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In this paper we show a new way of using the averaging theory for studying families 
of periodic orbits of a Hamiltonian system. We do this study computing a new family of 
periodic orbits of the extension of the Van der Pol oscillator to a Hamiltonian system of 
two degrees of freedom.
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1. Introduction and statement of the main results

The classical Van der Pol oscillator is modeled by the second-order differential equation

ẍ − μ(1 − x2)ẋ + x = 0, (1)

where x = x(t) is the position coordinate at time t , μ is a parameter, and the dot denotes derivative with respect to the 
time t , see [9–11].

Initially the differential equation (1) allowed to Van der Pol to explain the stable oscillations observed in electrical circuits 
employing vacuum tubes. Later on this differential equation has been used for explaining different phenomena in biology, 
physics, . . . Thus in biology was utilized as a model for studying the action potentials of neurons, see for instance [3,4,7]. 
While in physics equation (1) was also used in phonation to model the right and left vocal fold oscillators (see [6]), and in 
seismology to model two plates in a geological fault (see [1]), . . .

More recently in 2015, see equations (9) of [8], the Van der Pol oscillator was written in the Hamiltonian formalism by 
extending it to a four-dimensional autonomous differential as follows

ẍ − μ(1 − x2)ẋ + x = 0,

ÿ + μ(1 − x2) ẏ + y = 0.
(2)
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