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Abstract. For planar polynomials systems the existence of an
invariant algebraic curve limits the number of limit cycles not con-
tained in this curve. We present a general approach to prove non-
existence of periodic orbits not contained in this given algebraic
curve. When the method is applied to parametric families of poly-
nomial systems that have limit cycles for some values of the pa-
rameters, our result leads to effective algebraic conditions on the
parameters that force non-existence of the periodic orbits. As ap-
plications we consider several families of quadratic systems: the
ones having some quadratic invariant algebraic curve, the known
ones having an algebraic limit cycle, a family having a cubic invari-
ant algebraic curve and other ones. For any quadratic system with
two invariant algebraic curves we prove a finiteness result for its
number of limit cycles that only depends on the degrees of these
curves. We also consider some families of cubic systems having
either a quadratic or a cubic invariant algebraic curve and a family
of Liénard systems. We also give a new and simple proof of the
known fact that quadratic systems with an invariant parabola have
at most one limit cycle. In fact, what we show is that this result is
a consequence of the similar result for quadratic systems with an
invariant straight line.

1. Introduction

The study of the number of limit cycles of planar polynomial dif-
ferential systems has attracted the interest of many researchers due to
the unexpected difficulties that it presents. In fact, even in the case of
quadratic systems (QS) the problem remains open. Perhaps the most
influential works for this very particular case have been the Coppel
survey ([18]) and the Ye Yanqian et al. book ([41]).

To advance in particular subfamilies of QS people have started study-
ing QS with additional properties. One of these properties has been
the existence of a particular invariant algebraic curve for the QS. One
of the reasons is the general belief that for any polynomial system the
existence of an invariant algebraic curve for it limits the number of
limit cycles not contained on this curve.
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So a first celebrated family has been QS with an invariant straight
line. With some effort people have been able to prove the existence of at
most one limit cycle for this particular case, and also its hyperbolicity,
see [12, 13, 17, 19, 38].

Afterwards the attention has moved to QS with irreducible invariant
curves of degree two. In this case it was not difficult to prove that
no limit cycles coexist with hyperbolas or ellipses, although, in the
later case, the ellipse itself can be a limit cycle, see [11, 41] and also
the proofs of Theorem 1.2 and Proposition 6.1. In case of QS having
an invariant parabola it took more effort to prove the existence and
uniqueness of the limit cycle, see [14, 42].

It is remarkable that it is possible to prove that result as a direct
consequence of the same result for QS with an invariant straight line.
This gives a simple and alternative proof to that of [42].

Theorem 1.1. A quadratic system with an invariant parabola and a
limit cycle can be transformed into another quadratic system with an
invariant straight line. As a consequence, quadratic systems with an
invariant parabola have at most one limit cycle and when it exists it is
hyperbolic.

Continuing in the world of QS with invariant algebraic curves several
directions have been explored: studying the degrees of the possible
invariant curves, the existence of algebraic limit cycles (limit cycles
included in an invariant algebraic curve), the number of limit cycles
of families with higher degree invariant curves, . . . . Our second result
considers the question of the non-existence of other limit cycles when
the QS has an algebraic limit cycle. In [32, 33] the authors study a
related problem. They give conditions on a QS to ensure that it has
at most one algebraic limit cycle.

We face the following natural problem, see for instance [29, 30]: Can
an algebraic and a non-algebraic limit cycle coexist in a QS? Although
it is yet an open question, it is known that all known QS exhibiting an
algebraic limit cycle have no other limit cycle. A proof for the known
cases at that time was given in [8].

Our second main result proves with an unified method this fact for
all the eight known QS families with one algebraic limit cycle. The
eight families that we will study, together with the expression of their
corresponding algebraic limit cycles are listed in the proof of the fol-
lowing theorem. Here, we only make some few comments about them,
see the nice paper [1] for more details. The researchers who have found
these families are: Qin; Yablonskii; Filiptsov; Chavarriga; Christopher,
Llibre and Świrszcz (two cases), Chavarriga, Llibre and Sorolla; and
Alberich-Carramiñana, Ferragut and Llibre.

In fact, for completeness, our proof studies all the eight cases, al-
though from the results of [1] it is clear these eight cases can be reduced
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to four of them because the other ones can be obtained from these four
via suitable Cremona transformations (birational automorphisms) and
changes of time. See more details in [1, Fig. 10].

Theorem 1.2. The eight families of quadratic systems detailed in the
proof, and that nowadays include all the known cases of quadratic sys-
tems with an algebraic limit cycle, have at most one limit cycle and
when it exists it is this algebraic limit cycle.

We do not study here the hyperbolicity of the limit cycles considered
in the above theorem. This question is studied in [27].

The general approach that we use to prove the eight cases of the
above theorem is detailed in Section 2, see Theorem 2.1, and essen-
tially consists on a method for effectively finding a kind of Lyapunov
function for systems with an invariant algebraic curve. As we will see,
these functions are actually not Lyapunov functions because only the
condition on not changing sign of its temporal derivative is required.
The ideas of this approach go back to Poincaré and have also been
used in some cases in [5, 8]. In fact, in this work we will show that
the method provides a systematic approach to study many families of
planar differential systems, not necessarily QS, with invariant algebraic
curves.

Our third main result deals with QS with two generalized invariant
curves and gives an upper bound for their number of limit cycles. The
same question but with a different point of view was treated in [6, 7]
but our results are different of the ones given in these works. See for
instance [21] for several examples of polynomial systems with general-
ized invariant curves. The definition of these types of curves and what
we mean when we say that two of them are different is deferred to
the following section. Here we only comment that they include usual
invariant algebraic curves.

Theorem 1.3. Consider a quadratic system with two different gener-
alized invariant curves. Let M be the number of limit cycles contained
in them. Then its maximum number of limit cycles is 2M + 2.

As we will see, our proof starts with the result of [44] that shows that
if a QS has two different nests of limit cycles then one of the critical
points is surrounded by a single limit cycle. A similar result, but with
a bigger upper bound for the number of limit cycles, could be obtained
under our hypotheses without using that result.

Another key point in our proof is to prove that all the limit cycles
not contained in the generalized invariant curves are hyperbolic and
have the same stability. As we will see, to prove this fact we find some
algebraic relations between the characteristic exponents of the periodic
orbits and some integrals involving the cofactors of the curves. It is also
possible to prove this result by using the generalized Bendixson-Dulac
Theorem, see for instance [24, 25].
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We remark that although most probably this upper bound is not
sharp (in fact, people believe that this type of QS does not have limit
cycles) it is never easy to found upper bounds for the number of limit
cycles of a given QS. We also remark that although after the work of
Bamon ([2]) the finiteness of the number of limit cycles for a given QS
is known, the existence of a uniform bound for all QS is yet an open
problem.

We also prove the following corollaries:

Corollary 1.4. If we add to the hypotheses of Theorem 1.3 that the
two generalized invariant curves do not have isolated real points, then
the upper bound of the theorem can be reduced to be 2M and moreover
all these limit cycles are nested.

Notice that this corollary extends the classical result that Lotka-
Volterra QS, that is QS with two non parallel invariant straight lines,
do not have limit cycles. This is so because in this case M = 0 and
of course these curves do not contain real isolated points. See also
Subsection 6.2 for a different and direct proof.

The following result gives in the case of invariant algebraic curves an
upper bound only in terms of the degrees of these curves and extends
again the result for Lotka-Volterra QS.

Corollary 1.5. Consider a quadratic system with two different in-
variant irreducible algebraic curves of degrees m1 and m2. Then its
maximum number of limit cycles is 2([m1/2] + [m2/2]) + 2, where [ ]
is the integer part function. Moreover, if the two algebraic invariant
curves do not have real isolated points, then the upper bound reduces to
2([m1/2] + [m2/2]).

In Corollary 5.3 we also prove that under some more additional con-
ditions a QS with two generalized invariant curves have in some cases
at most two limit cycles and in other ones do not have limit cycles. We
do not include the precise statements in this introduction because we
would need to introduce some more notations and definitions.

