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Abstract

We study three questions related to Machin’s type formulas. The first one gives all two
terms Machin formulas where both arctangent functions are evaluated 2-integers, that is
values of the form b/2a for some integers a and b. These formulas are computationally
useful because multiplication or division by a power of two is a very fast operation for most
computers. The second one presents a method for finding infinitely many formulas with N
terms. In the particular case N = 2 the method is quite useful. It recovers most known
formulas, gives some new ones, and allows to prove, in an easy way, that there are two
terms Machin formulas with Lehmer measure as small as desired. Finally, we correct an
oversight from previous result and give all Machin’s type formulas with two terms involving
arctangents of powers of the golden section.
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1 Introduction

In 1706, John Machin found the identity

4 arctan
1

5
− arctan

1

239
=

π

4
. (1)

In conjunction with the arctan expansion

arctanx =
∞∑

m=0

(−1)m

2m+ 1
x2m+1, |x| < 1, (2)

discovered by Gregory in 1671, Machin used (1) to compute 100 digits of π.
In the mathematical literature there are many formulas similar to (1), that is, combinations

of arctan functions that, in some way, generate π. Besides (1), the following are the most
classical formulas

arctan(1/2) + arctan(1/3) = π/4, (3)

2 arctan(1/2)− arctan(1/7) = π/4, (4)

2 arctan(1/3) + arctan(1/7) = π/4, (5)
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that are usually known as Euler’s, Hermann’s and Hutton’s formulas, respectively (actually,
their attribution to these authors is not clear; for instance, [7] also attributes all of them to
Machin, see [23] for more historical details).

While many of these formulas have been used to effectively compute many digits of π,
other formulas do not have such practical interest, but they are interesting by themselves. For
instance, this is the case with the relation

arctan
Fn

Fn+1
+ arctan

Fn−1

Fn+2
=

π

4
, (6)

where (Fn)n are the Fibonacci numbers (a simple geometric proof of this formula can be found
in [18]). Moreover, taking into account that when n → ∞, Fn/Fn−1 → ϕ := (1 +

√
5)/2, the

golden section, taking limits in (6) gives the identity

arctanϕ−1 + arctanϕ−3 =
π

4
. (7)

Many questions can be posed around this subject. A first natural one was: How many
formulas of the type

x1 arctan
1

m1
+ x2 arctan

1

m2
=

π

4
, (8)

with rationals xk and integers mk ≥ 2 there exist? Nowadays, after 1895 Störmer’s paper [20]
(see also [21]) it is known that only the four above identities (1), (3), (4) and (5) do exist.

How about if we allow identities of the type

x1 arctan
a1
b1

+ · · ·+ xN arctan
aN
bN

=
π

4
, (9)

with xk ∈ Q, ak ∈ Z, bk ∈ N∗ (and |ak/bk| < 1 to guarantee the convergence of (2) with
x = ak/bk), are there many other such formulas? Which of them gives a faster algorithm to
compute digits of π? In 1938, D. H. Lehmer [15] gave the now so-called Lehmer measure

N∑
k=1

1

log10(|bk/ak|)
, (10)

that can be used as a hint of the computational efficiency of (9); without explaining the details
that motivate the definition, note that, if |ak/bk| is small, the series (2) for arctan(ak/bk)
converges quickly, and less summands are necessary to compute it with a prescribed precision.
Thus, the smaller is the Lehmer measure, the faster is the corresponding algorithm to compute
digits of π. Many formulas of type (9) with their corresponding Lehmer measures can be found
in [10, 15, 24]. For instance, the Lehmer measure of (1) is 1.85113 and thus it is faster than (3),
(4) and (5), whose Lehmer measures are, respectively, 5.41783, 4.50522 and 3.2792; moreover,
both [10] and [24] give the same identity of type (9), with N = 6, and whose Lehmer measure
is 1.51244, the lowest at that time. Are there Machin-like formulas with Lehmer measure as
small as we want?

Nowadays, the use of this type of formulas to compute many digits of π is not so useful,
because faster types of algorithms are available (for instance, Chudnovsky algorithm [11], which
is based on Ramanujan’s π formulas; for more details on these types of algorithms see [14]).
Actually, more than 1015 decimal digits of π are already known. Moreover, to compute more
digits of π does not have any practical interest, but the one of beating records.

In relation to (7), a different question can be asked: are there similar formulas with other
powers of ϕ?
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The aim of this paper is to answer some of the above questions. In Section 2, we analyze
the solutions of an equation similar to (8) but allowing arctan(2ak/mk) or arctan(mk/2

ak) in
the place of arctan(1/mk). We prove that there are ten sporadic Machin-type formulas of this
type, together with two parametric families, see Theorem 1.

Let us comment why the interest of having 2ak/mk or mk/2
ak instead of ak/bk in general

(we assume here that ak, bk,mk are positive integers). Let us assume that we want to compute
many summands in (2), to get many digits of π. If we have x = 1/mk, every summand requires
to divide by 2m+1 and by m2

k (two operations); if we have x = ak/bk, a division by 2m+1 and
by b2k and a multiplication by a2k (three operations). Due to this reason, most of the Machin-
like formulas to compute π that have been used in the practice (or whose Lehmer measure
have been analyzed in the above mentioned papers [10, 15, 24]) are of the form 1/mk. But,
if we have 2ak/mk or mk/2

ak , to multiply or to divide by 2ak can be done with a shift in the
binary representation of the number, whose computational time is negligible compared with a
multiplication or a division, so this case can be considered as fast as the case with 1/mk. Thus,
perhaps a better way to estimate the computational efficiency of a formula like (9) would be to
take

N∑
k=1

wk

log10(|bk/ak|)

with some “weights” wk ≥ 1 that may depend on ak, and bk (as well as on the hardware and
the software), so it not totally clear how to compare such formulas.

In Section 3 we define some rational functions Rj(n, x) (both the numerator and the de-
nominator being polynomials in the variable x depending on n and with integer coefficients),
j = 0, 1, 2, 3 and n ∈ N, in such a way that, for any x ∈ Q, the combinations

x1 arctan(Rj1(n1, x)) + · · ·+ xN arctan(RjN (nN , x)),

with xk = rk/nk and r1+ · · ·+rN = 0, always give a rational multiple of π (we ignore the poles,
namely the values of x that are roots of any denominator). We have used the name “Machin’s
formulas machine” to denominate this method, because it allows finding Machin’s type formulas
without any difficulty. In particular, taking N = 2, it allows us to find Machin’s type formula
with Lehmer measure as small as we want, see Theorem 3. As we will comment at the end of
Subsection 3.3 our Machin’s type formulas when N = 2 extend some of the results of [4].

Finally, in Section 4, we classify the formulas of the type

x1 arctan(ϕ
a1) + x2 arctan(ϕ

a2) =
π

4
,

with ak ∈ Z\{0} and xk ∈ Q\{0}, showing that there are, essentially, sixteen of these identities.
In fact, this part is a correction of the previous paper [17] where some of these formulas were
missed due to an oversight in the proof.

2 Machin’s formulas with powers of two

The purpose of this section is to solve

x1 arctan(z1) + x2 arctan(z2) =
π

4
(11)

in rational numbers x1, x2, z1, z2, where zk ∈ (0, 1) for k = 1, 2 and zk = 2ak/bk or bk/2
ak for

some integers ak, bk ≥ 1. The case where ak ≤ 0 for both k = 1, 2 leads to zk = 1/mk for
k = 1, 2, and this has been treated [21]. We do not treat the case when z1 = z2 = z, since that
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leads to arctan(z)/π ∈ Q \ {0}, and the only corresponding value of z is 1. So, we assume that
z1 < z2. In case ak ≤ 0, we incorporate 2−ak into bk. Hence, we assume that ak ≥ 0 and bk is
odd unless ak = 0 in which case bk can be even.

As we will see, a main tool in the proof of next theorem will be that all positive integer
solutions (x, y, a, n), n ≥ 3, of the diophantine equations x2 + 1 = 2yn and x2 + 2a = yn, are
known, see [13, 16].

