
POLYNOMIAL HAMILTONIAN SYSTEMS OF DEGREE 3
WITH NILPOTENT SADDLES

MONTSERRAT CORBERA AND CLAUDIA VALLS

Abstract. We provide normal forms and the global phase portraits in
the Poincaré disk for all Hamiltonian planar polynomial vector fields of
degree 3 symmetric with respect to the x−axis having a nilpotent saddle
at the origin.

1. Introduction and statement of the results

Let (P,Q) be an analytic map from R2 into itself. The qualitative theory
of ordinary differential equations in the plane provide a qualitative descrip-
tion of the behavior of each orbit (that is, a curve represented by a solution
of a differential equation x′ = P , y′ = Q) instead of giving explicitly the so-
lutions. More exactly, if (x(t), y(t)) is an orbit of that system with maximal
interval of definition (α, ω), one of the objectives is to describe its behavior
when t → α or t → ω, i.e. the α and ω-limit sets of this orbit. To this end,
it suffices:

(i) to describe the local phase portraits of singular points;
(ii) to determine the number and the location of limit cycles;
(iii) to determine the α and ω-limit sets of all separatrices of the differ-

ential system.

In this paper we will focus on the first one (i) for Hamiltonian systems. We
recall that Hamiltonian systems are relevant for many physical studies. Let
H(x, y) be a real polynomial in the variables x and y. Then a system of the
form

(1) x′ = Hy y′ = −Hx

is called a polynomial Hamiltonian system. Here the prime denotes derivative
with respect to the independent variable t. A system of the form (1) is
called a a polynomial Hamiltonian system of degree d, if the maximum of
the degrees of Hy and Hx is d.
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Quadratic systems have been widely studied in the last 100 years, and
more than 1.000 papers have been published about them. The classification
of centers for real planar polynomial differential systems started with the
classification of centers for quadratic polynomial differential systems, and
these results go back mainly to Dulac [10], Kapteyn [12, 13] and Bautin [3].
In [15] Vulpe provides all the global phase portraits of quadratic polynomial
differential systems having a center. Schlomiuk, Guckenheimer and Rand
in [14, pages 3 and 4 and 13] describes a brief history of the problem of the
center in general, and it includes a list of 300 papers covering this topic.
There are many partial results for the centers of planar polynomial differ-
ential systems of degree larger than two. Recently Colak, Llibre and Valls
[4, 5, 6, 7] provided the global phase portraits on the Poincaré disk of all
Hamiltonian planar polynomial vector fields having only linear and cubic
homogeneous terms which have a linear type center or a nilpotent center at
the origin, together with their bifurcation diagrams.

Dulak [10] was the first to detect that centers can pass to saddles through
a complex change of variables, see for more details [11]. Despite the fact that
the classification of centers for real planar polynomial differential systems
have been widely studied very few results exist in the case of saddles. For
the case of quadratic systems having an integrable saddle, its phase portraits
were provided in [2]. For the case in which there exists a nilpotent saddle
and the degree of the system is greater than two no result exists on the
classification of the phase portraits. This is the content of this paper. These
systems have too many parameters and so we will restrict our study on cubic
polynomial Hamiltonian systems with a nilpotent saddle at the origin such
that are Z2 symmetric.

Vector fields with symmetry appear very often in applications so the study
of symmetric vector fields is not old fashioned and nowadays it has been an
increasing interest in systems that are Z2 symmetric. We recall that a vector
field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

has a Z2-symmetry if is invariant by the change of variables (x, y, t) 7→
(R(x, y),−t) (called reversible), or by the change of variables (x, y, t) 7→
(R(x, y), t) (called equivariant) in which

R(x, y) = (x,−y), or R(x, y) = (−x, y), or R(x, y) = (−x,−y).