In Section 6, we apply Theorem 2.1 to other QS to prove non-
existence of limit cycles, and also to give conditions for non-existence
of limit cycles for several parametric families of QS having some invari-
ant algebraic curve, such that for some values of their parameters they
have a limit cycle not contained in this curve.

Finally, to illustrate that Theorem 2.1 is also useful to families not
necessarily quadratic we dedicate Section 7 to other parametric families
of planar systems that have some invariant algebraic curve and limit
cycles, not contained in these curves, for some values of the parameters.
Specifically, in Subsection 7.1 we study two families of cubic systems
and in Subsection 7.2 we give some results on Liénard systems.
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2. Preliminary results

Consider a polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y), (1)

where the dot stands for differentiation with respect to t, and denote
by X = (P,Q) its associated vector field. Recall that system (1) has
an invariant algebraic curve f(x, y) = 0 if f is irreducible and it holds
that

ḟ(x, y) =
∂f(x, y)

∂x
P (x, y) +

∂f(x, y)

∂y
Q(x, y) = k(x, y)f(x, y), (2)

for some polynomial k(x, y), called the cofactor of f. Note that if the
set {(x, y) ∈ R2 : f(x, y) = 0} is not empty, then it is invariant by the
flow of (1). Observe also that if the degree of X (i. e., the maximum
of the degrees of P and Q) is n, then the degree of k is at most n− 1.

A simple, but key result for proving our results will be the next
theorem. As we have already explained it is used in some particular
cases in [5, 8] and here it is presented as a systematic method for
studying the non-existence of periodic orbits of polynomial differential
systems with invariant algebraic curves.

Theorem 2.1. Consider the polynomial differential system (1) and as-
sume that it has an invariant algebraic curve f(x, y) = 0 with cofactor
k(x, y). For each α ∈ R and each polynomial g(x, y) define the new
polynomial

Nα,g(x, y) = αk(x, y)g(x, y) +
∂g(x, y)

∂x
P (x, y) +

∂g(x, y)

∂y
Q(x, y).

Then, if for some α and g, Nα,g does not change sign and vanishes only
on some algebraic curve that it is not invariant by the flow, then the
only limit cycles of the system (if any) are included in the invariant
algebraic curve f(x, y) = 0.

Moreover, if for some α and g, Nα,g(x, y) ≡ 0 then g(x, y)|f(x, y)|α,
if it is not piecewise constant, is a first integral of (1) and the same
conclusion holds.

Proof. We will use the following well know fact: If for some open set
U ⊂ R2, there exists a class C1 function such that v : U → R, and

v̇(x, y) =
∂v(x, y)

∂x
P (x, y) +

∂v(x, y)

∂y
Q(x, y) (3)

does not vanish then the system (1) does not have periodic orbits totally
contained in U . This is so because while the solution is in U the function
t → v(x(t), y(t)), where (x(t), y(t)) is any solution of the differential
equation, is monotonous. Clearly, this fact prevents the existence of
periodic orbits. If the right hand side of (3) vanishes on some curve,
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but does not change it sign, then the same holds, unless this curve is
invariant by the flow.

Since f(x, y) = 0 is an invariant algebraic curve, each of the con-
nected components of U \ {f(x, y) = 0} is invariant. For proving the
theorem we apply the above result by taking v(x, y) = g(x, y)|f(x, y)|α
and U any of these components. Some computations give that

v̇(x, y) = |f(x, y)|αNα,g(x, y)

and hence the result follows under the hypotheses on Nα,g. Clearly
when Nα,g(x, y) ≡ 0 then v̇(x, y) ≡ 0 and v is a first integral of (1).
Then although periodic orbits can exist, the only possible limit cycle
are contained in {f(x, y) = 0}, as we wanted to prove. �

Notice that under the hypotheses of Theorem 2.1,

Nα.g(x, y)
∣∣
g(x,y)=0

=
∂g(x, y)

∂x
P (x, y) +

∂g(x, y)

∂y
Q(x, y)

does not change sign and as a consequence the curve {g(x, y) = 0} is
without contact by the flow of (1).

For practical applications one idea to prove that Nα,g does not change
sign, and that works in many situations, is to introduce some param-
eters in the unknown function g, in such a way that a clever choice of
them allows to prove the existence of some r ∈ R and some polynomial
w such that Nα,g(x, y) = rw2(x, y). Another useful approach is to try
to force that N only depends on one of the variables and then impose
that all its roots be double.

Now we give two remarks with two extensions of Theorem 2.1.

Remark 2.2. When system (1) has two different invariant irreducible
algebraic curves fi(x, y) = 0, i = 1, 2, with respective cofactors ki(x, y),
a similar approach can be used. For each α1, α2 ∈ R and each polyno-
mial g(x, y) we can define the new polynomial

Nα1,α2,g(x, y) =
(
α1k1(x, y) + α2k2(x, y)

)
g(x, y)

+
∂g(x, y)

∂x
P (x, y) +

∂g(x, y)

∂y
Q(x, y).

Then under the same hypotheses that in Theorem 2.1 for this new func-
tion N the same conclusions hold.

Given any smooth function f(x, y), not necessarily polynomial, we
will say that f(x, y) = 0 is a generalized invariant curve for X if

ḟ(x, y) = k(x, y)f(x, y), as in (2), with k also a polynomial of de-
gree at most n− 1, that is, one less that the degree of the vector field.
This k is called its cofactor. Given two generalized invariant curves we
will say that they are different if it do not exist any α, β ∈ R such that
|f1(x, y)| = α|f2(x, y)|β.
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Remark 2.3. Theorem 2.1 and Remark 2.2 also hold if in their re-
spective statements the invariant algebraic curves are replaced by gen-
eralized invariant curves.

3. Proof of Theorem 1.1

It is not restrictive to suppose that the invariant parabola P is
f(x, y) = y − x2 = 0. It is well known that QS having the invariant
parabola P can be written as{

ẋ = a+ bx+ hy + c(y − x2) + exy = P (x, y),

ẏ = 2x(a+ bx+ hy) + d(y − x2) + 2ey2 = Q(x, y),
(4)

where a, b, c, d, e, h are arbitrary real parameters, see [14]. In fact the
cofactor of f is k(x, y) = −2cx+ 2ey + d. Moreover, the critical points
on P are of the form (x0, x

2
0) where x0 is one of the real roots of

P (x, x2) = ex3 + hx2 + bx+ a = 0.

Next, we split our proof in two cases:

(i) The above equation has no real roots. Then in particular e = 0.
(ii) The above equation has some real root, say x = x0.

We split again case (i) in two subcases c = 0 and c 6= 0 and in both
of them we will apply Theorem 2.1 for proving the non-existence of
limit cycles.

Consider first the case (i) with c = 0. Then, since e = 0, by taking
g = 1 and α = 1 in that theorem we get that N(x, y) = k(x, y) = d,
and the result follows.

For the situation (i) with c 6= 0, recall that e = 0. We consider

g(x, y) = 2ac2 + bcd+ d2h− 2ch(dx− cy) and α = h/c

and recall that k(x, y) = −2cx+ d. Then some computations give that

N(x, y) =
h(2cx− d)2(bc+ dh)

c

and again the result follows.
In case (ii) we will prove that if there exists a limit cycle it is unique

and hyperbolic by transforming these QS to new QS with an invariant
straight line. For these QS, as we have already commented, the unique-
ness and hyperbolicity follows by the results of [12, 13, 17, 19, 38].

Following [14] we start proving that in case (ii) it is not restrictive
to consider a = 0 in (4). Take the new coordinates X = x − x0 and
Y = x2

0− 2x0x+ y. In these coordinates y− x2 = 0 is transformed into
Y −X2 = 0. Moreover, system (4) writes as{

Ẋ = BX +HY + C(Y −X2) + eXY,

Ẏ = 2X(BX +HY ) +D(Y −X2) + 2eY 2,
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where

B = b+ 2hx0 + 3ex2
0, C = c− 2ex0,

D = d− 2cx0 + 2ex2
0, H = h+ 3ex0.