Theorem 1. All solutions (x1, z1, x2, z2) of equation (11) in non-zero rational numbers x1, x2
and rational numbers z1 < z2 in (0, 1) of the form 2ak/bk or bk/2

ak for k = 1, 2 are the following
ten sporadic ones (

−1,
1

239
, 4,

1

5

)
,

(
−1,

1

7
, 2,

1

2

)
,

(
−1,

2

11
,
3

2
,
3

4

)
,(

−1,
2

11
, 3,

1

3

)
,

(
1

3
,

1

239
,
4

3
,
2

3

)
,

(
1

2
,
2

11
,
3

2
,
1

2

)
,(

1,
1

41
, 2,

2

5

)
,

(
1,

1

7
, 2,

1

3

)
,

(
1,

1

2
,
1

2
,
3

4

)
,

(
3,

1

7
, 2,

2

11

)
,

together with the two parametric families(
1,

1

2a2+1 + 1
, 1,

2a2

2a2 + 1

)
,

(
1,

1

2a2+1 − 1
, 1,

2a2 − 1

2a2

)
, a2 ∈ N∗.

Remark. Allowing a2 = 0 in the first parametric family we get the solution
(
1, 13 , 1,

1
2

)
which

also belongs to the second parametric family (for a2 = 1). We cannot allow a2 = 0 in the second
family because z2 vanishes in this case.

2.1 A reformulation

We write xk = uk/(w/d0), where u1, u2, d0 ≥ 1 are integers with |u1|, |u2|, d0, w ≥ 1 and
gcd(u1, u2) = 1 and so

u1 arctan(z1) + u2 arctan(z2) =
wπ

4d0
=

cπ

d
. (12)

Formally, we write first x1 = U1/w, x2 = U2/w, with a common denominator w, then let
d0 = gcd(U1, U2), so u1 = U1/d0, u2 = U2/d0. We write w/(4d0) = c/d ̸= 0 in reduced terms.
Applying tan, we get that tan(cπ/d) ∈ Q. In particular, this implies that e2ciπ/d ∈ Q[i], so e2ciπ/d

is a root of unity of order at most 2. This implies that φ(d) ≤ 2, so d ∈ {1, 2, 3, 4, 6}, where φ
is the Euler’s totient function. In fact, by using [7, Cor. 3], it can be seen that d ∈ {1, 2, 4}, but
we will not use this fact because this stronger restriction does not imply substantial changes
in our proof and in this way our argument is more self-contained. To fix notations, we assume
that a1 ≤ a2 and we do not consider the case a1 = a2 = 0, since those solutions have already
been found in [21]. Thus, a2 ≥ 1.

2.2 Proof of Theorem 1

Assume for the sake of the argument that z1 = 2a1/b1, z2 = 2a2/b2. The cases where zk = bk/2
ak

for one or both of k = 1, 2, can be reduced to the present one via the formula

arctan

(
1

x

)
=

π

2
− arctan(x),
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arriving to an equation similar to (12) with a different value of c/d in the right-hand side. Up
to replacing (u1, u2) by (−u1,−u2) if needed, we assume that u1 ≥ 1. Noting that d | 12, it
follows that 12/d ∈ N. Next, we get

(1 + i2a1/b1)
12u1(1 + i2a2/b2)

12u2 = (1− i2a1/b1)
12u1(1− i2a2/b2)

12u2 .

Thus,
(b1 + i2a1)12u1(b2 ± i2a2)12|u2| = (b1 − i2a1)12u1(b2 ∓ i2a2)12|u2|,

where the sign in ± on the left is sgn(u2) (and the sign in ∓ on the right is − sgn(u2)). Extracting
12th roots we get

(b1 + i2a1)u1(b2 ± i2a2)|u2| = ζ(b1 − i2a1)u1(b2 ∓ i2a2)|u2|,

where ζ is a root of unity in Q[i]. Hence, ζ ∈ {±1,±i}.

2.2.1 The case a1 ≥ 1

Assume first that a1 ≥ 1. Then b1 + 2a1i and b1 − 2a1i are coprime in Z[i] since their norms
are b21 + 22a1 (odd) but the norm of their difference 2a1+1i is a power of 2 and the same is true
about b2 + 2a2i and b2 − 2a2i. It follows up to relabelling ζ that

(b1 + 2a1i)u1 = ζ(b2 ∓ 2a2i)|u2|,

where ζ is unit in Z[i]. Thus, ζ ∈ {±1,±i}. If u1 = |u2|, then 1 = u1 = |u2| (since they are
coprime) so b1 + 2a1i = ζ(b2 ∓ 2a2i), so we get b1 = b2, a1 = a2, so z1 = z2, a case that we do
not consider. So, we assume that u1 ̸= |u2|. Then there exists γ ∈ Z[i] such that

b1 + 2a1i = ζ1γ
|u2| and b2 ∓ 2a2i = ζ2γ

u1 ,

where again ζ1, ζ2 are in {±1,±i}. Assume next that {u1, |u2|} = {1, 2}. Swapping u1 and |u2|
if needed and incorporating ζ1 into γ we get

b1 + 2a1i = γ and b2 ∓ 2a2i = ±ζ2γ
2.

Thus,
b2 ∓ 2a2i = ζ2(b1 + 2a1i)2 = ζ2(b

2
1 − 22a1 + 2a1+1b1i), ζ2 ∈ {±1,±i}.

Since b2 and b21−22a1 are both odd, we get that ζ2 ∈ {±1}, 2a2 = 2a1+1b1 and b2 = ±(b21−22a1).
The first equation leads to a2 = a1 + 1, b1 = 1, and now the second leads to b2 = ±(12 − 22a1),
so b2 = 22a1 − 1. This leads to

2 arctan

(
1

2a1

)
− arctan

(
2a1+1

22a1 − 1

)
= 0,

which follows from the well-known formula

2 arctan(x) = arctan

(
2x

1− x2

)
,

for x ∈ (−1, 1), with x = 1/2a1 . When a1 = 1 the above formula gives rise to the solution
(1, 12 ,

1
2 ,

3
4). For a1 > 1 this looks like (12) except that it has c/d = 0, which is not convenient

for us.
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This was for a1 ≥ 1 and {u1, |u2|} = {1, 2}. Up to swapping u1, u2, we next assume that
|u2| ≥ 3. Then

b1 + 2a1i = ζ1γ
|u2|.

Taking norms we get
b21 + 22a1 = y|u2|.

The solutions of the equation
x2 + 2a = yn,

with x odd and n ≥ 3, have been found in [16]. They are

52 + 2 = 33, 112 + 22 = 53, 72 + 25 = 34.

Only the second one is convenient for us (the exponent of 2 must be even) giving b1 = 11,
a1 = 1, u2 = ±3. Thus, γ = 1 + 2i and u1 ∈ {1, 2}. Hence, we must also have

b2 ∓ 2a2i = ζ2(1± 2i)1,2 ∈ {ζ2(1± 2i), ζ2(−3± 4i)}.

Thus, we get ζ2 ∈ {±1}, (b2, a2) ∈ {(1, 1), (3, 2)}.

2.2.2 The case a1 = 0

In case b1 is even, the same arguments apply because b1 + i and b1 − i are coprime since their
norm is b21 + 1 (odd) and the norm of their difference 2i is 4 which is a power of 2. The
previous arguments apply. We get (u1, u2) = (1,±1) and (b1, a1) = (b2, a2) which leads z1 = z2
which is not convenient. The case (u1, |u2|) = (1, 2) does not lead to convenient solutions
since b2 = 22a1 − 1 = 0, which is not possible. The case max{u1, |u2|} ≥ 3, leads again to
x2 + 22a = yn, where (x, a) = (bk, ak) for some k ∈ {1, 2}. This equation has no solution
with a = 0, so we get (b2, a2, u1) = (11, 1, 3). Hence, |u2| ∈ {1, 2}, a1 = 0, γ = 1 + 2i, so
b1 + i = ζ1γ

1,2 ∈ {ζ1(1 + 2i), ζ1(−3 + 4i)}, so the only possibility is b1 = 2, u2 = ±1.
Finally suppose that a1 = 0, b1 is odd. In this case in

(b1 + i)4u1(b2 ± 2a2i)4|u2| = (b1 − i)4u1(b2 ∓ 2a2i)4|u2|,

we have that b1 + i has norm b21 + 1 ≡ 2 (mod 8). Thus, 1 + i | b1 + i and (b1 + i)/(1 + i) is an
integer in Z[i] of odd norm. Thus,(

b1 + i

1 + i

)4u1

(b2 ± 2a2i)4|u2| =

(
b1 − i

1− i

)4u1

(b2 ∓ 2a2i)4|u2|.