Since this class of systems is still too wide, we will study it in separated
papers. In this paper we will focus on the reversible and equivariant systems
that are symmetric with respect to the x-axis, i.e. in which R(x, y) =
(x,−y). Note that they must satisfy

(2) MX(x, y) = ∓X(x,−y) where M =

(
1 0
0 −1

)
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In short, in this paper we classify the global phase portraits of all Hamil-
tonian planar polynomial vector fields of degree three reversible and equi-
variant with respect to the x−axis having a nilpotent saddle at the origin.
The classification of the global phase portraits of Hamiltonian planar poly-
nomial vector fields of degree three reversible and equivariant with respect
to the x−axis having a nilpotent center at the origin was given in [8]. To do
such a classification we will use the Poincaré compactification of polynomial
vector fields. The Poincaré compactification that we shall use for describing
the global phase portraits of our Hamiltonian systems is standard. For all
the definitions and results on the Poincaré compactification see Chapter 5
of [9]. We say that two vector fields on the Poincaré disk are topologically
equivalent if there exists a homeomorphism from one into the other which
sends orbits to orbits preserving or reversing the direction of the flow. To
state our main result we introduce some notation. Set

b1 = − 2

27
(8− 15a+ 6a2 + a3 −

√
(4− 5a+ a2)2),

ℓ0 = {(a, b) ∈ R× R+ : b = b1, a ∈ (0, 1)},
R0 = {(a, b) ∈ R× R+ : 0 < b < b1, a ∈ (0, 1)},
R1 = R× R+ \ (ℓ0 ∪R0),

(3)

and

b2 = − 2

27
(−8 + 15a− 6a2 − a3 −

√
(4− 5a+ a2)3),

b3 = − 2

27
(−8 + 15a− 6a2 − a3 +

√
(4− 5a+ a2)3),

p0 = (2(2 +
√
3), 4(7 + 4

√
3)), p1 = (4, 8),

ℓ1 = {(a, b) ∈ R× R+ : b = a2, a ∈ (0, 2(2 +
√
3))},

ℓ2 = {(a, b) ∈ R× R+ : b = b2, a ∈ (4, 2(2 +
√
3))},

ℓ3 = {(a, b) ∈ R× R+ : b = b2, a ∈ (2(2 +
√
3),∞)},

ℓ4 = {(a, b) ∈ R× R+ : b = a2, a ∈ (2(2 +
√
3),∞)},

ℓ5 = {(a, b) ∈ R× R+ : b = b3, a ∈ (4,∞)},(4)
R2 = {(a, b) ∈ R× R+ : b > 0, a ∈ (−∞, 0]}

∪{(a, b) ∈ R× R+ : b > a2, a ∈ (0, 2(2 +
√
3))}

∪{(a, b) ∈ R× R+ : b > b2, a ∈ (2(2 +
√
3),∞)},

R3 = {(a, b) ∈ R× R+ : 0 < b < a2, a ∈ (0, 4)}
∪{(a, b) ∈ R× R+ : b2 < b < a2, a ∈ [4, 2(2 +

√
3))}

∪{(a, b) ∈ R× R+ : 0 < b < b3, a ∈ [4,∞)},
R4 = {(a, b) ∈ R× R+ : b3 < b < b2, a ∈ (4, 2(2 +

√
3)]}

∪{(a, b) ∈ R× R+ : b3 < b < a2, a ∈ (2(2 +
√
3),∞)},

R5 = {(a, b) ∈ R× R+ : a2 < b < b2, a ∈ (2(2 +
√
3),∞)}.
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Theorem 1. A Hamiltonian planar polynomial vector field of degree three
with a nilpotent saddle at the origin and Z2-symmetric with R(x, y) =
(x,−y), after a linear change of variables and a rescaling of its indepen-
dent variable can be written as one of the following six classes:

(I) x′ = y, y′ = x3;
(II) x′ = y + y3, y′ = x3;

(III) x′ = y − y3, y′ = x3;
(IV) x′ = y + x2y + ay3, y′ = x3 − xy2 with a ∈ R;
(V) x′ = y − x2y + ay3, y′ = x3 + xy2 with a ∈ R;

(VI) x′ = y + 2xy + ax2y, y′ = x3 − y2 − axy2 with a ∈ R;
(VII) x′ = y + 2xy + ax2y + y3, y′ = bx3 − y2 − axy2, with b > 0, a ∈ R;

(VIII) x′ = y + 2xy + ax2y − y3, y′ = bx3 − y2 − axy2, with b > 0, a ∈ R.

