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Abstract. We consider planar polynomial di�erential systems of degree 1 and 2 on the
cylinder and we study their limit cycles. We prove that such linear di�erential systems
have at most one limit cycle and that such quadratic di�erential systems have at most two
limit cycles. Moreover such upper bounds are reached.

1. Introduction and statement of the main results

The study of the limit cycles began with Poincaré, see [10]. Later on the existence of
limit cycles was observed in nature, see for instance [1, 6, 11]. The limit cycles attracted
the interest of many researchers and later on it became the main object to be studied in
the statement of the second part of the 16th Hilbert problem, which wants to �nd an upper
bound for the maximum number of limit cycles that a polynomial di�erential system of a
�xed degree can have, see [4]. Hence in the last years, the study of the limit cycles of the
planar di�erential systems has been one of the main problems of the qualitative theory of
di�erential equations in the plane. See for instance [8, 9, 12] and the references quoted
there.

We will work in the cylinder [0, 1]× (0, 1)/ ∼, with the equivalence relation (0, y) ∼ (1, y)
for all y ∈ (0, 1).

In this paper we consider the planar polynomial di�erential systems

(1) x = P (x, y), ẏ = Q(x, y),

where P (x, y) and Q(x, y) are polynomials of degree at most two on the cylinder, i.e.
P (0, y) = P (1, y) and Q(0, y) = Q(1, y).

We say that a solution (x(t, x0, y0), y(t, x0, y0)) of system (1) such that x(0, x0, y0) = x0 =
0 and y(0, x0, y0) = y0, is a periodic orbit of period T on the cylinder if x(T, x0, y0) = 1 and
y(0, x0, y0) = y(T, x0, y0).

It is known that a periodic orbits of a di�erential system can be isolated in the set of
all periodic orbits of the system or belong to a continuum set of periodic orbits. When the
periodic orbit is isolated then it is called a limit cycle. So the aim of this paper is to study
the maximum number of limit cycles that the polynomial di�erential systems (1) of degree
1 and 2 on the cylinder can have. Moreover we will show that these maximum numbers are
reached.

The main results of this paper are stated in the following subsections. More precisely, in
subsection 1.1, we study the dynamics on the cylinder for the linear di�erential systems (1).
And in subsection 1.2 we study the dynamics on the cylinder for the quadratic di�erential
systems (1).
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Figure 1. Orbits of the in-
ear system (7) without peri-
odic orbits.

Figure 2. The unstable
limit cycle of the linear
di�erential system (8).

Figure 3. The circle �lled
with equilibrium points of
the linear system (9).

Figure 4. A continuum of
periodic orbits of the linear
system (10).

1.1. Dynamics of the linear di�erential systems on the cylinder. In this subsection
we consider di�erential systems of the form

(2) P (x, y) = a00 + a10x+ a01y, Q(x, y) = b00 + b10x+ b01y,

where aij , bij ∈ R for i, j ∈ {0, 1} and such that P (0, y) = P (1, y) and Q(0, y) = Q(1, y).
These linear di�erential systems on the cylinder are characterized in the following lemma.

Lemma 1.1. The unique linear di�erential systems on the cylinder are

(3) ẋ = a0 + a1y, ẏ = b0 + b1y.

These systems are analytic on the cylinder.

For the linear di�erential systems on the cylinder we obtain the following results.

Theorem 1.1. System (3) has at most one limit cycle on the cylinder.

Proposition 1.1. There are linear di�erential systems on the cylinder without periodic

orbits, or with one limit cycle, or with a circle �lled with equilibrium points, or with a

continuum of periodic orbits. See Figures 1�4.

In Proposition 1.1 we prove that the upper bound for the number of limit cycles found
in Theorem 1.1 is reached.

Lemma 1.1, Proposition 1.1, and Theorem 1.1 are proved in section 3. The kind of
stability of the limit cycles and of the circle �lled with equilibrium points in Proposition 1.1
and Theorem 1.1 are given inside their proofs.