Now the integer (b1 + i)/(1 + i) is coprime to (b1 − i)/(1− i) (since they have odd norms and 2
is linear combination of the above two integers with coefficients in Z[i]), so we get that(

b1 + i

1 + i

)4u1

= ζ(b2 ∓ 2a2i)4|u2|,

for some unit ζ in Z[i]. Thus, there is γ ∈ Z[i] and two units ζ1, ζ2 such that

b1 + i

1 + i
= ζ1γ

|u2| and b2 ∓ 2a2i = ζ2γ
u1 . (13)

If u1 = |u2|, then u1 = |u2| = 1. In this case we get

b1 + i = ζ(1 + i)(b2 ∓ 2a2i) = ζ(b2 ± 2a2 + i(b2 ∓ 2a2)), ζ ∈ {±1,±i}.
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We study the four possibilities. If ζ = ±1, we then get

b1 + i = ±(b2 ± 2a2 + i(b2 ∓ 2a2)).

This gives
b1 = ±(b2 ± 2a2), 1 = ±(b2 ∓ 2a2),

which correspond to the systems{
b1 = b2 + 2a2 ,

1 = b2 − 2a2 ,

{
b1 = b2 − 2a2 ,

1 = b2 + 2a2 ,

{
b1 = −(b2 + 2a2),

1 = −(b2 − 2a2),

{
b1 = −(b2 − 2a2),

1 = −(b2 + 2a2).

Only the first system gives the acceptable solution b2 = 2a2 + 1, b1 = b2 + 2a2 = 2a2+1 + 1
yielding the first parametric family together with the solution with a2 = 0, which is

(
1, 13 , 1,

1
2

)
and which is also a member of the second parametric family. The other three systems do not
give acceptable solutions since one (or both) of b1, b2 are negative. Assume next that ζ = ±i.
We obtain

b1 = ∓(b2 ∓ 2a2), 1 = ±(b2 ± 2a2),

which correspond to the systems{
b1 = −b2 + 2a2 ,

1 = b2 + 2a2 ,

{
b1 = −b2 − 2a2 ,

1 = b2 − 2a2 ,

{
b1 = b2 − 2a2 ,

1 = −b2 − 2a2 ,

{
b1 = b2 + 2a2 ,

1 = −b2 + 2a2 ,

where only the last one gives the acceptable solution b2 = 2a2 − 1, b1 = b2 + 2a2 = 2a2+1 − 1.
This yields the second parametric family, after using arctan(x) = π/2− arctan(1/x) for x > 0.
Again the other three systems do not give convenient solutions since one or both of b1, b2 are
negative.

Assume next that u1 ̸= |u2|. If (u1, |u2|) ∈ {(2, 1), (1, 2)}, then we get equations

b1 + i

1 + i
= γ and b2 ± 2a2i = ζ2γ

2,

or

b2 ± 2a2i = γ and
b1 + i

1 + i
= ζ1γ

2.

In the first case, we get

b2 ± 2a2i = ζ

(
b1 + i

1 + i

)2

=
ζ ′

2
(b21 − 1 + 2b1i) (with ζ ′ := −iζ),

which gives b2 = b1, 2
a2+1 = b21 − 1. The only solution of the last equation above is a2 = 2,

b1 = b2 = 3. This leads to the useless formula

2 arctan

(
1

3

)
− arctan

(
3

4

)
= 0.

In the second case, we get

b1 + i = ζ(1 + i)(b2 ∓ 2a2i)2 = ζ(1 + i)(b22 − 22a2 ∓ 2a2+1b2i)

= ζ(b22 − 22a2 ± 2a2+1b2 + (b22 − 22a2 ∓ 2a2+1b2)i).

When ζ = ±1, we find

b22 − 22a2 ± 2a2+1b2 = b1, b22 − 22a2 ∓ 2a2+1b2 = 1,

7



or
b22 − 22a2 ± 2a2+1b2 = −b1, b22 − 22a2 ∓ 2a2+1b2 = −1.

The first case gives rise to the system{
(b2 ± 2a2)2 − 22a2+1 = b1,

(b2 ∓ 2a2)2 = 22a2+1 + 1.

This is solvable in integers only when a2 = 1. In this case, we find{
(b2 + 2)2 − 8 = b1,

(b2 − 2)2 = 9,

{
(b2 − 2)2 − 8 = b1,

(b2 + 2)2 = 9,

so from (b2−2)2 = 9, we have the only acceptable solution b2 = 5, therefore b1 = 41, while from
(b2 + 2)2 = 9, we have the only acceptable solution b2 = 1, but this leads to b1 = −7, which is
not acceptable. On the other hand the second case corresponds to{

(b2 ± 2a2)2 − 22a2+1 = −b1,

(b2 ∓ 2a2)2 = 22a2+1 − 1,

which is solvable in integers only when a2 = 0. In this case we find{
(b2 + 1)2 − 2 = −b1,

(b2 − 1)2 = 1,

{
(b2 − 1)2 − 2 = −b1,

(b2 + 1)2 = 1,

so from (b2 − 1)2 = 1, we have the only acceptable solution b2 = 2, so b1 = −7, which is not
acceptable, while from (b2+1)2 = 1 we do not have acceptable solutions. Finally, when ζ = ±i,
we find

b22 − 22a2 ∓ 2a2+1b2 = −b1, b22 − 22a2 ± 2a2+1b2 = 1,

or
b22 − 22a2 ∓ 2a2+1b2 = b1, b22 − 22a2 ± 2a2+1b2 = −1.

The first case gives rise to the system{
(b2 ∓ 2a2)2 − 22a2+1 = −b1,

(b2 ± 2a2)2 = 22a2+1 + 1,

which is solvable in integers only when a2 = 1. Accordingly, we find{
(b2 − 2)2 − 8 = −b1,

(b2 + 2)2 = 9,

{
(b2 + 2)2 − 8 = −b1,

(b2 − 2)2 = 9,

so from (b2 + 2)2 = 9 we have the only acceptable solution b2 = 1, therefore b1 = 7, while from
(b2 − 2)2 = 9 we have the only acceptable solution b2 = 5 but this leads to b1 = −41, which is
not acceptable. On the other hand the second case corresponds to{

(b2 ± 2a2)2 − 22a2+1 = b1,

(b2 ∓ 2a2)2 = 22a2+1 − 1,

which is solvable in integers only when a2 = 0. In this case, we find{
(b2 + 1)2 − 2 = b1,

(b2 − 1)2 = 1,

{
(b2 − 1)2 − 2 = b1,

(b2 + 1)2 = 1,

8



so from (b2 − 1)2 = 1 we have the only acceptable solution b2 = 2, therefore b1 = 7, while from
(b2 + 1)2 = 1, we do not have acceptable solutions. Resuming this discussion, we find

(a2, b1, b2) ∈ {(0, 7, 2), (1, 7, 1), (1, 41, 5)}.

The first two instances lead to the same sporadic solution
(
−1, 17 , 2,

1
2

)
as 2a1/b1 = 1/7 and

2a2/b2 ∈ {1/2, 2}, namely the second one in the list from the statement of the theorem, while
the third instance leads to the seventh sporadic solution

(
1, 1

41 , 2,
2
5

)
from the statement of the

theorem.
Finally, assume that max{u1, |u2|} ≥ 3. In this case taking norms in (13) we get

b21 + 1 = 2yu1 and b22 + 22a2 = y|u2|.

If |u2| ≥ 3, then we saw before that b2 = 11, a2 = 1 are the only possibilities and then y = 5. If
this is so and u1 ∈ {1, 2}, we get b21 + 1 ∈ {2 · 5, 2 · 52}, so b1 ∈ {3, 7}. Finally, if u1 ≥ 3, then
we get the equation

b21 + 1 = 2yn,

for some n ≥ 3, and the only solutions are (b1, y, n) ∈ {(1, 1, n), (239, 13, 4)} (see [13]). The first
one gives no solution for b22 + 22a2 = y|u2| = 1. The second one gives u1 = 4, b1 = 239. If also
|u2| ≥ 3, then u2 = ±3, b2 = 11, a2 = 1, otherwise u2 ∈ {±1,±2}, and

b2 ± 2a2i = ζ(3± 2i)1,2 ∈ {ζ(3± 2i), ζ(5± 12i)},

and the only convenient one is u2 ∈ {±1}, b2 = 3, a2 = 1. Collecting all the intermediary
values, we get the theorem modulo checking for the solutions to (12) which come from values of
the parameters (u1, u2, a1, b1, a2, b2, c/d) in the ranges |uk| ≤ 4, ak ∈ {0, 1, 2} for both k = 1, 2,
d ∈ {1, 2, 3, 4, 6}, 0 < |c| ≤ 24 and bk ∈ {1, 2, 3, 5, 7, 11, 41, 239} for k = 1, 2. Both Mathematica
and Maple codes returned the ten listed sporadic solutions.

