted/responsive individuals that have reduced transmision rates
[5, 6, 12, 19, 20].

In this paper, we combine both approaches by considering an epidemic model without demog-
raphy which includes two types of aware individuals who are distinguished by their willingness
to convince susceptible individuals to adopt preventive measures. For the model with constant
rates, we know that oscillatory solutions can appear as a consequence of a supercritical Hopf
bifurcation from the endemic equilibrium [10]. Now, assuming that the rate of alerting decay δa
as well as the rate of creation of new unwilling individuals νa decrease by a nonlinear reduction
factor σm(i) ∈ (0, 1] as the prevalence i of the disease increases, we have shown the existence
of two scenarios where a bistable configuration with a stable limit cycle and a stable endemic

13



3 4 5 6 7 8 9 10 11 12

Bifurcation parameter (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
M

a
x
im

u
m

 a
m

p
lit

u
d
e
 o

f 
in

fe
c
te

d
s

14 16 18 20 22 24 26

Bifurcation parameter (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
a
x
im

u
m

 a
m

p
lit

u
d
e
 o

f 
in

fe
c
te

d
s

Figure 9: Maximum amplitude of each GA output in the time interval [1000, 10000]. Parameters of the simulation:
N = 105.
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Figure 10: Maximum amplitude of each GA output in the time interval [1000, 10000]. Parameters of the simulation:
N = 105 (left). N = 106 (right).

equilibrium occur. Precisely, we assume an abrupt change of both rates when disease prevalence
crosses a threshold value η (the half-saturation constant). Below this threshold, the value of the
rates are close to their maximum values (δa and νa), whereas they clearly decrease above it. The
sharpness of this change is controlled by a parameter m which determines the slope of σm(i) at
i = η (σ′m(η) = −m/(4η)). In both scenarios, the parameters values are in agreement with the
sufficient conditions we have obtained for the existence of, at least, one endemic equilibrium.

Values of m � 1 can be associated with radical changes in the self-initiated individual be-
haviour when the prevalence level is close to η. In this case, σm(i) ≈ 0 for η < i ≤ 1 which implies
almost no decay of awareness and almost no creation of unwilling individuals (only fully aware
individuals are created). For the parameters considered in the paper, a bistable configuration is
always the case for m > 16.06 (σ′m(η) < −10) after the occurrence of a saddle-node bifurcation of
limit cycles. This configuration is clearly observed in the stochastic simulations of the epidemic
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process with a very low rate of imported cases due to the strongly repulsive character of the
unstable limit cycle lying between the stable one and the endemic euilibrium. For lower values
of m (here m < 4), the reduction of both rates is not so abrupt and bistability is only present
for a narrow range of values (3.698 < m < 3.761 with σ′m(η) ≈ −2.3) once a subcritical Hopf
bifurcation has occurred. In this case, σm(i) is clearly positive for η < i ≤ 1. For m < 3.698,
the smoothness of the transition between high and low values of σm (σ′m(η) ∈ [−2.3,−0.625])
as well as the lower reduction of the two rates for i ≈ 1 make the endemic equilibrium unstable
and allow for a stable limit cycle.

The existence of imported cases (at a rate ε) assumed in the present work has also been
considered elsewhere (see, for instance, [1, 3]). In addition to its suitability when modelling epi-
demics in non-isolated populations, it prevents the stochastic extinction of oscillatory epidemics
when disease prevalence reaches very low levels. From a deterministic point of view, as long as
ε is small enough, the continuous dependence of solutions on parameter values guarantees that
the attractors of the model with and without imported cases will be very close to each other
(see Figure 5).

In summary, we have shown the existence of bifurcations of limit cycles in the SAUIS model
(without demography) when epidemic spread and awareness transmission are coupled through
nonlinear rates that depend on the prevalence level in a population. This has been obtained
under a choice of parameters values which assumes a much faster transmission among suscep-
tible individuals of both infections and low level of awareness than the creation of fully aware
individuals. These dynamics are also observed in stochastic simulations of the model assuming
a (very low) rate of imported cases with large enough population sizes.
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Appendix

In this Appendix we present a modified version of the Poincaré-Miranda theorem on the
plane, which is an extended version of the classical Bolzano’s theorem in higher dimension.
Up to the authors knowledge, Poincaré-Miranda theorem is not trivially deduced in a planar
triangular domain. We credit and thank professor Rafael Ortega for the idea of the proof, which
relies on the following result of degree theory that we include for the sake of completeness (see
the Appendix on degree theory in [17].)

Let Γ be a Jordan curve in R2 and let Ω be the open set enclosed by Γ. Let f : Ω̄ → R2

be continuous such that f(x) 6= 0 for all x ∈ ∂Ω = Γ. The degree of f in Ω, deg(f,Ω), can be
computed as the winding number of f(Γ) around the origin.
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Figure 11: On the left, structure and assumptions of the Poincaré-Miranda theorem for triangles in Theorem 6.2.
On the right, an sketch of the behaviour of the function f(Γ(t)) for t ∈ [0, 1].

Theorem 6.1. Let f : Ω̄→ R2 be continuous such that f(x) 6= 0 for all x ∈ ∂Ω. If deg(f,Ω) 6= 0
then f has a zero in Ω.

Now we state the version of Poincaré-Miranda theorem on a tringular domain, which can be
easily generalised for any Jordan curve with similar assumptions.

Theorem 6.2. Let Ω be a triangle and let f : R2 → R2 be a continuous function, f(x, y) =
(f1(x, y), f2(x, y)). Consider the boundary of Ω positively oriented and three distinguished points
α, β and γ as showed in Figure 11. If f2 > 0 from α to β, f1 < 0 from β to γ and f1 > 0 and
f2 < 0 from γ to α, then f(x, y) has at least one zero in Ω.

Proof. Let us assume, with aim of reaching contradiction, that f does not vanish on Ω. Let
Γ : [0, 1] → R2 be a curve travelling the boundary of Ω with Γ(0) = Γ(1) = α. Notice that, by
hypothesis, f does not vanish on the boundary of Ω. So, we can consider a continuous argument
function θ : [0, 1]→ R such that

f(Γ(t)) = |f(Γ(t))| (cos θ(t), sin θ(t)) ,

which is unique up to an additive constant 2π. By the hypotheses of the theorem, f(Γ(t))
lies on the first and second quadrants when travelling from α to β, and f(β) lies on the second
quadrant. Similarly, from β to γ, f(Γ(t)) lies on the second and third quadrants, finishing on the
negative ordinate semi-axis. Finally, from γ to α, f(Γ(t)) liess on the fourth quadrant ending on
the positive abscissa semi-axis where it started (see Figure 11). Therefore, the winding number

of the curve f(Γ(t)) is θ(1)−θ(0)
2π = 1. By the definition of the degree, deg(f,Ω, 0) = 1 and then,

by Theorem 6.1, f has at least one zero in Ω.
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