1.2. Dynamics of the quadratic di�erential systems on the cylinder. Now we con-
sider polynomial di�erential systems of the form

(4) P (x, y) =
2∑

i+j=0

aijx
iyj , Q(x, y) =

2∑
i+j=0

bijx
iyj ,

where aij , bij ∈ R for i, j ∈ {0, 1, 2} and such that P (0, y) = P (1, y) and Q(0, y) = Q(1, y).
These quadratic di�erential systems on the cylinder are characterized in the following lemma.
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Figure 5. The quadratic
system (11) without periodic
orbits.

Figure 6. The stable limit
cycle of the quadratic system (12).

Figure 7. One stable and
one unstable limit cycle of the
quadratic system (13).

Figure 8. One circle �lled
with equilibrium points of the
quadratic system (15).

Lemma 1.2. The unique quadratic di�erential systems on the cylinder are

(5) ẋ = a0 + a1y + a2y
2, ẏ = b0 + b1y + b2y

2.

These systems are analytic on the cylinder.

For the quadratic di�erential systems on the cylinder we get the following results.

Theorem 1.2. System (5) has at most two limit cycles on the cylinder.

Proposition 1.2. There are quadratic di�erential systems on the cylinder without periodic

orbits, or with 1 or 2 limit cycles, or with 1 or 2 circles �lled with equilibrium points, or with

one limit cycle and one circle �lled with equilibrium points, or with a continuum of periodic

orbits. See Figures 5�11.

In Proposition 1.2 we prove that the upper bound for the number of limit cycles found
in Theorem 1.2 is reached.

Lemma 1.2, Proposition 1.2 and Theorem 1.2 are proved in section 3. The kind of
stability of the limit cycles and of the circle �lled with equilibrium points in Proposition ??
and Theorem 1.2 are given inside their proofs.

2. Preliminaries

In the proofs of Propositions 1.1 and 1.2 we used the de�nition of submanifold normally
hyperbolic.

Let φt be a smooth �ow on a manifold M and consider that N is a submanifold of M
�lled with equilibrium points of φt. N is called normally hyperbolic if there exists a splitting
of the tangent bundle of M over N into subbundles such that TM = Es ⊕ Eu ⊕ TN. And
they are invariant under Dφt for all t ∈ R. Moreover, Dφt contracts E

s exponentially, Dφt

expands Es exponentially, and TN is the tangent bundle of N .

For a normally hyperbolic submanifold always exists stable and unstable manifolds, more
precisely.
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Figure 9. The two circles
�lled with equilibrium points
of the quadratic system (16).

Figure 10. One stable limit
cycle and one circle �lled with
equilibrium points of the qua-
dratic system (17).

Figure 11. A continuum of
periodic orbits of the qua-
dratic system (19).

Theorem 2.1. Let N be a normally hyperbolic submanifold �lled with equilibrium points

of φt. Then there exist smooth stable and unstable manifolds tangent to Es ⊕ TN and

Eu ⊕ TN , along N , respectively. Moreover both N and the stable and unstable manifolds

are permanent under small perturbations of the �ow φt.

For more details on the normally hyperbolic theory see [5].

3. Proofs of the main results

Proof of Lemma 1.1. Considering di�erential system (1), with the linear polynomials P (x, y)
and Q(x, y) given in (2). We have that the linear di�erential system (1) is well de�ned on
the cylinder if P (0, y) = P (1, y) and Q(0, y) = Q(1, y). And these conditions occurs if and
only if a01 = b01 = 0. Since now all the higher derivates of the polynomials P and Q coincide
the system is analytic, and the lemma is proved. □

Proof of Theorem 1.1. We observe that the periodic orbits (x(t, x0, y0), y(t, x0, y0)) of pe-
riod T of system (3) on the cylinder are generated by the zeros of the function Π(y0) =
y(T, x0, y0) − y(0, x0, y0) for y0 ∈ (0, 1) when x(T, x0, y0) = 1 and y(t, x0, y0) < 1 for all
t ∈ (0, T ). In order to analyse such zeros we consider two di�erent cases, namely either
b1 = 0 or b1 ̸= 0.