Hence, from now on, we consider system (4) with a = 0. Let γ be a limit
cycle of this system. It is totally contained in one of the six connected
components of R2 \ (P ∪ {x = 0} ∪ {y = 0}) . This is so because P is
invariant and moreover

ẋ|x=0 = (c+ h)y, and ẏ|y=0 = (2b− d)x2.

Call V this connected component which, of course, must contain a
critical point of index +1. Hence in particular the new birational change
of variables

X =
x

y − x2
, Y =

y

y − x2

is well defined on the region V where γ lies, and its inverse is

x =
Y − 1

X
, y =

Y (Y − 1)

X2
.

It transforms the parabola y− x2 = 0 into the straight line Y − 1 = 0.
By introducing a new time s such that ds/dt = X, and writing Z ′ =
dZ/ds = XdZ/dt = XŻ, after some computations we get that{

X ′ = XẊ = −cX + eY + (b− d)X2 + (2c+ h)XY − eY 2,

Y ′ = XẎ = (Y − 1)
(
(2b− d)X + 2(c+ h)Y

)
,

which is a quadratic system with the invariant straight line Y − 1 = 0,
as we wanted to prove.

4. Proof of Theorem 1.2

For each of the cases the result will be a consequence of Theorem 2.1
by choosing suitable α and g in such a way that Nα,g(x, y) = rw2(x, y),
for some r ∈ R and some polynomial w.

We skip all the computations and we simply write P,Q, the algebraic
curve f = 0 and its cofactor k, a suitable constant α and function g,
and finally the corresponding N = Nα,g.

For some of the systems some given values of the parameters have to
be omitted. For instance, the value a = −10/3 in Case 4. These values
could be studied separately, but for the sake of shortness and because
for them the invariant algebraic curve does not contain any limit cycle
we do not study these particular values.

Case 1: Qin system with algebraic limit cycle of degree 2, see [36]:

P = −y(ax+ by + c)− (x2 + y2 − 1), Q = x(ax+ by + c),

f = x2 + y2 − 1, k = −2x, α = b/2, g = c+ by, N = abx2.
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We remark that the corresponding QS has only x2 + y2 − 1 = 0 as a
limit cycle when a 6= 0, c2 + 4(b + 1) > 0 and a2 + b2 < c2 but the
proof that there are no other limit cycles works for all values of the
parameters. A similar fact also holds for all the other cases. In fact the
range of parameters for which each invariant algebraic curve contains
a limit cycle is detailed in [1].

Case 2: Yablonskii system with algebraic limit cycle of degree 4, see
[40]:

P = −4abcx− (a+ b)y + 3(a+ b)cx2 + 4xy,

Q = (a+ b)abx− 4abcy + (4abc2 − 3(a+ b)2/2 + 4ab)x2

+ 8(a+ b)cxy + 8y2,

f = (y + cx2)2 + x2(x− a)(x− b), k = 4(−2abc+ 3c(a+ b)x+ 4y),

g = 2c(a− 3b)(3a− b)(y + cx2)− ab(a+ b− 4x)2,

α = −1/2, N = −c
(
2ab(a+ b) + (2ab− 3a2 − 3b2)x

)2
.

Case 3: Filipstov system with algebraic limit cycle of degree 4, see
[20]:

P = 6(1 + a)x+ 2y − 6(2 + a)x2 + 12xy,

Q = 15(1 + a)y + 3a(1 + a)x2 − 2(9 + 5a)xy + 16y2,

f = 3(1 + a)(ax2 + y)2 + 2y2(2y − 3(1 + a)x),

k = 6(5(1 + a)− (8 + 4a)x+ 8y),

α = −1/2, g = 2y + (3 + 5a)x2, N = −
(
3(1 + a)x− 4y

)2
.

Case 4: Chavarriga system with algebraic limit cycle of degree 4, see
[10]:

P = 5x+ 6x2 + 4(1 + a)xy + ay2, Q = x+ 2y + 4xy + (2 + 3a)y2,

f = x2 + x3 + x2y + 2axy2 + 2axy3 + a2y4, a 6= −10/3,

k = 2
(
5 + 9x+ (5 + 6a)y

)
, α = − 7 + 3a

3(10 + 3a)
,

g = −5 + (21 + 9a)x− (35 + 15a)y,

N =
2(7 + 3a)

3(10 + 3a)

(
5 + 9x+ (5 + 6a)y

)2
.
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Case 5: Chavarriga, Llibre and Sorolla system with algebraic limit
cycle of degree 4, see [10]:

P = 2(1 + 2x− 2ax2 + 6xy), Q = 8− 3a− 14ax− 2axy − 8y2,

f = 1/4 + x− x2 + ax3 + xy + x2y2, k = 4(2− 3ax+ 2y),

α = 1/3, g = −5 + 3ax/2 + y, N = −4(2− 3ax+ 2y)2/3.

Case 6: Christopher, Llibre and Świrszcz system with algebraic limit
cycle of degree 5, see [16]:

P = 28x+ 2(16− a2)(a+ 12)x2 + 6(3a− 4)xy − 12

a+ 4
y2, a 6= −4,

Q = 2(16− a2)x+ 8y + (16− a2)(a+ 12)xy + 2(5a− 12)y2,

f = x2 + (16− a2)x3 + (a− 2)x2y − 2

a+ 4
xy2 − 1

4
(4− a)(a+ 12)x2y2

+
8− a
a+ 4

xy3 +
1

(a+ 4)2
y4 +

a+ 12

a+ 4
xy4 − 6

(a+ 4)2
y5,

k = 56 + 6(16− a2)(a+ 12)x+ 4(13a− 24)y, α = − 3 + 4a

15(3 + a)
, a 6= −3,

g = 28 + (−144− 192a+ 9a2 + 12a3)x+ (42 + 56a)y,

N = −2(3 + 4a)

15(3 + a)

(
28 + (576 + 48a− 36a2 − 3a3)x+ (−48 + 26a)y

)2
.

Case 7: Christopher, Llibre and Świrszcz system with algebraic limit
cycle of degree 6, see [16]:

P = 28a(a− 30)x+ y + 168a2x2 + 3xy,

Q = 16a(a− 30)
(
14a(a− 30)x+ 5y + 84a2x2

)
+ 24a(17a− 6)xy + 6y2,

f = 48a3(a− 30)4x2 + 24a2(a− 30)3xy + 3a(a− 30)2y2

+ 64a3(a− 30)3(9a− 4)x3 + 24a2(a− 30)2(9a− 4)x2y

+ 18a(a− 30)(a− 2)xy2 − 7y3 + 576a3(a− 30)2(a− 2)2x4

+ 144a2(a− 30)(a− 2)2x3y + 27a(a− 2)2x2y2

− 3456a3(a− 30)(a− 2)2(2a+ 3)x5 − 432a2(a− 2)2(2a+ 3)x4y

+ 3456a3(a− 2)2(a+ 12)(2a+ 3)x6,

k = 168a(a− 30) + 1008a2x+ 18y, α = −1/3,

g = −16a(a− 30)2 − 24a(a− 30)(7a− 30)x

− 72a(360− 78a+ 5a2)x2 + 3(30 + a)y,

N = 896a2(a− 30)(a− 30 + 6ax)2.



NUMBER OF LIMIT CYCLES 11

We remark that there is a misprint when this system in written in [1].
There the coefficient of y in Q is typed as 516a(a− 30) instead of the
correct value 80a(a− 30).