Moreover, the global phase portraits of these six families are topologically
equivalent to the following of Figure 1:

• for systems (I): 1.1;
• for systems (II): 1.2;
• for systems (III): 1.3;
• for systems (IV ): 1.2 if a > 0; 1.4 if a = 0; 1.5 if −1 < a < 0; 1.6

if a = −1 and 1.7 if a < −1;
• for systems (V ): 1.1 if a = 0; 1.2 if a > 0 and 1.3 if a < 0;
• for systems (V I): 1.1 if a ≤ 0; 1.4 if a > 1; 1.8 if a = 1 and 1.9 if
a ∈ (0, 1);

• for systems (V II): 1.2 if (a, b) ∈ R1; 1.10 if (a, b) ∈ R0 and 1.11 if
(a, b) ∈ ℓ0;

• for systems (V III): 1.3 if (a, b) ∈ R2; 1.5 if (a, b) ∈ R3; 1.7 if
(a, b) ∈ R5; 1.12 if (a, b) ∈ R3; 1.13 if (a, b) ∈ R3; 1.14, 1.15, 1.16,
or 1.17 if (a, b) ∈ R4; 1.18 if (a, b) ∈ ℓ1; 1.19, 1.20, or 1.21 if
(a, b) ∈ ℓ2; 1.21 if (a, b) ∈ ℓ5; 1.22 if (a, b) ∈ ℓ3; 1.23 if (a, b) ∈ ℓ4;
1.24 if (a, b) = p0 and 1.25 if (a, b) = p1.

The proof of Theorem 1 is given in section 3.

2. Preliminary results

A vector field is said to have the finite sectorial decomposition property
at a singular point q if either q is a center, a focus or a node, or it has a
neighborhood consisting of a finite union of parabolic, hyperbolic or ellip-
tic sectors. We note that all the isolated singular points of a polynomial
differential system satisfy the finite vectorial decomposition property.
Theorem 2 (Poincaré Formula). Let q be an isolated singular point having
the finite sectorial decomposition property. Let e, h an p denote the number
of elliptic, hyperbolic and parabolic sectors of q, respectively. Then the index
of q is (e− h)/2 + 1.
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1.1 1.2 1.3 1.4

1.5 1.6 1.7 1.8

1.9 1.10 1.11 1.12

1.13 1.14 1.15 1.16

1.17 1.18 1.19 1.20

Figure 1. Global phase portraits of Hamiltonian planar
polynomial vector field of degree three with a nilpotent sad-
dle at the origin and Z2-symmetric with R(x, y) = (x,−y).
The separatrices are in bold.

The indices of a saddle, a center and a cusp are −1, 1 and 0, respectively.

Theorem 3 (Poincaré–Hopf Theorem). For every vector field on the sphere
S2 with a finite number of singular points, the sum of the indices of these
singular points is 2.
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1.21 1.22 1.23 1.24

1.25

Figure 1. Global phase portraits of Hamiltonian planar
polynomial vector field of degree three with a nilpotent sad-
dle at the origin and Z2-symmetric with R(x, y) = (x,−y).
The separatrices are in bold.

Nilpotent singular points of Hamiltonian planar polynomial vector fields
are either saddles, centers, or cusps (for more details see Theorem 3.5 of [9]
and take into account that Hamiltonian systems cannot have foci).

The proof of the following proposition is basically the same as the one of
Lemma 12 in [5] and so it will be omitted.

Proposition 4. Let Xε be a real Hamiltonian planar polynomial vector field
of degree three. Then Xε can be written as

x′ = a10x+ a01y + a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y

+a12xy
2 + a03y

3,

y′ = b10x− a10y + b20x
2 − 2a20xy −

a11y
2

2
+ b30x

3 − 3a30x
2y

−a21xy
2 − a12y

3

3
+ εx.

Suppose that p is an isolated singular point of Xε different from the origin.
If a210 + a01b10 = 0 but a01 ̸= 0, then the following statements hold:

a) If p is non–elementary, then it is nilpotent.
b) If p is a non–elementary singular point of X0, then it is an elementary

singular point of Xε with ε ̸= 0.
c) If p is a cusp of X0, then for ε ̸= 0 small enough such that εa01 < 0,

the origin of Xε is a linear type center and the local phase portrait
of Xε at p is a center–loop (i.e. a hyperbolic saddle with a loop and
a center inside the loop).
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3. Proof of Theorem 1

3.1. Normal form. Without loss of generality we can assume that a cubic
planar Hamiltonian system with a nilpotent saddle at the origin is given by
(5)

x′ = y + a5x
2 + 2a6xy + 3a7y

2 + a9x
3 + 2a10x

2y + 3a11xy
2 + 4a12y

3,
y′ = −(3a4x

2 + 2a5xy + a6y
2 + 4a8x

3 + 3a9x
2y + 2a10xy

2 + a11y
3).

which corresponds to equation (1) where,

H(x, y) = y2/2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3 + a8x
4 + a9x

3y

+ a10x
2y2 + a11xy

3 + a12y
4.