3 The Machin’s formulas machine

An easy way to prove well-known formulas as arctan(x) + arctan(1/x) = sgn(x)π/2 or

arctan(x)− 1

2
arctan

(
2x

1− x2

)
=


π/2, if x > 1,

0, if |x| < 1,

−π/2, if x < −1,

or many others, is to use derivatives. For instance, we can check that the derivative of
arctan

(
2x

1−x2

)
coincides with d

dx arctan(x) = 1
1+x2 except for a multiplicative constant, so a

suitable linear combination of arctan(x) and arctan
(

2x
1−x2

)
gives a function whose derivative is

zero, therefore it is piecewise constant (namely it is constant except at the discontinuity points).
More generally, we can find relations of the form

arctan(x) + C arctan(f(x)) = constant

if we have functions f(x) such that

d

dx
arctan(f(x)) =

r

1 + x2
, (14)

9



for some constant r. Furthermore, it is easy to check that

d

dx
arctan(f(x)) =

r

1 + x2
,

d

dx
arctan(g(x)) =

s

1 + x2

=⇒ d

dx
arctan(g(f(x))) =

rs

1 + x2
,

(15)

so the composition of functions satisfying (14) provides new examples.
For differentiable functions, (14) is equivalent to solve the differential equation

f ′(x)

1 + f(x)2
=

k

1 + x2
. (16)

The solutions of this equation are

f(x) = tan(k arctan(x) + c), (17)

with f(0) = tan(c) and c ∈ (−π/2, π/2). For our interest concerning Machin-like formulas, we
want to have functions which are rational; that is, are ratios of polynomials with coefficients
in Z.

Moreover, if we fix c and denote the solution of (16) by fk, the use of

tan(a+ b) =
tan a+ tan b

1− (tan a)(tan b)

gives
fk+1(x) = tan

(
(k arctan(x) + c) + arctan(x))

=
tan(k arctan(x) + c) + tan(arctan(x))

1− tan(k arctan(x) + c) tan(arctan(x))
=

fk(x) + x

1− xfk(x)
.

(18)

From this relation, if f1(x) is a rational function for a certain c, every function fk(x) will be
rational. But f1(x) = (tan(c) + x)/(1− x tan(c)), so we want that tan(c) ∈ Q (or we start with
f0(x) such that f0(x) = tan c, and we arrive at the same condition).

So, we take c ∈ πQ. This is not compulsory, but it is suitable for our purposes. It is well
known that tan(c) ∈ Q if and only if tan(c) = 0 or ±1. Because tan is (−π/2, π/2)-periodic, we
can restrict to one of the cases: c = 0, c = π/4, c = π/2 and c = −π/4 (or c = 3π/4, that will
be more convenient notationwise).

The recurrence relation (18) is nice and could be more widely studied, but here we are only
interested in more explicit formulas.

3.1 The functions Rj(n, x)

Let us recall De Moivre’s formula

cos(nθ) + i sin(nθ) = (cos(θ) + i sin(θ))n.

Using the binomial expansion and equaling imaginary and real parts we get

sin(nθ) =

⌊(n−1)/2⌋∑
r=0

(−1)r
(

n

2r + 1

)
cosn−2r−1(θ) sin2r+1(θ)

= cosn(θ)

⌊(n−1)/2⌋∑
r=0

(−1)r
(

n

2r + 1

)
tan2r+1(θ),

10



cos(nθ) =

⌊n/2⌋∑
r=0

(−1)r
(
n

2r

)
cosn−2r(θ) sin2r(θ) = cosn(θ)

⌊n/2⌋∑
r=0

(−1)r
(
n

2r

)
tan2r(θ).

And, by dividing these expressions,

tan(nθ) =

∑⌊(n−1)/2⌋
r=0 (−1)r

(
n

2r+1

)
tan2r+1(θ)∑⌊n/2⌋

r=0 (−1)r
(
n
2r

)
tan2r(θ)

.

For θ = arctan(x), this becomes

tan(n arctanx) =

∑⌊(n−1)/2⌋
r=0 (−1)r

(
n

2r+1

)
x2r+1∑⌊n/2⌋

r=0 (−1)r
(
n
2r

)
x2r

,

so this is an example of (17) with c = 0; namely a rational function.
By convenience, let us denote

numern(x) =

⌊(n−1)/2⌋∑
r=0

(−1)r
(

n

2r + 1

)
x2r+1, denomn(x) =

⌊n/2⌋∑
r=0

(−1)r
(
n

2r

)
x2r,

with numer0 = 0 and denom0 = 1. Then, for c = 0 in (17), we have

R0(n, x) =
numern(x)

denomn(x)
, n = 0, 1, 2, . . . . (19)

The above functions satisfy d
dx arctan(R0(n, x)) = n/(1 + x2). The first few of these functions

are

R0(0, x) = 0, R0(1, x) = x, R0(2, x) =
−2x

x2 − 1
, R0(3, x) =

x3 − 3x

3x2 − 1
,

R0(4, x) =
−4x3 + 4x

x4 − 6x2 + 1
, R0(5, x) =

x5 − 10x3 + 5x

5x4 − 10x2 + 1
.

For the other values of c, we take c = jπ/4 with j = 1, 2, 3, and denote the corresponding
solutions of (17) by R1(n, x), R2(n, x) and R3(n, x), respectively.

For c = π/2 = 2π/4 it is clear that

tan(nθ + π/2) =
sin(nθ + π/2)

cos(nθ + π/2)
=

− cos(nθ)

sin(nθ)
,

so, for c = π/2, we have

R2(n, x) =
−denomn(x)

numern(x)
=

−1

R0(n, x)
, n = 1, 2, . . . . (20)

The above functions satisfy again d
dx arctan(R2(n, x)) = n/(1 + x2).

For c = π/4,

tan(nθ + π/4) =
cos(nθ) + sin(nθ)

cos(nθ)− sin(nθ)
,

so, for c = π/4, we have

R1(n, x) =
denomn(x) + numern(x)

denomn(x)− numern(x)
, n = 0, 1, 2, . . . . (21)

11



The above functions satisfy again d
dx arctan(R1(n, x)) = n/(1+ x2). For instance, R1(0, x) = 1,

R1(1, x) =
−x− 1

x− 1
, R1(2, x) =

x2 − 2x− 1

x2 + 2x− 1
, R1(3, x) =

−x3 − 3x2 + 3x+ 1

x3 − 3x2 + 3x+ 1
,

R1(4, x) =
x4 − 4x3 − 6x2 + 4x+ 1

x4 + 4x3 − 6x2 − 4x+ 1
, R1(5, x) =

−x5 − 5x4 + 10x3 + 10x2 − 5x− 1

x5 − 5x4 − 10x3 + 10x2 + 5x− 1
.

Finally, for c = 3π/4,

tan(nθ + 3π/4) = tan(nθ − π/4) =
sin(nθ)− cos(nθ)

sin(nθ) + cos(nθ)
,

so, for c = 3π/4, we have the functions

R3(n, x) =
numern(x)− denomn(x)

numern(x) + denomn(x)
=

−1

R1(n, x)
, n = 0, 1, 2, . . . . (22)

Once more, they satisfy d
dx arctan(R3(n, x)) = n/(1 + x2).

Actually, another way to define the functions Rj(n, x), j = 0, 1, 2, 3, n ∈ N, is to take

Rj(n, x) = tan(nθ + jπ/4), x = tan θ; (23)

this definition is valid in a small range of x (to ensure that both the functions tan and arctan
are invertible). Then the previous arguments show that these functions are rational functions,
and, moreover, we have found their explicit expressions. Of course, once that we have a rational
function defined in a small interval, we can extend it to the entire C.

3.2 Some properties of the functions Rj(n, x)

Here we present some of the algebraic properties of the functions Rj(n, x). Actually, some
of these properties are not related to the Machine-like formulas, but they are interesting by
themselves.