Case 8: Alberich-Carramiñana, Ferragut and Llibre system with al-
gebraic limit cycle of degree 5, see [1]:

P = −8x+
a

2
(a− 16)y − (5a− 64)x2 +

a

8
(a2 − 256)xy,

Q = −28y +
24

a
x2 − 3(3a− 32)xy +

a

4
(a2 − 256)y2,

f = ay2 − 4x2y +
a

2
(a− 12)xy2 − a2

4
(a− 16)y3 +

4

a
x4

+ (24− a)x3y +
a

16
(a2 − 256)x2y2 − 24

a
x5 + (a+ 16)x4y,

k = −56− 2(13a− 152)x+
3a

4
(a2 − 256)y, α =

26− 4a

15(a− 2)
, a 6= 2,

g = 112 + 56(2a− 13)x+ 3a(2a− 13)(a− 16)y,

N =
2a− 13

60(a− 2)

(
− 224 + (1216− 104a)x+ a(3a2 − 768)y

)2
.

5. Proof of Theorem 1.3

This section is devoted to prove Theorem 1.3, Corollary 1.5 and other
related results. When we say that the sign of a number, say h, gives
the stability of a limit cycle or a critical point we mean that when the
sign of h is positive (resp. negative) this object is a repellor (resp. an
attractor).

Proof of Theorem 1.3. From the classical results on QS ([18, 41]) we
know that each limit cycle of a QS surrounds exactly one critical point,
that must be of focus type and that there are at most two nests of
concentric limit cycles. Moreover, in [44] it is proved that and in the
later case one of the nests is formed by a single limit cycle. In other
words, the configurations of limit cycles for a QS are either L limit
cycles surrounding a focus, or L limit cycles surrounding a focus and
one limit cycle surrounding another focus. Moreover, from [2] and for
a given QS, L is finite.

Let fi(x, y) = 0, i = 1, 2 be the two different generalized invariant
curves, and let ki(x, y) = ai + bix + ciy, i = 1, 2 be their respective
cofactors. Let div(X (x, y)) = a+bx+cy be the divergence of the vector
field associated to the QS. It is well known ([41]) that the characteristic
exponent of a limit cycle γ is

h =

∫ T

0

div(X )(x(t), y(t)) dt =

∫ T

0

(
a+ bx(t) + cy(t)

)
dt,
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where (x(t), y(t)) is the time parameterization of γ and T is its period.
Recall that if h 6= 0 then γ is hyperbolic and its sign gives its stability.

For convenience we introduce the sets Zi = {fi(x, y) = 0}, i = 1, 2,
Z1,2 = Z1 ∪ Z2 and also two real numbers X and Y, as

X =

∫ T

0

x(t) dt, Y =

∫ T

0

y(t) dt and T =

∫ T

0

dt.

Let us study h when γ is not included in Z1,2. In this case, by inte-

grating the equalities ḟi(x, y)/fi(x, y) = ki(x, y) over γ it holds that∫ T

0

ki(x(t), y(t)) dt =

∫ T

0

(
ai + bix(t) + ciy(t)

)
dt = 0, i = 1, 2.

By joining all the above equalities, for γ ∩ Z1,2 = ∅, it holds that

A

TX
Y

 =

h0
0

 , where A =

 a b c
a1 b1 c1

a2 b2 c2

 .

When (b1c2 − b2c1) det(A) 6= 0 then

h =
det(A)

b1c2 − b2c1

T 6= 0

and as a consequence all periodic orbits not contained in Z1,2 are hy-
perbolic limit cycles and with the same stability. In particular, only
one limit cycle can exist in the region delimited by two consecutive
limit cycles contained in Z1,2, or between the critical point and the
first limit cycle, or surrounding the last limit cycle of the nest. In any
case, the maximum number of limit cycles that surround one focus is 1,
while surrounding the other one the maximum number is M contained
in Z1,2 and M+1 not in Z1,2. This makes a total of 2M+2 limit cycles,
as we wanted to see.

To end the proof we need to study the cases where det(A)(b1c2 −
b2c1) = 0. In this situation we will prove that the QS does not have
limit cycles outside Z1,2.

Assume first that det(A) = 0. Then, there exist real numbers u, v
and w such that uk1(x, y)+vk2(x, y)+w div(X ) ≡ 0. By using the well
known formula

div
(
|f1(x, y)|p|f2(x, y)|qX

)
= |f1(x, y)|p|f2(x, y)|q

(
pk1(x, y) + qk2(x, y) + div(X )

)
and by taking p = u/w and q = v/w, when w 6= 0, we get that
the divergence is identically zero and the QS cannot have limit cycles
outside Z1,2. When w = 0 we can apply Remark 2.2 with f1, f2, α1 = u,
α2 = v and g(x, y) ≡ 1 to prove the non-existence of limit cycles
outside Z1,2 because Nα1,α2,g(x, y) ≡ 0 and |f1(x, y)|p|f2(x, y)|q is not
identically constant.
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Finally, when b1c2 − b2c1 = 0, notice that c2k1(x, y) − c1k2(x, y) =
a1c2− c1a2. Hence we can apply again Remark 2.2 with f1, f2 and now
α1 = c2, α2 = −c1 and g(x, y) ≡ 1, obtaining that Nα1,α2,g(x, y) ≡
a1c2 − c1a2. Therefore, the non-existence of limit cycles outside Z1,2

follows again. �

Proof of Corollary 1.4. In this proof we will use the same notations
as in the proof of Theorem 1.3. Let us show first that the new hy-
pothesis forces the QS to have at most one critical point outside the
generalized invariant curves. We know that ḟi(x, y) = ki(x, y)fi(x, y),
i = 1, 2. Let (x̄, ȳ) be a critical point not contained in these curves.

Since ḟi(x, y)|(x,y)=(x̄,ȳ) = 0 and fi(x̄, ȳ) 6= 0, we get that ki(x̄, ȳ) = 0,
i = 1, 2. Writing ki(x, y) = ai + bix+ ciy, i = 1, 2, we obtain that (x̄, ȳ)
must be a solution of the linear system

a1 + b1x̄+ c1ȳ = 0, a2 + b2x̄+ c2ȳ = 0. (5)

Then, either the system does not have a solution, or it has exactly one
solution, or it has infinitely many. In the first two situations we are
done. In the third case, as in the proof of Theorem 1.3, we can apply
Theorem 2.1 to prove that the QS does not have limit cycles because
both cofactors are proportional.

Since the QS does not have isolated critical points in the generalized
invariant curves we have already proved that all the limit cycles are
nested and surround (x̄, ȳ). Hence, arguing as in the proof of Theorem
1.3, the maximum number of limit cycles is 2M + 1.

To decrease by one this new upper bound we will prove that between
the critical point (x̄, ȳ) and the first limit cycle of the nest belonging to
Z1 ∪Z2 the QS does not have limit cycles. Assume that such a γ does
exist. We will prove that γ and the critical point (x̄, ȳ) have the same
stability giving rise to a contradiction. By the proof of Theorem 1.3 we
know that we can restrict our attention to the case (b1c2−b2c1) det(A) 6=
0 and that the stability of this γ is given by the sign of det(A)T/(b1c2−
b2c1). To study the stability of the focus point (x̄, ȳ) it suffices to know
the sign of

d = div(X )(x̄, ȳ) = a+ bx̄+ cȳ.

By using this equation and (5) we get that

A

1
x̄
ȳ

 =

d0
0


and as a consequence d = det(A)/(b1c2 − b2c1), proving the desired
result. �

Proof of Corollary 1.5. By Theorem 1.3 it suffices to prove that M =
[m1/2]+[m2/2]. To prove this equality we will show that when f(x, y) =
0 is an algebraic invariant curve of degree m of a QS then its maximum
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number of nested ovals is [m/2]. This is a simple consequence of the
fact that a straight line passing through a point surrounded by all these
ovals cuts the curve f at most at m points and that each oval induces
at least two of these cuts. In fact, exactly to two cuts because it is
known that periodic orbits of QS are convex. The upper bound of
2([m1/2] + [m2/2]) limit cycles when the invariant algebraic curves do
not contain real isolated points follows from Corollary 1.4. �

In [9] it is proved that there are QS with invariant algebraic curves
of arbitrarily high degree and not being Darboux integrable. Their
example is ẋ = 1, ẏ = 2m + 2xy + y2 and the curve has degree m +
1. For other similar examples see for instance [15, 35]. Nevertheless,
under generic conditions on the QS, the higher degree of the invariant
algebraic invariant curves is 4, see [4]. In fact, in that paper the author
proves that if a polynomial system of degree n does not have dicritic
critical points (see the paper for a definition) then the maximum degree
of any invariant algebraic curve is n + 2. By using this result and
Corollary 1.5 we obtain a new result.