Case 1: b1 = 0. We obtain that the solution of system (3) satisfying x0 = 0 and y0 ∈ (0, 1)
is given by

x(t, 0, y0) =
1

2
t(2a0 + a1b0t+ 2a1y0), y(t, 0, y0) = b0t+ y0.

Then Π(y0) = b0T . Hence, if b0 ̸= 0 we obtain that system (3) does not have periodic orbits
on the cylinder. And when b0 = 0 system (3) has a continuum of periodic orbits on the
cylinder, because for every y0 ∈ (0, 1) the circle y = y0 generates a periodic orbit on the
cylinder.
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Case 2. b1 ̸= 0. Then the equation ẏ = 0 has the zero y1 = −b0/b1. We shall prove that
y = y1 is the unique solution that generates a limit cycle on the cylinder. Here we study
two subcases, namely a1 = 0 or a1 ̸= 0.

Subcase 2.1: a1 = 0. If a0 ̸= 0, we obtain

x(t, 0, y0) = a0t, y(t, 0, y0) =
−b0 + eb1t(b0 + b1y0)

b1
.

In this case x(t, 0, y0) = 1 for T = 1/a0. Hence Π(y0) = (−1+ eb1/a0)(b0+ b1y0)/b1. Thus, if
y0 ̸= −b0/b1, system (3) does not have perodic orbits on the cylinder. So the unique periodic
orbit of system (3) on the cylinder is y0 = y1 = −b0/b1 if y1 ∈ (0, 1), and consequently it is
a limit cycle. Moreover it is stable (resp. unstable) if b1 < 0 (resp. b1 > 0). And it travels
clockwise (resp. counterclockwise) sense if a0 < 0 (resp. a0 > 0).

If a0 = 0, we obtain that ẋ ≡ 0, thus when y1 ∈ (0, 1) the circle y = y1 of the cylinder
is �lled with equilibrium points of the linear di�erential system (3). Moreover the Jacobian
matrix of the system on such equilibrium points has eigenvalues λ1 = 0 and λ1 = b1. Hence
from section 2 the circle c1 is normally hyperbolic. For Theorem 2.1 it is a stable (resp. an
unstable) circle if b1 < 0 (resp. b1 > 0).

Subcase 2.2: a1 ̸= 0. Then the polynomial a0 + a1x can have one real solution, namely
x1 = −a0/a1. Here we consider two additional subcases.

Subcase 2.2.1: If a0b0 ̸= 0, then

x(t, 0, y0) =
a1(e

b1t − 1)(b0 + b1y0) + b1(a0b1 − a1b0)t

b21
, y(t, 0, x0) =

−b0 + eb1t(b0 + b1y0)

b1
.

If a0b1 − a1b0 = 0, then y1 = x1 = −a0/a1 and solving x(T, 0, y0) = 1 for

T =

a0 log

(
a20 + a1b0 + a0a1y0

a0(a0 + a1y0)

)
a1b0

, and Π(y0) = b0/a0 ̸= 0.

Hence in this subcase system (3) does not have periodic orbits.

If a0b1 − a1b0 ̸= 0 and b0 + b1y0 = 0, solving x(T, 0, y0) = 1 we obtain that T =

b1/(a0b1 − a1b0), and Π(y0) = (−1+ eb
2
1/(a0b1−a1b0))(b0 + b1y0)/b1, which only have one real

root, in y0 = y1 = −b0/b1. Therefore system (3) has one limit cycle on the cylinder if
y0 = −b0/b1 ∈ (0, 1), it is stable (resp. unstable) when b1 < 0 (resp. b1 > 0). Moreover it
travels clockwise (resp. counterclockwise) if b1(a0b1 − a1b0) < 0 (resp. b1(a0b1 − a1b0) > 0).