Let us first note that, because the function tan is odd, we could instead use the func-
tions −Rj(n, x) for our purposes; actually, we could use Rj(−n, x) to denote them, because
arctan(−Rj(n, x)) = −n/(1 + x2), a formula which holds by looking at (14). This would allow
to index the functions Rj(n, x) over n ∈ Z, but this fact does not have any practical contribution
to finding additional Machin-like formulas.

When handling Machin-like formulas, it is more interesting to observe that the relation
between Rj(n, 1/x) and Rj(n, x), depends on whether n is even or odd:

R0(2n, 1/x) = −R0(2n, x), R0(2n+ 1, 1/x) = 1/R0(2n+ 1, x), n = 0, 1, 2, . . . ,

R1(2n, 1/x) = 1/R1(2n, x), R1(2n+ 1, 1/x) = −R1(2n+ 1, x), n = 0, 1, 2, . . . .
(24)

The proofs of these properties are straightforward, so we do not include them. In relation to
Rj(n,−x), some symmetry properties also hold:

R0(n,−x) = −R0(n, x), R1(n,−x) = 1/R1(n, x), n = 0, 1, 2, . . . . (25)

Both for (24) and for (25), the corresponding properties for R2 and R3 can be easily established
from the properties of R0 and R1 using (20) and (22), respectively.

According to (15), the composition of the functions Rj(n, x) generates new functions that
are useful in relation to the Machin-like formulas. However, we can see that these functions are
not really new. Let us start analyzing a particular case.

12



Let us first observe that, if the “internal” function in the composition is R0, we have

Rj(nm, x) = tan(nm arctan(x) + πj/4) = tan(n arctan(tan(m arctan(x))) + πj/4)

= tan(n arctan(R0(m,x)) + πj/4) = Rj(n,R0(m,x)), j = 0, 1, 2, 3;

this argument is correct in a small enough interval of x’s (to guarantee that arctan ◦ tan = Id),
and then by analytic continuation we can ensure that

Rj(nm, x) = Rj(n,R0(m,x)), x ∈ C, j = 0, 1, 2, 3. (26)

For each j, this formula allows to compute Rj(n, x) as composition of successive R0(pi, x) with
a final Rj(pi, x), where the pi are the prime factors of n. In particular, it is enough to know
Rj(p, x) for primes p in order to generate (or to compute) all the Rj(n, x) by composition.

With full generality, it is not difficult to check that the composition of functions Rj behaves
as follows:

Rj(n,Ri(m,x)) = Rin+jmod 4(nm, x).

Let us note that the relation R0(n,R0(m,x)) = R0(nm, x) of the functions R0 coincides
with the property Tn(Tm(x)) = Tnm(x) satisfied by the Chebychev polynomials of the first kind
Tn(x) := cos(n arccos(x)), x ∈ [−1, 1]. These were used in [5, 12] in relation to the Möbius
inversion formula. Finally, let us also mention that, although with a different notation, the
functions R0(n, x) have been already defined in [6] (in particular, their rational expressions are
given), but they have not been used to obtain Machin-like identities. As we will comment a
little later, the functions R3(n, x) have been already introduced in [4] with a different approach.

3.3 Machin-like formulas associated to Rj(n, x)

Once we have defined the functions Rj(n, x) and studied their properties, we can state the main
result of this section.

Before doing that, let us observe the following:

(a) At x = 0 or x = ±∞, the value of the function arctan(Rj(n, x)) (perhaps in the sense of
a limit) is always a rational multiple of π.

(b) The functions arctan(Rj(n, x)) are not defined at the roots of the denominator of Rj(n, x).
However, and because arctan(∞)− arctan(−∞) = π, it is clear that, at every x that is a
root of the denominator of Rj(n, x), the jump arctan(Rj(n, x

+))− arctan(Rj(n, x
−)) is a

multiple of π.

Let us now take any function of the form

F (x) =

N∑
k=1

rk
nk

arctan(Rjk(nk, x)) with
N∑
k=1

rk = 0, (27)

defined in R except at the roots of the denominators. Since d
dx arctan(Rj(n, x)) = n/(1 + x2),

it is clear that

F ′(x) =

N∑
k=1

rk
nk

nk

1 + x2
= 0,

so the function F (x) is piecewise constant (the continuity and the differentiability disappear
only at the roots of the denominators). Thus, as a consequence of (27), (a) and (b), we have
the following result.
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Theorem 2. Let R0(n, x), R1(n, x), R2(n, x) and R3(n, x) be the rational functions with integer
coefficients defined in (19), (21), (20) and (22), respectively, with n = 0, 1, 2, . . . , and let rk,
k = 1, 2, . . . , N , be integers such that

∑N
k=1 rk = 0. Then, for any x ∈ Q we have the Machin-like

formula
N∑
k=1

rk
nk

arctan(Rjk(nk, x)) =
r

s
π, (28)

with r/s ∈ Q (notice that, as the Rj(n, x) are rational functions with integer coefficients, the
functions arctan that appear in (28) are evaluated at rational values).

Let us make some comments on this result. First observe that r/s is constant on intervals
of the variable x, but the constant changes when any of the Rj(n, x) involved in (28) has a root
at the denominator. Figures 1, 2 and 3 show, in a graphical way, three examples of the theorem
(they are simple examples, without any special interest). Observe that, with the notation of
Theorem 2, the coefficients of arctan in Figure 1 should be written as 12

3 and −12
4 , respectively,

to get r1 + r2 = 0; and the same in Figure 2 with 91
13 and −91

7 .
Actually, it can happen that F (x) in (27) (or the left-hand-side sum in (28)) is the constant

zero function in some of those intervals, and then r/s = 0 in that interval; but, of course, this
is not the usual situation. For instance, this happens around x = −1 in the case of Figure 1.

An important point is that, if we want to use (28) to evaluate π using the Taylor expan-
sion (2), we need that the Rjk(nk, x) satisfy |Rjk(nk, x)| < 1. Let us now recall that

R2(n, x) =
−1

R0(n, x)
and R3(n, x) =

−1

R1(n, x)
. (29)

Moreover, the function arctan satisfies arctan(−1/t) = − arctan(1/t) and

arctan

(
1

t

)
= sgn(t)

π

2
− arctan(t). (30)

Thus, if we use instead Rj′ with the notation 0′ = 2, 1′ = 3, 2′ = 0 and 3′ = 1, in the
case of (28) with a |Rjk(nk, x)| > 1 we can replace arctan(Rjk(nk, x)) by the corresponding
arctan(Rj′k

(nk, x)), that will satisfy |Rj′k
(nk, x)| < 1, so we can use the Taylor expansion. (This

cannot be done if Rjk(nk, x) = ±1, but to evaluate our expression in those x is of no interest
because arctan(±1) = ±π/4, so the corresponding summand arctan(Rjk(nk, x)) can be removed
from the formula.)

The use of (30) in the above mentioned procedure that replaces Rjk by Rj′k
modifies the

identity (28) to a new identity of the same kind with all the |Rj(n, x)| < 1. In this process, and

since arctan(−1/t) = − arctan(1/t), the corresponding rk in the condition
∑N

k=1 rk = 0 on the
coefficients becomes −rk. But, at the same time, the value of r/s changes; in particular, it can
become to be 0 and in this case we get a useless Machin-like identity.

Finally, we want to comment that Theorem 2 extends some of the results of [4], where the
authors prove that, for a positive integer n,

n arctan

(
1

x

)
+ arctan (R3(n, x)) =

r

s
π,

with r/s ∈ Q. Recall that R2(1, x) = −1/x and then this equality can also be written as

−n

1
arctan (R2(1, x)) +

n

n
arctan (R3(n, x)) =

r

s
π,

that is of the form (28). In that paper, the rational functions R3(n, x) are obtained in a very
different way. They are given via a recurrent relation between polynomials that are a particular
case of the so called Rédei polynomials, see [19].
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Figure 1: The function 4
π

(
4 arctan(R3(3, x))− 3 arctan(R0(4, x))

)
, for x ∈ (−5, 5).