Corollary 5.1. Consider a quadratic system with two different in-
variant irreducible algebraic curves and without dicritic critical points.
Then its maximum number of limit cycles is ten. Moreover, if the two
algebraic invariant curves do not have real isolated points, then this
upper bound reduces to eight.

Proof. From the results of [4] we know that the maximum degrees of
the two invariant algebraic curves is four. Then, taking m1 = m2 = 4
in Corollary 1.5 the result follows. �

Similarly, if we consider the classes of QS studied in [32, 33], which
have at most one algebraic limit cycle, we have the following result
because we can apply Theorem 1.3 and Corollary 1.4 with M = 1.

Corollary 5.2. Consider a quadratic system with two different invari-
ant irreducible algebraic curves and satisfying the hypotheses of [32, 33].
Then its maximum number of limit cycles is four. Moreover, if the two
algebraic invariant curves do not have real isolated points, then this
upper bound reduces to two.

Recall that from the proof of Theorem 1.3 we know that under its
hypotheses all the limit cycles of the QS that are not in generalized
invariant curves are hyperbolic and have the same stability. In the
following result we prove that something similar holds for all limit
cycles contained in Z1 and also for the ones contained in Z2. Moroever,
when these three stabilities coincide the upper bound for the number
of limit cycles drastically decreases.

Corollary 5.3. Assume that the hypotheses of Theorem 1.3 hold. Let
ki(x, y) = ai + bix + ciy be the cofactors of the generalized invariant
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curves of the QS, fi(x, y) = 0, i = 1, 2 and let div(X (x, y)) = a+bx+cy
be its divergence. Assume that ∆1,2

(
∆1,2−∆2

)(
∆1,2 + ∆1) det(A) 6= 0,

where

∆1,2 = b1c2 − b2c1 and ∆i = bci − cbi, i = 1, 2.

Then the next statements hold

(i) The stability of the limit cycles contained in {f1(x, y) = 0} is
given by the sign of (∆1,2 −∆2) det(A).

(ii) The stability of the limit cycles contained in {f2(x, y) = 0} is
given by the sign of (∆1,2 + ∆1) det(A).

(iii) The stability of the limit cycles not contained in {f1(x, y) = 0} ∪
{f2(x, y) = 0} is given by the sign of ∆1,2 det(A).

Moreover, if the three quantities ∆1,2, ∆1,2 − ∆2 and ∆1,2 + ∆1 have
the same sign, then the maximum number of limit cycles of the QS is
two. Furthermore, in this last situation, if the two generalized invariant
curves do not contain isolated real points then the QS does not have
limit cycles.

Proof. In this proof we will use the same notations as in the proof of
Theorem 1.3. Recall that if a limit cycle does not intersect Z1,2 then
its characteristic exponent is h = det(A)T/∆1,2, that is not zero under
our hypotheses.

Let γ be a limit cycle contained in Z1. By using the results of [27]
we know that

h =

∫ T

0

div(X )(x(t), y(t)) dt =

∫ T

0

k1(x(t), y(t)) dt.

Equivalently

h =

∫ T

0

(
a+ bx(t) + cy(t)

)
dt =

∫ T

0

(
a1 + b1x(t) + c1y(t)

)
dt.

The above equalities write as h = aT + bX + cY = a1T + b1X + c1Y.
Moreover since γ ∩Z2 = ∅, a2T + b2X + c2Y = 0. In short, for γ ⊂ Z1

it holds that

A

TX
Y

 =

hh
0

 .

Then,

h =
det(A)

∆1,2 −∆2

T 6= 0.

Similarly, if γ ⊂ Z2,

h =
det(A)

∆1,2 + ∆1

T 6= 0.

Hence, under our hypotheses, all possible limit cycles share the stability
and as a consequence, at most one limit cycle can surround each of the
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critical points. In short, 2 is the maximum number of limit cycles, as
we wanted to prove.

The non-existence of limit cycles when the generalized invariant
curves do not contain real isolated points follows from Corollary 1.4.

�

We remark that the results of Theorem 1.3 and its corollaries could
be extended to polynomial vector fields of degree n having enough
different generalized invariant curves (in fact n(n + 1)/2 − 1 curves).
It can be proved that all the limit cycles outside of these curves have
the same stability and an upper bound of how many of them possesses
the system only depends on the number of limit cycles contained in the
given curves and on their distribution. Also, generically, the stabilities
of the limit cycles contained in the generalized invariant curves can be
explicitly obtained. Notice also that the possible configurations of limit
cycles are much more complicated than in the QS case.

6. More results on quadratic systems

In this section we collect a miscellany of results about QS where the
common point is that their proofs are based on the method introduced
in Theorem 2.1.

6.1. Quadratic systems with an invariant hyperbola. As we have
already explained, QS with an invariant hyperbola do not have limit
cycles, see [11]. We include a simple proof based on our approach. We
consider that the hyperbola is f(x, y) = x2 − y2 − 1 = 0, and we take
the normal form considered in [23],{

ẋ = y(a+ bx+ cy) + u(x2 − y2 − 1) = P (x, y),

ẏ = x(a+ bx+ cy) + v(x2 − y2 − 1) = Q(x, y).
(6)

Then its cofactor is 2(ux− vy).

Proposition 6.1. Quadratic systems with an invariant hyperbola do
not have limit cycles.

Proof. We use the same approach and notations that in the proof of
Theorem 1.2. It is not restrictive to consider that the QS is written as
in (6). When u2 6= v2 we take in Theorem 2.1,

g(x, y) = a2(v2− u2)2 + a(v2− u2)(uc+ vb)(vx− uy), α =
uc+ vb

2(v2 − u2)
.

Then

N(x, y) = a(uc+ vb)(ub+ vc)(ux− vy)2

and the result follows for this case.
When u2 = v2 = 0, trivially the QS does not have limit cycles.

Finally, when v = σu, with σ ∈ {+1,−1}, it holds that the straight
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line f2(x, y) = y − σx = 0 is also invariant. Observe that the critical
points of the QS must satisfy

0 = yQ(x, y)− xP (x, y) = σu(y − σx)(x2 − y2 − 1).

Hence all the critical points lay on invariant algebraic curves, and since
any periodic orbit γ must surround one of these points, such a γ cannot
exist by the theorem of uniqueness of solutions for these differential
systems. �

6.2. Lotka-Volterra QS. From the classical Bendixson-Dulac theo-
rem, Bautin already proved that QS with two non parallel invariant
straight lines do not have limit cycles, see for instance [3] or [24, Sec.
1.2]. The point in that proof is to use a Dulac function of the form
|x|α|y|β. Here we will present a different proof by using the extension
of Theorem 2.1 given in Remark 2.2.

Proposition 6.2. The Lotka-Volterra QS{
ẋ = x(a0 + a1x+ a2y),

ẏ = y(b0 + b1x+ b2y)
(7)

does not have limit cycles.

Proof. We define several quantities associated to (7). Set ∆i,j = aibj −
ajbi, D = a0a1b2 − a0b1b2 − a1a2b0 + a1b0b2 and

C = −a0a1b
2
2 + a0b1b

2
2 + 2 a1a2b0b2 − a1b0b

2
2 − a2

2b0b1.