If (a0b1 − a1b0)(b0 + b1y0) ̸= 0, solving x(T, 0, y0) = 1 we get

(6) T =
a1(b0 + b1y0)− b21

a0b1 − a1b0
−W

(
a1(b0 + b1y0)

a0b1 − a1b0
e(a1(b0+b1y0)−b21)/(a0b1−a1b0)

)
,

where W is the Lambert Function, for more details see [2]. Moreover Π(y0) = (−1 +
eb1T )(b0 + b1y0)/b1 ̸= 0, because T ̸= 0 and b0 + b1y0 ̸= 0. Therefore system (3) does not
have periodic orbits on the cylinder.

Subcase 2.2.2: a0b0 = 0. We have three options, either a0 = 0, b0 ̸= 0, or a0 ̸= 0, b0 = 0,
or a0 = b0 = 0. When a0 = 0 and b0 ̸= 0, similar to above case, it is possible to prove that
system (3) admits at most one limit cycle such that it is generated by the circle y0 = −b0/b1
when y0 ∈ (0, 1). When a0 ̸= 0 and b0 = 0, we obtain T as in (6) and Π(y0) = (−1+eb1T )y0,
which is di�erent to zero for y0 ̸= 0, therefore system (3) does not have periodic orbits
on the cylinder. Finally, if a0 = b0 = 0, we obtain T = log ((b1 + a1y0)/a1y0)/b1 and
Π(y0) = b1/a1 ̸= 0, this is, system (3) does not have periodic orbits on the cylinder.

This completes the proof of the theorem. □
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Proof of Proposition 1.1. In what follows we provide linear di�erential systems without peri-
odic orbits, or having one limit cycle, or a circle �lled with equilibrium points, or a continuum
of periodic orbits on the cylinder.

First we consider the linear di�erential system on the cylinder

(7) ẋ = 4 + 2y, ẏ = 3− 3

2
y.

Its solution with x0 = 0 and y0 ∈ (0, 1) is

x(t, 0, y0) =
4

3

(
− 2 + 6t+ e−3t/2(−2 + y0) + y0

)
, y(t, 0, y0) = 2 + e−3t/2(−2 + y0).

If −2 + y0 = 0, then T = 1/8 and Π(y0) = (−1 + e3/16)(−2 + y0) = 0, but this y0 /∈ (0, 1),
so system (7) does not have periodic orbits on the cylinder.

If −2 + y0 ̸= 0, then T = 11/24 − y0/6 + 2/3W
(
4e−11/16+y0/4(−2 + y0)

)
and Π(y0) =

(−1 + e−3T/2
)
(−2 + y0) ̸= 0. Therefore system (7) does not have periodic orbits on the

cylinder. See the phase portrait of system (7) in Figure 1.

Now we consider the linear di�erential system on the cylinder

(8) ẋ = −1 + 3y, ẏ = −1 + 2y.

The solution with x0 = 0 and y0 ∈ (0, 1) is

x(t, 0, y0) =
1

4

(
3 + 2t− 6y0 + e2t(−3 + 6y0)

)
, y(t, 0, y0) =

1

2
+ e2t

(
− 1

2
+ y0

)
.

If −1+2y0 = 0, then T = 2. Hence Π(y0) = 1/2(−1+ e2)(−1+2y0) = 0. Therefore system
(7) has one limit cycle on the cylinder. Moreover, if b1 = 2 > 0 and b1(a0b1−a1b0) = 2 > 0,
then the limit cycle is unstable and travels counterclockwise sense. See Figure 2.

If −1 + 2y0 ̸= 0, then T = 1/2 + 3y0 − 1/2W
(
e1+6y0(−3 + 6y0)

)
, and Π(y0) = 1/2(−1 +

e2T )(−1 + 2y0) ̸= 0. Hence system (8) does not have periodic orbits on the cylinder.

The following linear di�erential system on the cylinder has a circle �lled with equilibrium
points.

(9) ẋ = 1− 2y, ẏ =
3

2
− 3y.