By hypothesis, systems (5) cannot be invariant under (x, y, t) → (x,−y, t)
(they should satisfy condition (2) which is not possible) and so there are no
equivariant systems (5). For the case of reversible ones, we impose condition
(2) and so we have that a5 = a7 = a9 = a11 = 0. Hence systems (5) become

(6) x′ = y + 2a6xy + 2a10x
2y + 4a12y

3,
y′ = −(3a4x

2 + a6y
2 + 4a8x

3 + 2a10xy
2).

Since systems (6) must have a saddle at the origin, by Theorem 3.5 of [9]
we must have a4 = 0 and a8 < 0. Therefore we obtain

(7) x′ = y + 2a6xy + 2a10x
2y + 4a12y

3,
y′ = −(a6y

2 − 4a8x
3 + 2a10xy

2), a8 > 0.

Now we provide the normal form to system (7) to transform it into other
systems with less parameters.

Assume a6 ̸= 0 and a12 ̸= 0. By the change of coordinates and reparametriza-
tion of time of the form
(8) x → αX, y → βY, t → γτ,

with α = 1/a6, β = 1/(2
√
|a12|) and γ = 2

√
|a12|/a6, systems (7) can be

written as in (V II) when a12 > 0 and as in (V III) when a12 < 0.

Now assume a6 ̸= 0 and a12 = 0. By the change of coordinates and
reparametrization of time as in (8) with α = 1/a6, β = 2

√
a8/a

2
6, and

γ = a6/(2
√
a8) we get system (V I).

Let now a6 = 0 and a10 ̸= 0. By the change of coordinates and reparametriza-
tion of time as in (8) with α = 1/

√
2|a10|, β =

√
a8/|a10| and γ =

√
|a10|/

√
2a8

we get systems (IV ) when a10 > 0 and (V ) when a10 < 0.

Assume now a6 = a10 = 0 and a12 ̸= 0. By the change of coordinates
and reparametrization of time as in (8) with α = 1/(2(a8|a12|)1/4), β =

1/(2
√
|a12|) and γ = |a12|1/4/a1/48 we get systems (II) when a12 > 0 and

(III) when a12 < 0.
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Finally, let a6 = a10 = a12 = 0. The change of coordinates and reparametriza-
tion of time as in (8) with α = β = 1/(2

√
a8) and γ = 1 transforms system

(7) into system (I).

In short, we have proved the first part of Theorem 1. Now we study the
global phase portraits of each of systems (I)–(VI) separately.

3.2. Global phase portrait of systems (I). Consider systems (I)

x′ = y, y′ = x3.

The origin is the only finite singular point of the system, which is a saddle.
In the local chart U1 systems (I) become

u′ = 1− u2v2, v′ = −uv3.

When v = 0 there are no infinite singular points on the local chart U1. In
the local chart U2 we get

u′ = v2 − u4, v′ = −u3v.

The origin is an infinite singular point of the system, whose linear part is
zero. Applying the blow-up technique (see [1] for more details) we obtain
that the origin of U2 is the union of two elliptic and four parabolic sectors.
So, the global phase portraits of systems (I) are topologically equivalent to
the phase portrait 1.1 of Figure 1.

3.3. Global phase portrait of systems (II). Consider systems (II)

x′ = y + y3, y′ = x3.

It is easy to see that the origin is the unique finite singular point. We will
now investigate the infinite singular points of systems (II). In the local chart
U1 systems (II) become

u′ = 1− u2v2 − u4, v′ = −uv(v2 + u2).

When v = 0 the infinite singular points are P± = (±1, 0). The eigenvalues
of the linear part of systems (II) at (1, 0) are −4,−1 and so it is a stable
node. The eigenvalues of the linear part at (−1, 0) are 4, 1 and it is an
unstable node.

In U2 systems (II) become

u′ = −1 + v2 − u4, v′ = −vu3.

The origin is not a singular point on the local chart U2. Therefore the global
phase portraits of systems (II) are topologically equivalent to phase portrait
1.2 of Figure 1.
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3.4. Global phase portrait of systems (III). Consider systems (III)

x′ = y − y3, y′ = x3.