-4 -2 2 4

-40
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40

Figure 2: The function 4
π

(
7 arctan(R3(13, x))− 13 arctan(R0(7, x))

)
, for x ∈ (−5, 5).
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Figure 3: The function 4
π

(
4
13 arctan(R3(13, x)) − 9

7 arctan(R0(7, x)) +
5
8 arctan(R1(8, x))

)
, for

x ∈ (−5, 5).
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3.4 Some examples

With the notation of the Rj(n, x), the ten sporadic cases of Theorem 1 (in particular, this
includes the four classical examples by Machin, Euler, Hermann and Hutton mentioned in the
introduction) can be obtained, in the same order as in the theorem, as follows:

4 arctan(R0(1, x))− arctan(R3(4, x)) = π/4, with x = 1/5,

2 arctan(R0(1, x))− arctan(R3(2, x)) = π/4, with x = 1/2,

−3
2 arctan(R0(2, x)) + arctan(R3(3, x)) = π/4, with x = 3,

− arctan(R0(3, x)) + 3 arctan(R3(1, x)) = π/4, with x = 2,
4
3 arctan(R0(1, x))− 1

3 arctan(R1(4, x)) = π/4, with x = 2/3,
1
2 arctan(R0(3, x))− 3

2 arctan(R2(1, x)) = π/4, with x = 2,

2 arctan(R0(1, x))− arctan(R3(2, x)) = π/4, with x = 2/5,

2 arctan(R0(1, x))− arctan(R3(2, x)) = π/4, with x = 1/3,

−1
2 arctan(R0(2, x)) + arctan(R3(1, x)) = π/4, with x = 3,

2 arctan(R0(3, x))− 3 arctan(R1(2, x)) = π/4, with x = 2,

while the two parametric families correspond to

arctan

(
R0

(
1,

1

2a+1 + 1

))
− arctan

(
R3

(
1,

1

2a+1 + 1

))
=

π

4
,

arctan

(
R0

(
1,

1

2a+1 − 1

))
− arctan

(
R3

(
1,

1

2a+1 − 1

))
=

π

4
,

for a ∈ N∗.
It is not difficult to identify many other two-term well-known Machin-like formulas by means

of our notation. Let us give some examples, with their corresponding Lehmer measures, denoted
by µ. The combination 5 arctan(R1(2, x))− 2 arctan(R0(5, x)) for x = 3 gives the formula

5 arctan

(
1

7

)
+ 2arctan

(
3

79

)
=

π

4
, µ ∼ 1.88727. (31)

The combination 22 arctan(R2(17, x))− 17 arctan(R3(22, x)) for x = 1/2 gives

22 arctan

(
24 478

873 121

)
+ 17 arctan

(
685 601

69 049 993

)
=

π

4
, µ ∼ 1.14343. (32)

Finally, 22 arctan(R0(1, x))− arctan(R3(22, x)) for x = 1/28 gives

22 arctan

(
1

28

)
+ arctan

(
1 744 507 482 180 328 366 854 565 127

98 646 395 734 210 062 276 153 190 241 239

)
=

π

4
, µ ∼ 0.901429.

Of course, each of the Machin’s formulas appearing in this paper can be checked by direct
multiplication of its associated Gaussian integers. For instance, (31) and (32) hold because
(7 + i)5(79 + 3i)2 = 23510(1 + i) and

(873 121 + 24 478i)22(69 049 993 + 685 601i)17 = 285374(1 + i).

It seems to us that our formulas are likely to reproduce most of the known Machin’s type
formulas with two terms, as well as to obtain new ones with N = 2, but are not enough in
general to include all formulas with N > 2, like for instance the ones appearing in [14]. In
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any case, two term formulas have been also shown to be useful as starting points to produce
formulas with more terms, see for instance the procedures developed in [3, 8, 22, 24].

Although the first main aim of our paper was to produce Machin-like identities with arbi-
trarily small Lehmer measure, with the help of Theorem 2, it is not difficult to look for examples
satisfying this property. It is enough to take N = 2 and to use a suitable strategy, with the
help of any computer algebra system.

We want to get two functions Rj(n, x) and Ri(m,x) whose absolute values are “small” at
the same x, to guarantee that the corresponding series (2) converges quickly (that is, “few”
summands of the series are necessary to get a good precision). This is what happens with the
Machin-like identities having small Lehmer measure. With the aid of a computer, we can look
for these x with different strategies:

• Searching numerically for minima of each function of type Rj(n, x)
2+Ri(m,x)2 (or similar,

since, for example, we can put different weights or exponents on the two summands), and
imposing that the value of the resulting function is small enough.

• By numerically identifying intervals in which, simultaneously, −ε < Rj(n, x) < ε and
−ε < Ri(m,x) < ε, for ε > 0 fixed beforehand.

In both cases, in order to obtain “nice” expressions, it is of interest to take x rational with a
numerator and denominator that are not too large. This can be achieved by taking convergents
of continued fractions of numbers that we have obtained with the previous strategies.

A couple of new Machin-Like identities have been obtained with the above strategy (with
their corresponding Lehmer measure µ). Using Rj(n, x) with big values of n it is easier to find
examples with small Lehmer measure, but then we end up with fractions ak/bk where both ak
and bk have many digits. In this case, we denote f r

s to indicate an irreducible fraction with r
digits in the numerator and s digits in the denominator.

• The relation 33 arctan(R0(1, x))− arctan(R3(33, x)) with x = 1/42 gives

33 arctan(1/42)− arctan(f50
54 ) = π/4, µ ∼ 0.880916.

• The relation 48 arctan(R0(1, x))− arctan(R3(48, x)) with x = 9/550 gives

48 arctan(9/550)− arctan(f127
132 ) = π/4, µ ∼ 0.765513.

To evaluate Rj(n, x) for very big values of n (say, for instance, n > 100), it is not a good
idea to use their rational expressions given in (19), (20), (21) and (22). For instance when n is
odd, both the numerator and the denominator are polynomials with n+1 non-zero monomials,
see (21). From a computational point of view, it is better to proceed as follows. In practice, we
have used these methods in some of the examples that appear in the next section.

Because R0(n, x) = tan(nθ) with x = tan θ we have

R0(n, x) = tan(nθ) =
sin(nθ)

cos(nθ)
=

Im
(
(cos θ + i sin θ)n

)
Re

(
(cos θ + i sin θ)n

) .
Dividing both the numerator and the denominator by cosn(θ) we get

R0(n, x) =
Im

(
(cos θ + i sin θ)n

)
Re

(
(cos θ + i sin θ)n

) =
Im

(
(1 + i tan θ)n

)
Re

(
(1 + i tan θ)n

) =
Im

(
(1 + ix)n

)
Re

(
(1 + ix)n

) .
If x ∈ Q is fixed, we can evaluate (1 + ix)n via successive squaring (this is particularly easy if
n is a power of 2). Thus, (1 + ix)n is a number in Q[i], and using it we obtain R0(n, x).
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In the same way, using R1(n, x) = tan(nθ + π/4) with x = tan θ, we have

R1(n, x) =
sin(nθ + π/4)

cos(nθ + π/4)
=

cos(nθ) + sin(nθ)

cos(nθ)− sin(nθ)

=
Re

(
(cos θ + i sin θ)n

)
+ Im

(
(cos θ + i sin θ)n

)
Re

(
(cos θ + i sin θ)n

)
− Im

(
(cos θ + i sin θ)n

)
=

Re
(
(1 + i tan θ)n

)
+ Im

(
(1 + i tan θ)n

)
Re

(
(1 + i tan θ)n

)
− Im

(
(1 + i tan θ)n

) =
Re

(
(1 + ix)n

)
+ Im

(
(1 + ix)n

)
Re

(
(1 + ix)n

)
− Im

(
(1 + ix)n

) ,
and again we can evaluate (1 + ix)n by means of successive squaring. Using (29), we get the
corresponding expressions for R2(n, x) and R3(n, x).

In the particular case of n = 2m, there is another clever way to evaluate Rj(2
m, x): using (26)

we can write Rj(2
m, x) as a composition of successive R0(2, x) with a final Rj(2, x); i.e.,

Rj(2
m, x) = Rj(2, R

◦(m−1)
0 (2, x))

(to avoid confusion with multiplicative powers, we use f◦n to denote the composition of the
function f with itself n times). In the above, we have m rational functions (with numerators
and denominators of degree 1 or 2) that are easy to evaluate. Computer experiments show that,
for n = 2m, this method is faster than the previous procedure based on computing (1 + ix)n

via successive squaring.

3.5 Machin-like identities with small Lehmer measure

With the help of the functions Rj(n, x), we can prove that there exist two-term Machin-like
identities with Lehmer measure as small as we want. To do this, we use standard properties of
the continued fractions. The formulas with Lehmer measure as small as desired can be given
explicitly.