Indeed, we observed that x1 = −a0/a1 = 1/2 = −b0/b1 = y1, then the circle y = y1 is �lled
with equilibrium points of (9). Since the Jacobian matrix of the system at these equilibrium
points has the eigenvalues λ1 = 0 and λ2 = −3, then the circle c1 is normally hyperbolic
and it is stable because b1 = −3. See Figure 3.

Consider the linear di�erential system on the cylinder

(10) ẋ =
1

2
− y, ẏ = 0.

Since ẏ = 0 we have that Π(y0) = 0 for y0 ∈ (0, 1). Hence for every y0 ∈ (0, 1) the circle
y = y0 is a periodic orbit on the cylinder. Hence system (10) has a continuum of periodic
orbits on the cylinder. As a1 = −1 < 0, we have that the periodic orbit y = y0 travels in
clockwise sense if y0 > −a0/a1 = 1/2, otherwise, it travels counterclockwise. See Figure 4.

This completes the proof of Proposition 1.1. □

Proof of Lemma 1.2. We consider system (1), with the polynomials P (x, y) and Q(x, y)
in (4). We have that this quadratic di�erential system is well de�ned on the cylinder if
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P (0, y) = P (1, y) and Q(0, y) = Q(1, y), i.e. a10 = −a20, b10 = −b20 and a11 = b11 = 0.
Moreover these quadratic di�erential systems are analytic on cylinder if

∂P

∂x
(0, y) =

∂P

∂x
(1, y),

∂P

∂y
(0, y) =

∂P

∂y
(1, y),

∂Q

∂x
(0, y) =

∂Q

∂x
(1, y),

∂Q

∂y
(0, y) =

∂Q

∂y
(1, y),

because then all the derivates of higher order of the polynomials P and Q coincide. These
last conditions are satis�ed when a10 = b10 = 0. This completes the proof of the lemma. □

Proof of Theorem 1.2. Consider the quadratic di�erential systems (5). If a2b2 ̸= 0 the roots

of the polynomial a0 + a1y + a2y
2 are x2,3 = (−a1 ±

√
∆̃)/(2a2), where ∆̃ = a21 − 4a0a2.

While the roots of the polynomial b0 + b1y + b2y
2 are y2,3 = (−b1 ±

√
∆)/(2b2), where

∆ = b21 − 4b0b2, respectively. When a2 = 0 the polynomial a0 + a1y + a2y
2 has one real

root, namely x1 = −a0/a1, for a1 ̸= 0. And for a1 = 0, we obtain ẋ = a0. Analogously, if
b2 = 0 the polynomial b0 + b1y+ b2y

2 has one real root, namely y1 = −b0/b1 if b1 ̸= 0. And
for b1 = 0 we get ẏ = b0. Therefore we consider two di�erent cases, namely either b2 ̸= 0 or
b2 = 0.

Case 1: b2 ̸= 0. Then the di�erential equation ẏ in system (5) is a Riccati di�erential
equation. It is well known that a Riccati di�erential equation can have at most two limit
cycles, see [3, 7].

Moreover if y2, y3 ∈ (0, 1) and y2, y3 are not roots of the polynomial a0 + a1y + a2y
2,

then the circles y = y2 and y = y3 are limit cycles on the cylinder. Besides the limit
cycle in y = y2 is stable (resp. unstable) either b2 > 0, y2 < y3 or b2 < 0, y3 < y2 (resp.
b2 > 0, y3 < y2 or b2 < 0, y2 < y3). And the limit cycle in y = y3 is stable (resp. unstable)
either b2 > 0, y3 < y2 or b2 < 0, y2 < y3 (resp. b2 > 0, y2 < y3 or b2 < 0, y3 < y2). The limit
cycle y = y∗ with y∗ ∈ {y2, y3}, travels clockwise (resp. counterclockwise) sense either a2 > 0
and either x2 < y∗ < x3 or x3 < y∗ < x2; or a2 < 0 and either x2 < x3, y

∗ < x2, y
∗ > x3

or x3 < x2, y
∗ < x3, y

∗ > x2; or a2 = 0 and either a1 > 0, y∗ < x1 or a1 < 0, y∗ > x1
(resp. a2 > 0 and either x2 < x3, y

∗ < x2, y
∗ > x3 or x3 < x2, y

∗ < x3, y
∗ > x2; or

a2 < 0 and either x2 < y∗ < x3 or x3 < y∗ < x2; or a2 = 0 and either a1 > 0, y∗ > x1 or
a1 < 0, y∗ < x1).