The finite singular points are E0 = (0, 0) and E± = (0,±1). Since the
singular point E+ is nilpotent, using Theorem 3.5 of [9] we obtain that
(0, 1) is a center. Doing the same for (0,−1) we also get that it is a center.

In the local chart U1 systems (III) are

u′ = 1− u2v2 + u4, v′ = uv(u2 − v2).

When v = 0 there are no singular points on the local chart U1. Now we
should check the origin of U2. In U2 systems (III) become

u′ = −1 + v2 − u4, v′ = −vu3,

and so the origin is not singular.

According to this local information the global phase portraits of systems
(III) are topologically equivalent to the phase portrait 1.3 of Figure 1.

3.5. Global phase portrait of systems (IV). Consider systems (IV)

x′ = y + x2y + ay3, y′ = x3 − xy2

with a ∈ R. When a ≥ 0 systems (IV) have only the origin as its finite
singular point. When −1 ≤ a < 0, among the origin, systems (IV) have
the two singular points F± =

(
0,±1/

√
−a
)

. The eigenvalues of the linear
part at the singular points F± are ±

√
2/
√
−a and so they are both saddles.

Finally, when a < −1, among the origin, systems (IV) have the two singular
points F± (which are saddles) and the four singular points

E±,± =
(
± 1√

−1− a
,± 1√

−1− a

)
.

The eigenvalues of the linear part at these singular points are ±2/
√
1 + a

and so all four are centers.

We will now investigate the infinite singular points of systems (IV) as well
as we provide their global phase portraits. We distinguish between the cases
a < −1, −1 ≤ a < 0 and a ≥ 0.

If a ≥ 0, on the local chart U1 systems (IV) become

(9) u′ = 1− 2u2 − au4 − u2v2, v′ = −uv(1 + au2 + v2).

When v = 0 and a ≥ 0 there are two singular points

Q± =
(
± 1√

1 +
√
1 + a

, 0
)
.
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The eigenvalues of the linear part at Q± are

∓
√
1 + a√

1 +
√
1 + a

, ∓4

√
1 + a√

1 +
√
1 + a

which are negative in the case of Q+ and are positive in the case of Q−.
Hence Q+ is an attracting node and Q− is a repelling node.

On the local chart U2 systems (IV) can be written as

(10) u′ = a+ 2u2 + v2 − u4, v′ = uv(1− u2).

The origin of U2 is a singular point if and only if a = 0. In this case it is
linearly zero. Using the blow-up technique we get that it is the union of two
hyperbolic sectors. Hence, when a > 0 the global phase portraits of systems
(IV) are topologically equivalent to the phase portrait 1.2 of Figure 1, and
when a = 0 it is topologically equivalent to 1.4 of Figure 1.

Assume now −1 ≤ a < 0. On the local chart U1 systems (IV) become
(9). When v = 0, and −1 ≤ a < 0 there are four singular points on the
local chart U1 which are Q± (previously seen that are a stable node and an
unstable node, respectively), and the singular points

P± =
(
± 1√

1−
√
1 + a

, 0
)
.

The eigenvalues of the linear part at P± are

±
√
1 + a√

1−
√
1 + a

, ±4

√
1 + a√

1−
√
1 + a

which for −1 < a < 0 are positive in the case of P+ and are negative in
the case of P−. Hence P+ is an unstable node and P− is a stable node. If
a = −1, then P± and Q± coincide and we get two singular points which are
linearly 0. Applying blow-up techniques we get that the points P± = Q±
are the union of two elliptic sectors and four parabolic sectors.

On the local chart U2 systems (IV) become (10) and since a ̸= 0 the origin
is not a singular point.

Gluing all this local information together with the fact that the system
is symmetric and that the value of the Hamiltonian on the two saddles is
the same and different from the value of the Hamiltonian at the origin (and
so the origin and the two saddles cannot be connected) we get that the
global phase portraits of systems (IV) are topologically equivalent to phase
portrait 1.5 of Figure 1 if −1 < a < 0 and to phase portrait 1.6 of Figure 1
if a = −1.

Finally, if a < −1, on the local chart U1 systems (IV) become (9). When
v = 0, and a < −1 there are no infinite singular points on the local chart
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U1. On U2 systems (IV) become (10) and since a ̸= 0 the origin is not a
singular point.

Gluing all this local information together with the fact that the system is
symmetric and that the saddles cannot be connected with the saddle at the
origin, we get that the global phase portraits of system (IV) when a < −1
is topologically equivalent to the phase portrait 1.7 of Figure 1.