For a real number x, let us denote its continued fraction by x = [c0, c1, c2, c3, . . . ], and let
pk/qk = [c0, c1, c2, . . . , ck], with k = 0, 1, 2, . . . , be its convergents. It is well known that∣∣∣∣x− pk

qk

∣∣∣∣ ≤ 1

q2k
. (33)

Theorem 3. For every ε > 0 there exist positive integers n, b1, b2, and another integer a2 with
0 < |a2| < b2, such that the Machin-like identity

n arctan
1

b1
− arctan

a2
b2

=
π

4
(34)

has Lehmer measure (10) less than ε.

Proof. Let pk/qk be the convergents of the continued fraction of π. By (33),∣∣∣∣π − pk
qk

∣∣∣∣ = O

(
1

q2k

)
,

so ∣∣∣∣ π

4pk
− 1

4qk

∣∣∣∣ = O

(
1

q3k

)
.

Taking ξ = 1/(4qk), the alternating series (2) easily gives

arctan

(
1

4qk

)
=

1

4qk
+O

(
1

q3k

)
=

π

4pk
+O

(
1

q3k

)
.
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Multiplying by n = pk, we obtain

n arctan(ξ) = pk

(
π

4pk
+O

(
1

q3k

))
=

π

4
+O

(
1

q2k

)
. (35)

Note that the derivative of g(x) = n arctan(x) − arctan(R3(n, x)) is 0, so g is piecewise
constant. Because g(0) = n arctan(0) − arctan(R3(n, 0)) = 0 − arctan(−1) = π/4, there exists
an interval I around 0 where the value the function is π/4 and on I,

n arctan(x)− arctan(R3(n, x)) =
π

4
. (36)

It suffices to show that ξ = 1/(4qk) belongs to I, which we do below.
By definition, see (23), the formula

R3(n, x) = tan

(
nθ +

3π

4

)
= tan

(
nθ − π

4

)
, x = tan θ,

is valid on an interval for the variable θ on which tan is a bijective function. That is, for
−π/2 < nθ − π/4 < π/2, or −π/4 < nθ < 3π/4. Because tan θ ∼ θ for small θ, this is the case
when −π/5 < nx < 3π/5 and θ is close to zero. Under this condition, we have

n arctan(x)− arctan(R3(n, x)) = nθ − arctan
(
tan

(
nθ − π

4

))
= nθ −

(
nθ − π

4

)
=

π

4
,

as desired. Since certainly, ξ = 1/(4qk) satisfies −π/5 < nξ = pk/(4qk) < 3π/5, because pk/qk
are the convergents of π.

Once proved that ξ = 1/(4qk) satisfies (36), it follows from (35) and (36) that |R3(n, ξ)| =
O(1/q2k). We then have the Machin-like formula (34) with b1 = 1/ξ = 4qk and a2/b2 = R3(n, ξ).

Finally,
1

log10(1/ξ)
+

1

log10(1/|R3(n, ξ)|)
= O

(
1

log10 qk

)
(∗)
= O

(
1

k

)
,

so taking k big enough, the thesis follows. The step (∗) can be justified as follows: the recurrence
relation

qk = akqk−1 + qk−2 ≥ qk−1 + qk−2

(with ak ≥ 1 being the partial quotients of the continued fraction) gives that qk ≥ Fk, where
Fm is the m-th Fibonacci number. Consequently, qk ≥ ϕk−2 with ϕ the golden section, so
log10 qk ≫ k.

Corollary 4. For every ε > 0 and every N ≥ 2 there exists a Machin-like identity

N∑
k=1

rk
nk

arctan

(
ak
bk

)
=

π

4
with

N∏
k=1

rk ̸= 0,

which has Lehmer measure (10) less than ε.

Proof. Given one of the two terms formulas obtained in Theorem 3, with arbitrarily small
Lehmer measure, any of its arctangent terms can be split into two new ones by using the well
known identity

arctan(x) = 2 arctan(2x)− arctan(4x3 + 3x),

which once more can be easily proved by derivation. By applying this procedure N−2 times we
arrive to the desired result. As we have already commented, other ways to split one arctangent
term into several ones are developed in [3, 8, 22, 24].
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k pk/qk a1/b1 a2/b2 Lehmer measure

1 22/7 1/28 f28
32 ∼ 0.000 017 684 5 0.901 429

2 333/106 1/424 f871
876 ∼ 0.000 022 261 1 0.595 55

3 355/113 1/452 f937
943 ∼ 1.214 73 · 10−6 0.545 675

4 103 993/33 102 1/132 408 f532 634
532 644 ∼ 1.594 05 · 10−10 0.297 306

5 104 348/33 215 1/132 860 f534 606
534 617 ∼ −6.807 56 · 10−11 0.293 54

6 208 341/66 317 1/265 268 f1 129 966
1 129 977 ∼ 3.430 96 · 10−11 0.279 937

7 312 689/99 532 1/398 128 f1 751 055
1 751 066 ∼ −5.634 18 · 10−12 0.267 466

8 833 719/265 381 1/1 061 524 f5 023 921
5 023 933 ∼ 2.411 2 · 10−12 0.252 025

9 1 146 408/364 913 1/1 459 652 f7 066 733
7 066 745 ∼ −2.798 08 · 10−13 0.241 887

10 4 272 943/1 360 120 1/5 440 480 f28 780 982
28 780 995 ∼ 1.098 62 · 10−13 0.225 63

11 5 419 351/1 725 033 1/6 900 132 f37 062 153
37 062 169 ∼ −3.757 33 · 10−17 0.207 106

12 80 143 857/25 510 582 1/102 042 328 f641 854 533
641 854 548 ∼ 1.699 14 · 10−16 0.188 275

13 165 707 065/52 746 197 1/210 984 788 f1 379 387 210
1 379 387 226 ∼ −3.513 97 · 10−17 0.180 906

14 245 850 922/78 256 779 1/313 027 116 f2 088 646 642
2 088 646 658 ∼ 2.221 66 · 10−17 0.177 756

15 411 557 987/131 002 976 1/524 011 904 f3 588 514 476
3 588 514 494 ∼ −3.887 53 · 10−19 0.172 125

Table 1: Machin-like identities n arctan(1/b1) − arctan(a2/b2) = π
4 , with the notation of the

proof of Theorem 3. The notation f r
s is used to indicate an irreducible fraction with r digits in

the numerator and s digits in the denominator.

Note that the above proof is constructive, and we can use the procedure given in the proof
to explicitly state Machin-like formulas, see Table 1. We used the successive squaring method
explained in the previous section to compute the values a2/b2 that appear in that table.

To conclude this section, let us see another way to obtain two-term Machin-like identi-
ties with small Lehmer measure. As shown in the proof of Theorem 3, the function g(x) =
n arctan(x)−arctan(R3(n, x)) is piecewise constant and its value is π/4 in an interval around 0.

Then, for fixed n big enough, we can take x ∈ Q near 1
n
π
4 by using a convergent of the

continued fraction of 1
n
π
4 , and thus we have a1/b1 = x and a2/b2 = R3(n, x). In this way, and

because x and R3(n, x) are small numbers, the Lehmer measure of the corresponding Machin-like
formula will be small (but the integers a2 and b2 have a lot of digits).

We can do this with n = 2m and then use (26) with j = 3 to compute a2/b2 = R3(2
m, x).

This method is very fast. For m ≤ 30 and using three convergents for every 1
2m

π
4 , we have found

the corresponding Machin-line formulas, and computed their Lehmer measures. We summarize
a collection of these formulas in Table 2.

The Machin-like formulas corresponding to the first convergents of 25 (i.e., a1/b1 = 1/40)
and 226 (i.e., a1/b1 = 1/85 445 659) have been previously found in [1, 2] by a different method.