If y∗ is root of the polynomial a0 + a1y + a2y
2 for y∗ ∈ {y2, y3}, then the circle y = y∗

is �lled with equilibrium points of system (5). Moreover the Jacobian matrix of the system
(5) evaluated at these equilibrium points has the eigenvalues λ1 = 0 and λ2 = ±∆ ̸= 0.
Therefore from Theorem 2.1 the circle �lled with equilibrium points is normally hyperbolic,
and it is stable (resp. unstable) if λ2 = −∆ (resp. λ2 = ∆).

Case 2: b2 = 0. Since the system is quadratic a2 ̸= 0 and ẏ = b0 + b1y. Then we have two
di�erent subcases either b1 ̸= 0 or b1 = 0.

Subcase 2.1: b1 ̸= 0. Then the polynomial b0+ b1y has the real solution y1 = −b0/b1. The
solution of system (5) satisfying x0 = 0 and y0 ∈ (0, 1) is

x(t, 0, y0) =
1

2b31

(
a2(3b

2
0 + 2b20b1t+ 2b0b1y0 − b21y

2
0 − 4b0e

b1t(b0 + b1y0) + e2b1t(b0 + b1y0)
2)

+ 2b1(a0b
2
1t+ a1e

b1t(b0 + b1y0)− a1(b0 + b0b1t+ b1y0)))

)
,

y(t, 0, y0) =
−b0 + eb1t(b0 + b1y0)

b1
.

If there is a T > 0 such that x(T, 0, y0) = 1, then Π(y0) = (−1+ eb1T )(b0+ b1y0)/b1. So the
equation Π(y0) = 0 has a unique solution y0 = y1 = −b0/b1 if y1 ∈ (0, 1).
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When y1 ∈ (0, 1) and y1 is not a root of the polynomial a0+ a1y+ a2y
2, the circle y = y1

is the unique periodic orbit of system (5) on the cylinder. For b1 < 0 (resp. b1 > 0) the
limit cycle is stable (resp. unstable). The analysis to know the sense of this limit cycle is
similar to Case 1.

If y1 is a root of the polynomial a0 + a1y + a2y
2, then the circle y = y1 is �lled with

equilibrium points of system (5). Since the Jacobian matrix of the system evaluated at
these equilibrium points has the eigenvalues λ1 = 0 and λ2 = b1 ̸= 0. From Theorem 2.1 the
circle �lled with equilibrium points is normally hyperbolic, and it is stable (resp. unstable)
if b1 < 0 (resp. b1 > 0).

Subcase 2.2: b1 = 0. Then the system (5) has the solution y(t, 0, y0) = b0t + y0. If there
is T > 0 such that x(T, 0, y0) = 1, then Π(y0) = b0T . When b0 ̸= 0 system (5) does not
have periodic orbits. For b0 = 0 the system (5) has a continuum of periodic orbits on the
cylinder. The analysis about the sense of these periodic orbits is similar to Case 1.

This completes the proof of Theorem 1.2. □

Proof of Proposition 1.2. In what follows we provide quadratic di�erential systems on the
cylinder without periodic orbits, or having either only one limit cycle, or two limit cycles,
or one circle �lled with equilibium points, or two circles �lled with equilibium points, or one
limit cycle and one circle �lled with equilibrium points, or a continuum of periodic orbits.

We consider the quadratic di�erential system on the cylinder

(11) ẋ =
5

2
− 2y − 4y2, ẏ = −1− 2y.

