Limit Cycles of Vector Fields of the Form $X(v)=A v+f(v) B v$

A. Gasull and J. Llibre
Secció de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

AND

J. Sotomayor

Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, R.J. 22460, Brazil

Received June 4, 1985; revised December 23, 1985

1. Introduction

In this paper we study the phase portraits of planar vector fields X of the form

$$
\begin{equation*}
X(v)=A v+f(v) B v, \tag{1}
\end{equation*}
$$

where A and B are 2×2 matrices, det $A \neq 0$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth real function such that its expression in polar coordinates is $f(r \cos \theta, r \sin \theta)=$ $r^{D} f(\theta)$ with $D \geqslant 1$ (note that if f is a homogeneous function then $f(\theta)=f(\cos \theta, \sin \theta)$). In this case we shall say that f is a homogeneous function of degree D. If f is such that $f(\lambda x, \lambda y)=\lambda^{D} f(x, y)$ we shall say that f is homogeneous in the usual sense. This class of vector fields have been studied by C. Chicone [1] as an important extension of a less general class of quadratic vector fields considered by D. E. Koditschek and K. S. Narendra [3,4]. There are two hypotheses $H_{i}(i=1,2)$, one for the matrices A and B, the other for the function f.

For a 2×2 matrix C let C^{t} denote the transpose of C. Then, the symmetric part of C is given by $(C)_{s}=\frac{1}{2}\left(C+C^{t}\right)$. If J is the sympletic 2×2 matrix $\left(\begin{array}{c}0 \\ 1 \\ 1\end{array} 0_{0}^{1}\right.$), then the hypothesis H_{1} states that $(J B)_{s}$ and $\left(B^{t} J A\right)_{s}$ are definite and have the same sign. Note that if these two matrices associated to X are definite with opposite sign, then the system $-X$ satisfies hypothesis H_{1}.

