On the Existence of Symmetric Bicircular Central Configurations of the $3 n$-Body Problem

Montserrat Corbera ${ }^{1}$ (D) . Claudia Valls ${ }^{2}$

Received: 9 September 2020 / Accepted: 12 August 2021 / Published online: 15 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

In this paper, we consider central configurations of the planar $3 n$-body problem consisting of n masses at the vertices of a regular n-gon inscribed in a circle of radius r and $2 n$ masses at the vertices of a second (not necessarily regular) concentric $2 n$-gon inscribed in a circle of radius $a r$ which are symmetric in the sense that the set of positions of the $3 n$ masses and the set of the corresponding masses are invariant under the action of a finite subgroup of $O(2)$. There are two different types of such configurations. In the first type, called regular bicircular central configurations of the $3 n$-body problem, the second $2 n$-gon is regular, n of the vertices of the second n-gon are aligned with the vertices of the first regular n-gon and the masses at the vertices of this $2 n$-gon alternate values. In the second type, called semiregular bicircular central configurations of the $3 n$-body problem, the second $2 n$-gon is semiregular and the masses at its vertices are all of them equal. A semiregular $2 n$-gon has n pair of vertices symmetric by a reflection of an angle β with respect to the axis of symmetry of the first regular n-gon. Our aim is to analyze the set of values of the parameter a for the regular $2 n$-gon and of the parameters (a, β) for the semiregular $2 n$-gon providing symmetric bicircular central configurations. In particular, for all $n \geq 2$ we prove analytically the existence of symmetric bicircular central configurations with a (respectively (a, β)) satisfying some particular conditions. Using either computer-assisted results or numerical results, we also describe the complete set of values of a (respectively (a, β)) providing symmetric bicircular central configurations for $n=2,3,4,5$ and we give numerical evidences that the pattern for $n>5$ is the same as the one for $n=5$.

[^0]
[^0]: Montserrat Corbera
 montserrat.corbera@uvic.cat
 Claudia Valls
 cvalls@math.ist.utl.pt
 1 Facultat de Ciències i Tecnologia, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
 2 Departamento de Matemàtica, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