Then the solution with initial conditions x0 = 0 and y0 ∈ (0, 1) is

x(t, 0, y0) =
e−4t

4

(
− 2e2t(1 + 2y0) + (1 + 2y0)

2 + e4t(1 + 10t− 4y20)
)
,

y(y, 0, y0) =− 1 + e−2t(1 + 2y0).

If there exists T > 0 such that x(T, 0, y0) = 1, then Π(y0) = 1/2((−1+e−2T )(1+2y0)). The
unique solution of Π(y0) = 0is y0 = −1/2, but this y0 ̸= (0, 1). Consequently the quadratic
di�erential system (11) has no periodic orbits on the cylinder. See Figure 5.

Now we consider the quadratic di�erential system on the cylinder

(12) ẋ =
1

2
+ 2y − 3y2, ẏ =

43

50
− 7

2
y.

The roots of the polynomials 1/2 + 2y − 3y2 and 43/50 − 7y/2 are x2,3 = 1/6(2 ±
√
10)

and y1 = 43/175, respectively. Moreover the solution of system (12) with initial conditions
x0 = 0 and y0 ∈ (0, 1) is

x(t, 0, y0) =
e−7t

428750

(
6(43− 175y0)

2 − 368e7t/2(−43 + 175y0)

+ e7t(347417t− 2(−43 + 175y0)(−313 + 525y0))
)
,

y(t, 0, y0) =
1

175

(
− 43 + e−7t/2(−43 + 175y0)

)
.

From this solution we obtain from x(T, 0, y0) = 1 that T = 61250/49631, and after that

Π(y0) = (−1 + e−7t/2)(−43/175 + y0). Therefore Π(y0) = 0 if and only if y0 = 43/175.
Hence, since y0 = y1 = 43/175 ∈ (0, 1) and y1 ̸= x2,3, the circle y = y1 is the unique limit
cycle of the system (12). Furthermore, as b1 = −7/2 < 0, this limit cycle is stable and
travels counterclockwise, because a2 = −3 < 0 and x2 < y1 < x3. See Figure 6.
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We consider the following quadratic di�erential system on the cylinder

(13) ẋ = −1

2
+ y + 3y2, ẏ =

7

10
− 9

2
y + 5y2.

The polynomials −1/2+y+3y2 and 7/10−9y/2+5y2 have the roots x2 = 1/6(−1−
√
7) <

x3 = 1/6(−1 +
√
7) and y2 = 1/5 < y3 = 7/10, respectively.

Doing the change of variables

x = u, y = v =
1

y − y2
,

system (13) becomes

(14) u̇ = −1

2
+ v + 3v2, v̇ = −5 +

5

2
v.

Moreover the solution given by the circle y = y3 of system (13) becomes the solution given
by the circle v = v1 = 1/(y3− y2) = 2 for the system (14). The solution of system (14) with
initial conditions u0 = 0 and v(0) = v0 is

u(t, 0, v0) =
1

10

(
135t+ 52e5t/2(−2 + v0) + 6e5t(−2 + v0)

2 − 2(−2 + v0)(20 + 3ρ)
)
,

v(t, 0, v0) =2 + e5t/2(−2 + v0).

From this solution solving u(T, 0, v0) = 1 we get T = 2/27 and Π(v0) = (−1+e5t/2)(−2+v0).
Thus the unique real solution of Π(v0) is v0 = 2. As y2, y3 ∈ (0, 1) and yk ̸= xl for
k, l ∈ {2, 3}, system (13) has two limit cycles on the cylinder generated by the circles y = y2
and y = y3. Furthermore as b2 = 5 > 0 and y2 < y3, the limit cycle generates by y = y2
(resp. y = y3) is stable (resp. unstable). Since a2 = 3 > 0 and x2 < y2 < x3 < y3, the limit
cycle y = y2 (resp. y = y3) travels in clockwise (resp. counterclockwise) sense. See Figure
7.

If we consider the quadratic di�erential system on the cylinder

(15) ẋ =
8

5
− 4

5
y − 37

10
y2, ẏ = − 8

111
+

8
√
38

111
− 2

3
y.