First, let us prove that when a2∆0,2∆1,2 = 0 the system does not have
periodic orbits. When a2 = 0 the first differential equation does not
depend on y, that is, ẋ = x(a0 + a1x), and hence the behaviour of x(t)
cannot be periodic unless it is identically constant. When ∆1,2 = 0
system (7) either does not have critical points outside the axes or it
has a full line of critical points. In any case, periodic orbits are not
possible. Finally, when ∆1,2 6= 0 and ∆0,2 = 0 the system has all critical
points on the axes, which are invariant.

When a2∆0,2∆1,2 6= 0 we will apply Remark 2.2 with f1(x, y) = x,
f2(x, y) = y, k1(x, y) = a0 + a1x+ a2y, k2(x, y) = b0 + b1x+ b2y,

α1 =
b2C

a2∆0,2∆1,2

, α2 =
b2(a2 − b2)∆0,1

∆0,2∆1,2

and

g(x, y) = b2C∆1,2x− a2b2(a2 − b2)∆1,2∆0,2y − C(a2 − b2)∆0,2.

Straightforward computations give that

Nα1,α2,g(x, y) =
b2(a2 − b2)CD

a2∆0,2∆1,2

(
∆1,2x+ ∆0,2

)2
.

Hence, when b2(a2 − b2)CD 6= 0 the QS does not have periodic orbits.
When b2(a2 − b2)CD = 0 it can have periodic orbits but not limit
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cycles because it has a smooth first integral. For instance, the classical
Lotka-Volterra system, that corresponds to a1 = b2 = 0, a0 > 0, b1 > 0
and a2 < 0, b0 < 0, has a global center in the first quadrant. Notice
that in this case D = 0. �

6.3. A QS with an invariant algebraic curve of degree four.
In [22] the authors list QS having some special invariant algebraic curve.
Our method applies to several of them. As an example we consider the
QS {

ẋ = −2k1rx+ 4k2ry + k1x
2 − 8k2xy,

ẏ = −3k1ry + 3k2x
2 + 2k1xy − 16k2y

2,
(8)

that has the invariant algebraic curve f(x, y) = −2rx3 + x4 + 4r2y2,
called the Antiversiera curve, with cofactor k(x, y) = −6k1r + 4k1x −
32k2y.

Proposition 6.3. The QS (8) does not have limit cycles.

Proof. By using Theorem 2.1 with α = −1/4 and g(x, y) = r − 2x we
get that Nα,g(x, y) = 3

2
k1r

2. Hence, when rk1 6= 0 it does not have
periodic orbits. When rk1 = 0 it can have periodic orbits but not limit
cycles because it has the first integral g4(x, y)/f(x, y). For instance,
when k1 = 0 and r 6= 0 the QS has a center. �

6.4. A QS with an invariant algebraic curve of degree twelve.
In [10] the authors prove that the QSẋ = 1 + x2 + xy,

ẏ =
57

2
− 81

2
x2 + 3y2,

(9)

has the invariant algebraic curve

f(x, y) = −5488 y4−32x
(
35125x2 − 1029

)
y3+f2(x)y2+f1(x)y+f0(x),

where

f2(x) = −375000x6 + 5058000x4 − 711288x2 − 98784,

f1(x) = 8x
(
1953125x8 + 140625x6 + 2932875x4 − 1515789x2 + 40284

)
,

f0(x) = 48828125x12 − 23437500x10 + 41343750x8 − 97906500x6

+ 71546517x4 − 7246584x2 − 442368,

with cofactor k(x, y) = 12(x + y) and that it is not Liouvillian inte-
grable. We show that it does not have periodic orbits.

Proposition 6.4. The quadratic system (9) does not have periodic
orbits.

Proof. A detailed study of the curve f(x, y) = 0 shows that it does not
contain closed ovals, although it contains the isolated points (1,−2)
and (−1, 2). In fact, these two points are the unique critical points of
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the QS, and are foci with opposite stabilities. To prove that the QS
does not have periodic orbits in R2 \ {f(x, y) = 0} we apply Theorem
2.1 with g(x, y) = x and α = −1/12. Then Nα,g(x, y) ≡ 1 and the
result follows. �

6.5. Non-existence of limit cycles for QS with an invariant
parabola. We apply Theorem 2.1 to give a simple test for non-existence
of limit cycles for the family of QS with an invariant parabola (4),{

ẋ = a+ bx+ hy + c(y − x2) + exy,

ẏ = 2x(a+ bx+ hy) + d(y − x2) + 2ey2.

Now, we prove the following result:

Proposition 6.5. Associated to the QS (4), define

∆ =
(

16a2e3 +
(
(−8bc− 16hb− 12cd− 8dh)a+ (2b− d)3

)
e2

− 2(c+ h)
(
4c(c+ 2h)a− 8b2c+ 6bcd− 4bdh− 3cd2

)
e

+ 8c(c+ h)2(bc+ dh)
)(

(2b− d)e+ 2c2 + 2hc
)
e.

Then if ∆ ≥ 0, system (4) does not have periodic orbits.

Proof. Recall that for the above QS the invariant parabola is f(x, y) =
y − x2 = 0, and its cofactor k(x, y) = −2cx + 2ey + d. For shortness
we will write A to refer to the set of parameters a, b, c, d, e, h and G
to refer to the set of parameters g0, g1, g2, α. If in Theorem 2.1 we take
g(x, y) = g0 + g1x+ g2y, it holds that

N := Nα,g(x, y) =
∑

0≤i+j≤2

ni,j(A,G)xiyj,

where ni,j are polynomials in their variables. The idea is to search a
condition among the parameters A in such a way that the free param-
eters G can be written in terms of the parameters A, G = G(A), and
moreover

N =
∑

0≤i+j≤2

ni,j(A,G(A))xiyj = r

( ∑
0≤i+j≤1

wi,j(A)xiyj

)2

, (10)

where wi,j are polynomials on the variables A and r ∈ R.
We claim that this condition is ∆ ≥ 0. From this claim, the above

equality, and Theorem 2.1, our result follows.
Let us give some hints for the proof of the claim. We skip the details

and the cumbersome expressions. A first observation is that a necessary
condition for the existence of a real number r and some polynomials wi,j
satisfying (10) is that the discriminant (disc) of N, either as a quadratic
polynomial in x, or as a quadratic polynomial in y, are identically zero.
For instance, the condition

discy(N) = s0(A,G) + s1(A,G)x+ s2(A,G)x2 ≡ 0 (11)
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has to be satisfied. The equation s1(A,G) = 0 is of the form

s1(A,G) = u0(A,G) + u1(A,G)g0 = 0,

for some polynomials u0 and u1 that do not depend on g0. Hence, when
u1(A,G) 6= 0, the value g0 can be obtained from all the other param-
eters A and G. By using this value of g0 we get that the equality (11)
writes as

discy(N) = t0(A,G) + t2(A,G)x2 ≡ 0,

where the parameter g0 is no more in G, t0 is a rational function, with
u1(A,G) in its denominator, and t2 a polynomial one. Next, studying
the system of equations

t0(A,G) = 0, t2(A,G) = 0,

we conclude that it has solutions if

(−2be− 2c2 − 2ch+ ed)g1 + (4ae− 2cd− 2dh)g2 = 0

and α satisfies a quadratic polynomial equation of the form

v0(A) + v1(A)α + v2(A)α2 = 0. (12)

Hence our problem, when u1(A,G) 6= 0, has been essentially reduced to
the existence of a real value α satisfying the above quadratic equation.
Finally, using that if we have a suitable set of values g0, g1 and g2, for
which (10) is satisfied, the same holds for βg0, βg1 and βg2, for any
β ∈ R, we can eliminate the presence of denominators during all the
process and the condition discy(N) ≡ 0 follows for all the values of the
parameters. The discriminant of (12) with respect to α is precisely
4((2b−d)e+ 2c2 + 2hc)2∆, and so, a suitable α exists when ∆ ≥ 0. �

Notice the non-existence result proved in Proposition 6.5 also pro-
vides, through the birational transformation used in its proof, condi-
tions for non-existence of limit cycles of some QS with an invariant
straight line.