4 Machin’s formulas with powers of the golden section

Recall that ϕ = (1 +
√
5)/2 denotes the golden section. There are some linear combinations of

arctangents of powers of the golden section which evaluate to a rational multiple of π such as

π

4
=

1

3
arctan(ϕ3) +

1

3
arctan(ϕ) =

1

5
arctan(ϕ6) +

2

5
arctan(ϕ2),

π

4
=

1

7
arctan(ϕ5) +

3

7
arctan(ϕ3) = −1

2
arctan(ϕ5) +

3

2
arctan(ϕ).
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2m a1/b1 a2/b2 Lehmer measure

25 1/40 f50
52 ∼ 0.014 436 1.167 51

= 1/41 f45
47 ∼ −0.005 065 11 1.055 7

= 3/122 f65
67 ∼ 0.001 328 54 0.969 041

26 1/81 f111
113 ∼ 0.004 685 19 0.953 294

= 2/163 f138
142 ∼ −0.000 161 494 0.786 967

= 39/3 178 f220
225 ∼ −0.000 037 964 2 0.749 474

27 1/162 f281
283 ∼ 0.004 715 29 0.882 42

= 1/163 f261
265 ∼ −0.000 131 942 0.709 799

= 39/6 356 f482
487 ∼ −8.397 46 · 10−6 0.649 066

28 1/325 f603
605 ∼ 0.002 291 66 0.776 917

= 1/326 f640
644 ∼ −0.000 124 553 0.654 001

= 19/6 193 f927
933 ∼ 2.246 63 · 10−6 0.574 947

29 1/651 f1 361
1 364 ∼ 0.001 083 55 0.692 67

= 1/652 f1 438
1 442 ∼ −0.000 122 706 0.611 015

= 9/5 867 f1 848
1 853 ∼ 0.000 011 140 4 0.557 238

210 1/1 303 f3 033
3 036 ∼ 0.000 480 424 0.622 385

= 1/1 304 f3 187
3 191 ∼ 0.000 122 244 0.576 572

= 4/5 215 f3 803
3 807 ∼ 0.000 028 336 5 0.540 901

220 1/1 335 088 f6 423 057
6 423 063 ∼ 2.522 87 · 10−7 0.314 81

= 2/2 670 177 f6 738 709
6 738 716 ∼ −4.184 98 · 10−8 0.298 784

= 7/9 345 619 f7 151 377
7 151 387 ∼ 1.697 4 · 10−10 0.265 604

221 1/2 670 176 f13 477 425
13 477 432 ∼ 2.522 87 · 10−7 0.307 163

= 1/2 670 177 f13 161 772
13 161 779 ∼ −4.184 97 · 10−8 0.291 137

= 7/18 691 238 f15 249 721
15 249 731 ∼ 1.698 51 · 10−10 0.257 96

224 1/21 361 414 f122 970 779
122 970 786 ∼ 3.168 46 · 10−8 0.269 781

= 1/21 361 415 f120 445 556
120 445 564 ∼ −5.082 56 · 10−9 0.257 003

= 7/149 529 904 f137 149 169
137 149 179 ∼ 1.698 87 · 10−10 0.238 788

225 1/42 722 829 f250 992 010
250 992 018 ∼ 1.330 1 · 10−8 0.258 016

= 1/42 722 830 f256 042 455
256 042 463 ∼ −5.082 56 · 10−9 0.251 621

= 3/128 168 489 f267 001 542
267 001 550 ∼ 1.045 3 · 10−9 0.242 399

226 1/85 445 659 f522 185 807
522 185 816 ∼ 4.109 22 · 10−9 0.245 319

= 2/170 891 319 f552 488 478
552 488 488 ∼ −4.866 69 · 10−10 0.233 456

= 9/769 010 935 f586 223 936
586 223 947 ∼ 2.398 6 · 1010−11 0.220 238

229 1/683 565 275 f4 662 329 259
4 662 329 268 ∼ 6.623 04 · 10−10 0.222 134

= 1/683 565 276 f4 743 136 384
4 743 136 393 ∼ −4.866 69 · 10−10 0.220 568

= 2/1 367 130 551 f4 904 750 631
4 904 750 641 ∼ 8.781 78 · 10−11 0.212 628

230 1/1 367 130 551 f9 647 887 023
9 647 887 033 ∼ 8.781 78 · 10−11 0.208 898

= 6/8 202 783 307 f10 645 034 813
10 645 034 824 ∼ −7.929 92 · 10−12 0.199 544

= 7/9 569 913 858 f10 716 918 381
10 716 918 392 ∼ 5.748 33 · 10−12 0.198 424

Table 2: Machin-like formulas 2m arctan(a1/b1) − arctan(a2/b2) = π
4 , corresponding to

2m arctan(x) − arctan(R3(2
m, x)) = π

4 , with x one of the first convergents of the continued
fraction of π/2m+2. The notation f r

s is used to indicate an irreducible fraction with r digits in
the numerator and s digits in the denominator.
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The first three of them appear for instance in [9, 17]. The last one, although can be easily
obtained from the first three, does not appear in the above papers. They are all of the form

π

4
= a arctan(ϕκ) + b arctan(ϕℓ), (37)

for positive integers κ > ℓ with some rational numbers a, b. Via the formula arctan(x) +
arctan(1/x) = π/2 valid for all positive real numbers x, each one of the above formulas gives rise
to three additional formulas of the same kind with different (a, b), replacing (κ, ℓ) by (±κ,±ℓ).
Via the above identity, we see that formula (37) holds as well with a = b = 1/2, whenever
κ + ℓ = 0. So, eliminating such trivial solutions, we see that equation (37) holds in κ, ℓ ∈ Z,
|κ| ≥ |ℓ|, κ+ ℓ ̸= 0 and a, b ∈ Q for the following quadruples:

(a, b, κ, ℓ) ∈



(
1
3 ,

1
3 , 3, 1

)
, (1, 1,−3,−1) , (−1, 1,−3, 1) , (1,−1, 3,−1) ,(

1
5 ,

2
5 , 6, 2

)
, (1, 2,−6,−2) ,

(−1
3 , 23 ,−6, 2

)
, (1,−2, 6,−2) ,(

1
7 ,

3
7 , 5, 3

)
, (1, 3,−5,−3) ,

(−1
5 , 35 ,−5, 3

)
, (1,−3, 5,−3) ,(−1

2 , 32 , 5, 1
)
,

(−1
2 , 32 ,−5,−1

)
,

(
1
4 ,

3
4 ,−5, 1

)
,

(
1
4 ,

3
4 , 5,−1

)

 .

The equation (37) in positive integers κ, ℓ was treated in [17]. The main result in [17] claims to
have found all solutions of equation (37) in integers κ, ℓ with κ + ℓ ̸= 0. However, [17] missed
the last row of solutions indicated above corresponding to (κ, ℓ) = (5, 1) and its variants with
(±5,±1). In this section, we fill in the oversight from [17] and show that there are no other
solutions up to signs except for the above four.

Writing as in [17], a = u/w, b = v/w with coprime integers u, v, w and w ≥ 1, equation (37)
leads to

(1 + iϕκ)4u(1 + iϕℓ)4v = (1− iϕκ)4u(1− iϕℓ)4v (38)

(formula (4) in [17]). The norm of the element 1 + iϕκ in the biquadratic field K = Q(i,
√
5)

is 5F 2
κ or L2

κ according to whether κ is odd or even, where Fκ, Lκ are the κth Fibonacci and
Lucas companion of the Fibonacci numbers, respectively. Since the above number is never a
power of 2 for any positive integer κ, it follows that for every odd prime factor p of the above
number, there is a prime ideal π in OK dividing p such that π divides 1 + iϕκ. Note that π
does not divide 1 − iϕκ, since otherwise π divides (1 + iϕκ) + (1 − iϕκ) = 2, which is false
since π divides the odd prime p. The same argument applies to 1 + iϕℓ. Using the Primitive
Divisor Theorem for Fibonacci and Lucas numbers, it is argued in [17] that κ ≤ 12, so one is
left with finding all pairs of positive integers (κ, ℓ) in the range 1 < ℓ < κ ≤ 12. Then in [17]
(see formula (5)) it is said that π divides 1 + iϕκ and 1 − iϕℓ and it is shown that, under this
assumption, (κ, ℓ) = (6, 2), (5, 3), (5, 1). Looking at formula (4) in [17] (or formula (38) above)
however, the assumption that π divides 1 + iϕκ and 1 − iϕℓ implies that u and v have the
same sign. In fact the solutions from [17] have a and b with the same sign. Thus, the oversight
comes from not having treated the case when u and v have opposite signs in [17]. In this
case, π divides 1 + iϕκ and 1 + iϕℓ. This is the case missed in [17]. At any rate, all examples
must satisfy that the set of odd prime factors of the two numbers

NK/Q(1 + iϕκ) and NK/Q(1 + iϕℓ)

must be the same. One calculates all such numbers for 1 ≤ ℓ < κ ≤ 12 and gets the four
solutions (κ, ℓ) = (3, 1), (5, 1), (5, 3), (6, 2) and no others.
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