Using the previous notations we obtain that x2,3 = 4/37(−1 ±
√
38) and y1 = 4/37(−1 +√

38). So y1 = x2, and as y1 ∈ (0, 1), system (15) has the circle y = y1 �lled with equilibrium
points, by Theorem 2.1 this circle is stable because b1 = −2/3 < 0. See Figure 8.

We consider the quadratic di�erential system on the cylinder

(16) ẋ = − 1

10
+

3

4
y − 5

4
y2, ẏ =

2

5
− 3y + 5y2.

Then y2 = 1/5 = x3 and y3 = 2/5 = x2. As y2,3 ∈ (0, 1), system (16) has the two circles
y = y2 and y = y3 �lled with equilibrium points. Since the Jacobian matrix of the system
at the equilibrium points of the circle y = y2 has the eigenvalues λ1 = 0 and λ2 = −1, this
circle is stable. While the Jacobian matrix of the system at the equilibrium points of the
circle y = y3 has the eigenvalues λ1 = 0 and λ2 = 1, then this circle is unstable. See Figure
9.

If we consider the quadratic di�erential system on the cylinder

(17) ẋ = − 19

180
+

1

18
√
10

+
y

2
− y2

2
, ẏ =

13

10
− 4y + 3y2.
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Then y2,3 = 1/30(20 ∓
√
10) and x2 = 1/30(20 +

√
10), x3 = 1/30(10 −

√
10). Doing the

change of variables u = x and y = v = 1/(y − y3), we obtain the equivalent system

(18) u̇ = − 19

180
+

1

18
√
10

+
v

2
− v2

2
, v̇ = −3−

√
2

5
v.

Hence the solution given by the circle y = y2 of system (17) becomes the solution given by

the circle v = v1 = 1/(y2 − y3) = −3
√

5/2 for the system (18). The solution of system (18)
with initial conditions u0 = 0, v(0) = v0 is

u(t, 0, v0) =
1

720

(
675(4 + 9

√
10)− 8(1022 + 67

√
10)t+ 180(15 +

√
10)v0 + 45e−2

√
2/5t(

45
√
10 + 60v0 − 4e

√
2/5t

(
15 + 45

√
10 + (30 +

√
10)v0 +

√
10)v20

sinh

(√
2

5
t

))))
,

v(t, 0, v0) =− 3

√
5

2
+ e−

√
2/5t

(
3

√
5

2
+ v0

)
.

For this system we have that Π(v0) = (−1+ e
√

2/5t)(3
√
5/2+ v0). The unique real solution

of Π(v0) = 0 is v0 = −3
√

5/2 = v1. As y2, y3 ∈ (0, 1), and y3 = x2, y2 ̸= x3, system (17) has
one limit cycle on the cylinder given by the circle y = y2, and the circle y = y3 is �lled with
equilibrium points. Furthermore as b2 = 3 > 0 and y2 < y3, the limit cycle is stable, and
it travels in counterclockwise sense because a2 = −1/2 < 0 and x3 < y2 < x2. Moreover
the circle y = y3 is unstable, because the Jacobian matrix of the system on the equilibrium
points of this circle has the eigenvalues λ1 = 0 and λ2 =

√
2/5. See Figure 10.

Finally we consider the following quadratic system on the cylinder

(19) ẋ = −1

2
+ y + 2y2, ẏ = 0.

We observed that ẏ = 0, therefore Π(y0) = 0 for all y0 ∈ (0, 1). Hence for y0 ∈ (0, 1) every
circle y = y0 generates a periodic orbit on the cylinder. Hence system (19) has a continuum
of periodic orbits on the cylinder. As a2 = 2 > 0 and x2 < x3, we have the periodic orbit
generates by y = y0 travels clockwise (resp. counterclockwise) sense if x2 < y0 < x3 (resp.
y0 > x3). See Figure 11.

In summary the proof of the proposition is done. □
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