For some cases of QS with an invariant straight line a direct proof of
non-existence of limit cycles for some values of the parameters also can
be addressed with our approach. The next result presents an example
for the simple 1-parametric subcase,{

ẋ = dx− y + 1
4
x2 + 1

5
xy − 1

3
y2,

ẏ = x(1 + y),
(13)

that has the invariant straight line f(x, y) = 1 + y = 0 with cofactor
k(x, y) = x. The results of [28, Thm 2’], only apply to QS without
critical points on this invariant line and only one singularity at infinity,
the one corresponding to this line. For our system these hypotheses
correspond to d ∈ (1/5−

√
6/3, 1/5+

√
6/3). By using this result and the

properties of the rotated families of vector fields, if d± = (3±
√

6)/15,
it holds that the system has a limit cycle only when d ∈ (0, d−), where
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d− ≈ 0.0367, and it surrounds the origin or when d ∈ (d+, 3/5), where
d+ ≈ 0.3633, and it surrounds (0,−3) and always it is unique and
hyperbolic. We prove a much weaker result, but with a simple proof.

Proposition 6.6. System (13), with d ≥ 1/5, does not have periodic
orbits surrounding the origin.

Proof. We will apply Theorem 2.1 with α = 0 and g(x, y) = g0(y) +
g1(y)x+g2(y)x2, and a slightly different approach that in previous cases
considered in this paper, for studying when N0,g does not change sign.
Notice that with this point of view, in this case there is no need to
introduce the parameter α in the approach because the term |f(x, y)|α
introduced in the proof of Theorem 2.1 reduces to (y+1)α in the region
y + 1 > 0 and this function can be thought to be already contained in
the functions gi(y). If we compute N = N0,g we obtain

N(x, y) =
(

(1 + y)g′2(y) +
1

2
g2(y)

)
x3

+
(

(1 + y)g′1(y) +
1

4
g1(y) +

(
2d+

2

5
y
)
g2(y)

)
x2

+
(

(1 + y)g′0(y) +
(
d+

1

5
y
)
g1(y)− 2y

(
1 +

1

3
y
)
g2(y)

)
x

− 1

3
y(y + 3)g1(y).

To impose that N does not depend on x we have to solve three ordinary
differential equations, one for each gi, i = 0, 1, 2. By imposing that
g2(0) = 1 and g1(0) = 0 we obtain that

g2(y) =
1√

1 + y
, g1(y) = − 8

15

(15d− 4)( 4
√

1 + y − 1) + y√
1 + y

.

We do not need to find explicitly g0, but only to know its existence for
all y + 1 > 0. This follows from the differential equation associated to
the coefficient of x in N. By taking these functions

N(x, y) = −1

3
y(y + 3)g1(y) =

8

45

y + 3√
1 + y

yM(y),

where M(y) = (15d− 4)( 4
√

1 + y − 1) + y. Hence the result will follow
if we prove that yM(y) ≥ 0 for y ≥ −1, when d ≥ 1/5. This can
be seen by studying the function M and its derivative. Notice that
M(−1) = 3− 15d ≤ 0 and that at y ' 0, M(y) = 15

4
dy +O(y2). �

6.6. Non-existence of limit cycles for some QS with an invari-
ant cubic. It is known that there are two families of QS with an
invariant cubic that have a (unique) limit cycle not contained on this
curve, see for instance [6, 39, 43]. We consider one of these families
and give conditions on its parameters to have non-existence of periodic
orbits.
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We take the systemẋ =
1

2
(1− x)x− L

2
x2 +

1

2
u(−1 + 2x+ xy),

ẏ = −1− y − uy(1 + y) + L(1 + xy),
(14)

where L and u are real parameters. It has the invariant algebraic cubic
f(x, y) = −1 + 2x + x2y = 0, with cofactor k(x, y) = u − x, and for
some values of L and u it also has a limit cycle. We prove:

Proposition 6.7. System (14), with (1− u+ Lu)(6− 5u+ 9Lu) ≥ 0,
does not have periodic orbits.

Proof. The proof follows exactly the same steps as the proof of Proposi-
tion 6.5, but the computations are much easier and explicit. By taking
in Theorem 2.1

g(x, y) = −(uα− u+ 1)(uα− u− 3) + 8α(Lu− u+ 1)x+ 4αu2y,

with α real and such that

−u2α2 + 2u(6Lu− 5u+ 5)α + 4Lu2 − 5u2 + 6u− 1 = 0,

it holds that N(x, y) = rw2(x, y), for some linear polynomial w. The
discriminant with respect to α of the above quadratic equation is
16u2(1 − u + Lu)(6 − 5u + 9Lu) ≥ 0, and hence the proposition fol-
lows. �

7. Other families of planar systems

This final section is devoted to present some results on non-existence
of limit cycles for other families of polynomial vector fields, most of
them having an invariant algebraic curve. Again we apply Theorem 2.1
and it includes cubic and Liénard systems.

7.1. Some cubic systems. We start with the cubic system{
ẋ = ax+ y − (ax2 + xy + ay2)(x+ y) = P (x, y),

ẏ = ay − (ax2 + xy + ay2)(y − x) = Q(x, y),
(15)

with the invariant algebraic curve f(x, y) = x2 + y2 − 1 and cofactor
k(x, y) = −2(ax2 + xy + ay2). This system is introduced in [26] and
there it is proved that it has exactly two limit cycles, counted with their
own multiplicities, when a ∈ I = (−1/2, (1−

√
2)/2). Moreover, one of

these limit cycles is always f(x, y) = 0, and it is the only one (and it is
double) when a = −1/4. Furthermore, it is not difficult to prove that
for a ∈ J := (−∞, (1 −

√
2)/2) ∪ ((1 +

√
2)/2,∞) the invariant circle

f(x, y) = 0 is always a limit cycle.
By using our approach we will show that it does not have periodic

orbits different of f(x, y) = 0, for most of the values a 6∈ I.
Proposition 7.1. System (15) does not have periodic orbits different
of x2 + y2 − 1 = 0, for a ≤ −1/2 and for a ≥ 0.
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Proof. Notice first that x2 + y2− 1 = 0 is a periodic orbit if and only if
the system does not have critical points on it, and this happens if and
only if 4a2 − 4a− 1 > 0, which is equivalent to a ∈ J.

First we apply Theorem 2.1 with g = 1 and α = 1. The N1,1(x, y) =
k(x, y) = −2(ax2 + xy + ay2). Hence when 1 ≤ 4a2, that is when
|a| ≥ 1/2, the result follows.

To prove the non-existence of periodic orbits different of f(x, y) = 0,
when a ≥ 0 we take in Theorem 2.1, α = −1− 2a and

g(x, y) = 4a
(
2a2x2 + 2axy + (2a2 + 1)y2

)
.

After several computations we get that

Nα,g(x, y) = 16a2(a2x2+2axy+(a2+1)y2)+8a(4a2+1)(ax2+xy+ay2)2.

Since the discriminant of a2x2 + 2axy + (a2 + 1)y2 with respect to x
is −4a4y2 ≤ 0 and a ≥ 0, it holds that Nα,g(x, y) ≥ 0 and the result
follows. �

The upper bound for the number of limit cycles of system (15) given
in [26] is obtained by transforming it into an Abel differential equation.
Here, we add some comments of another approach that also allows to
study in detail the exact number of limit cycles of system (15). First
we observe that if we introduce the function

V (x, y) = (x2 + y2 − 1)(ax4 + x3y + 2ax2y2 + xy3 + ay4 − y2)

it holds that

div

(
P (x, y)

V (x, y)
,
Q(x, y)

V (x, y)

)
=

2(x2 + y2 − 1)2(ax2 + xy + ay2)2

V 2(x, y)
≥ 0.

