HOMOCLINIC AND HETEROCLINICSOLUTIONS IN THE RESTRICTED THREE-BODYPROBLEM

G. GÓMEZ
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585. 08007 Barcelona, Spain.
and
J. LLIBRE
Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellatera, Barcelona, Spain.
and
J. MASDEMONT
Departament de Matemàtica Aplicada I, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028
Barcelona, Spain.

(Received: 12 October 1987; accepted: 7 October 1988)

Abstract

In this work we have performed a systematic computation of the homoclinic and heteroclinic orbits associated with the triangular equilibrium points of the restricted three-body problem. Some analytical results are given, related to their number when the mass ratio varies.

1. Introduction

From the time of Strömgren [4] it has been known that some families of periodic orbits of the restricted three-body problem end at an 'orbit' formed by a pair of heteroclinic orbits connecting the two triangular equilibrium points. In fact, and for the value of the mass parameter equal to $1 / 2$, Strömgren computed five symmetric heteroclinic orbits, some of whose combinations by pairs are natural endings of well-known families of symmetric periodic orbits (see [5]). Some homoclinic orbits (or asymptotic-periodic orbits, according to the classical nomenclature) were computed by Strömgren too. Families of periodic orbits ending at some of these last ones were given by Danby [1], Szebehely and Nacozy [6], and Szebehely and Van Flandern [7] for the mass ratio $\mu=0.5$.

In the framework of analytic Hamiltonian systems, Henrard [3] proved Strömgren's conjecture, according to which a class of doubly asymptotic orbits are limit members of families of periodic orbits. Further results of Devaney [2] prove that this phenomenon occurs in both Hamiltonian and reversible systems.

In this work we have done a systematic computation of the homoclinic and heteroclinic orbits associated with the triangular equilibrium points of the restricted three-body problem. For that purpose a preliminar numerical study of the invariant stable and unstable manifolds related to those equilibrium points, has been done. Some