Hence by using the Bendixson-Dulac Theorem, we know that the num-
ber of limit cycles of (15) is controlled by the number of holes of the
set R2 \ {V (x, y) = 0}, see [25, Sec 3.1] for more details on the method
and also for an application to a similar system. In particular it can be
proved that two is an upper bound of the number of limit cycles for all
values of a and also that limit cycles different of f(x, y) = 0, do exist
if and only if a ∈ I.

Our second example is extracted from [34, Sec. 4] and writes as{
ẋ = −2h− y + x2 − 4xy − y2 − 2

3
x3 − 3x2y − 5xy2 + 7

3
y3,

ẏ = −h+ x+ 1
2
x2 + 3xy + 2y2 − 4

3
x3 − 3x2y + 3xy2 + 25

6
y3,

(16)
with h ∈ R. It has the cubic invariant algebraic curve f(x, y) = 6h −
3(x2 + y2) + 2x3 − 9xy2 + 2y3 = 0, with cofactor k(x, y) = (1 − x +
2y)(2x+ y).

Proposition 7.2. System (16) does not have periodic orbits.

Proof. By applying Theorem 2.1 with α = −2 and g(x, y) = (1 − x +
2y)2, we get that Nα,g(x, y) = 2k2(x, y) ≥ 0 and the proof follows. �
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7.2. Liénard systems. In this section, instead of using invariant alge-
braic curves we will use exponential factors, that are a particular case
of generalized invariant curves. More concretely, an exponential factor
will be a function f(x, y) = exp(h(x, y)), with h a polynomial and such

that it holds that ḟ(x, y) = k(x, y)f(x, y), as in (2) with k being also
a polynomial, called its cofactor.

Recall that Theorem 2.1 also holds if the f of its statement is an expo-
nential factor, instead of an invariant algebraic curve, see Remark 2.3.
A simple example of exponential factor for the Liénard system{

ẋ = y − xH(x),

ẏ = −x
(17)

is f(x, y) = exp(y), because ḟ(x, y) = −xf(x, y) and k(x, y) = −x. We
prove:

Proposition 7.3. If there exists α ∈ R such that αx+2H(x) 6≡ 0 does
not change sign then system (17) does not have periodic orbits.

Proof. From the above discussion we know that we can apply Theo-
rem 2.1 by taking f as the exponential factor f(x, y) = exp(y). We
also take g(x, y) = 2− 2αy− α2x2. Then some computations give that
Nα,g(x, y) = α2x2

(
αx+ 2H(x)

)
, and the result follows. �

Next we will apply the above result to get effective conditions for
the non-existence of periodic solutions for two concrete families, that
have limit cycles for some values of the parameters. Concretely, we will
consider Liénard systems of degrees 3 and 5.

Corollary 7.4. Liénard system{
ẋ = y − a1x− a2x

2 − x3,

ẏ = −x

does not have periodic solutions when a1 ≥ 0.

Proof. By using Proposition 7.3 with α = 4
√
a1 − 2a2 and H(x) =

a1 + a2x+ x2 we get that

αx+ 2H(x) = 2a1 + (α + 2a2)x+ 2x2 = 2
(√

a1 + x
)2 ≥ 0,

and the result follows. �

To study the degree 5 case we will use the next result that follows
from [37]. In fact, in that paper more elaborated conditions are given
to characterize the number of real and complex roots of quartic poly-
nomials. Next lemma only presents a couple of useful and well known
simple consequences.

Lemma 7.5. For the quartic real equation

P (x) = ax4 + bx3 + cx2 + dx+ e = 0, a 6= 0,
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define ∆ = disc(P ), that is

∆ = discx(P ) = 256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e− 27a2d4

+ 144ab2ce2 − 6ab2d2e− 80abc2de+ 18abcd3 + 16ac4e

− 4ac3d2 − 27b4e2 + 18b3cde− 4b3d3 − 4b2c3e+ b2c2d2,

and R = R(P ) = 3b2 − 8ac. It holds that:

(i) If ∆ < 0 then the polynomial P has two real roots and two complex
conjugated real roots.

(ii) If ∆ > 0 and R < 0, then the polynomial P does not have real
roots.

Corollary 7.6. Liénard system{
ẋ = y − a1x− a2x

2 − a3x
3 − a4x

4 − x5,

ẏ = −x

does not have periodic solutions when U 6= 0, V > 0 and a1W > 0,
where

U =
(
− a4

4 + 8a3a4
2 − 16a3

2 + 64a1)2a1, V = 8a3 − 3a2
4,

W = 27a1a4
4 − a3

3a4
2 − 108a1a3a4

2 + 3a3
4 + 72a1a3

2 + 432a1
2.

Proof. For the sake of shortness we will write A to refer to the set of
parameters ai, i = 1, 2, 3, 4. By Proposition 7.3 we know that the result
will follow if we can choose parameters A and a value of α such that

Pα(x) = 2a1 + (α + 2a2)x+ 2a3x
2 + 2a4x

3 + 2x4 ≥ 0,

for all x ∈ R. We will study the sign of Pα by applying Lemma 7.5.
With this aim, we compute R = R(α,A) = −4V < 0 and

∆(α,A) = discx
(
Pα
)

=
4∑
j=0

qj(A)αj =: Q(α),

where q4 = −108 and the qi, i = 0, 1, 2, 3, are polynomials that we do
not detail. We claim that the inequalities of the statement imply that
there exist A and α such that ∆(α,A) > 0. From this claim the result
follows by item (ii) of the Lemma applied to Pα, because ∆(α,A) > 0,
R < 0 and then Pα(x) > 0.

To prove the claim we apply again the lemma, but in this case to the
polynomial Q(α) and we will use item (i). The claim follows because

∆(Q) = −232UW 3 < 0

and hence the polynomial Q(α) has exactly two real simple roots and,
as a consequence, it takes positive (and also negative) values for suitable
values of α. �
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[5] J. Chavarriga, I. A. Garćıa, Existence of limit cycles for real quadratic

differential systems with an invariant cubic, Pacific J. Math. 223 (2006), 201–
218.
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[7] J. Chavarriga, I. A. Garćıa, J. Sorolla, Non-nested configuration of al-
gebraic limit cycles in quadratic systems, J. Differential Equations 225 (2006),
513-–527.

[8] J. Chavarriga, H. Giacomini, J. Llibre, Uniqueness of algebraic limit
cycles for quadratic systems, J. Math. Anal. Appl. 261 (2001), 85–99.

[9] J. Chavarriga, M. Grau, A family of non-Darboux-integrable quadratic
polynomial differential systems with algebraic solutions of arbitrarily high de-
gree, Appl. Math. Lett. 16 (2003) 833–837.

[10] J. Chavarriga, J. Llibre, J. Sorolla, Algebraic limit cycles of degree 4
for quadratic systems, J. Differential Equations 200 (2004), 206–244.

[11] L. A. Cherkas, Methods for estimating the number of limit cycles of au-
tonomous systems (in Russian), Diff. Uravneniya 13 (1977), 779–802, trans-
lated in Differential Equations 13 (1978), 529–547.

[12] L. A. Cherkas, L. I. Zhilevich, Some tests for the absence or uniqueness
of limit cycles (in Russian), Diff. Uravneniya 6 (1970), 1170–1178, translated
in Differential Equations 6 (1970), 891–897.

[13] L. A. Cherkas, L. I. Zhilevich, The limit cycles of certain differential
equations (in Russian), Diff. Uravneniya 8 (1972), 1207–1213, translated in
Differential Equations 8 (1972), 924–929.

[14] C. J. Christopher, Quadratic systems having a parabola as an integral curve,
Porceedings of the Royal Society of Edinburg 112A (1989), 113–134.

[15] C. J. Christopher, J. Llibre, A family of quadratic polynomial differen-
tial systems with invariant algebraic curves of arbitrarily high degree without
rational first integrals, Proc. Am. Math. Soc. 130 (2002), 2025–2030.

[16] C. J. Christopher, J. Llibre, G. Świrszcz, Invariant algebraic curves of
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