3.6. Global phase portrait of systems (V). Consider system (V), i.e.
x′ = y − x2y + ay3, y′ = x3 + xy2

with a ∈ R. When a ≥ 0 the only finite singular point is the origin and
when a < 0 among the origin, there are two new finite singular points(

0,± 1√
−a

)
.

It is easy to see that all of them are centers because the eigenvalues of their
linear parts are ±i

√
2/
√
−a which are purely imaginary.

We will now investigate the infinite singular points of systems (V).

In the local chart U1 systems (V) can be written as
u′ = 1 + 2u2 − u2v2 − au4, v′ = −uv(−1 + au2 + v2).

The infinite singular points are the roots of the polynomial 1 + 2u2 − au4.
Therefore, if a ≤ 0 there are no infinite singular points on the local chart
U1. If a > 0 the points

Q± =
(
± 1√

−1 +
√
1 + a

, 0
)

are infinite singular points on U1. The eigenvalues at the singular points Q±
are

∓
√
1 + a√

−1 +
√
1 + a

, ∓4

√
1 + a√

−1 +
√
1 + a

.

So, Q+ is an unstable node and Q− is a stable node.

Now we investigate the origin of the local chart U2. In the local chart U2

systems (V ) can be written as
u′ = a− 2u2 − u4 + v2, v′ = −uv(1 + u2).

The origin of U2 is a singular point if and only if a = 0. In this case it
is linearly zero. Using a blow-up technique we obtain that the origin of
U2 behaves as in system (I), that is, is the union of two elliptic and four
parabolic sectors.

If a > 0, there are no finite singular points among the origin, two nodes in
the local chart U1 (one stable and one unstable) and the origin of U2 is not
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a singular point. Therefore the global phase portrait of systems (V) with
a > 0 are topologically equivalent to the phase portrait 1.2 of Figure 1.

When a = 0, there are no finite singular points among the origin, there
are no singular points in the local chart U1 and the origin of U2 which is the
union of two elliptic and four parabolic sectors. Therefore the global phase
portrait of systems (V) with a = 0 are topologically equivalent to the phase
portrait 1.1 of Figure 1.

When a < 0 we have two centers among the saddle at the origin as
finite singular points and no infinite singular points. Hence the global phase
portrait of systems (V ) with a < 0 are topologically equivalent to the phase
portrait 1.3 of Figure 1.

3.7. Global phase portrait of systems (VI). Consider systems (VI)
x′ = y + 2xy + ax2y, y′ = x3 − y2 − axy2,

with a ∈ R.

If 0 < a < 1, besides the origin there exist two finite singular points which
are (x−, y−) and (x−, y+) where

x− =
−1−

√
1− a

a
, y± = ±

√
(1 +

√
1− a)3

a3
√
1− a

.

It is easy to see that all of them are saddles because the eigenvalues of their
linear parts are

±2
√
1− a

√
(1 +

√
1− a)3

a3
√
1− a

,

respectively.

If a ≥ 1 or a ≤ 0 the unique finite singular point is the origin.

In the local chart U1 systems (VI) can be written as
u′ = 1− 2au2 − 3u2v − u2v2, v′ = −uv(a+ 2v + v2).

The infinite singular points are the roots of the polynomial 1−2au2. There-
fore, if a ≤ 0 there are no infinite singular points on the local chart U1. If
a > 0 the points Q± =

(
± 1/(

√
2
√
a), 0

)
are infinite singular points. The

eigenvalues at the singular points Q± are ∓2
√
2
√
a and ∓

√
a/

√
2. Hence,

Q+ is a stable node and Q− is an unstable node.

Now we investigate the origin of the local chart U2. In the local chart U2

systems (VI) can be written as
u′ = 2au2 − u4 + 3uv + v2, v′ = auv − u3v + v2.

The origin of U2 is a singular point which is linearly zero. Using a blow-up
technique we obtain that if a > 1 it is the union of two hyperbolic sectors; if
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a = 1 is the union of two hyperbolic and four parabolic sectors, and if a < 1
it is the union of two elliptic and four parabolic sectors.

If a > 1, there are no finite singular points among the origin, two nodes
in the local chart U1 (one stable and another unstable) and the origin of U2

is the union of two hyperbolic sectors. Therefore the global phase portraits
of systems (VI) with a > 1 are topologically equivalent to the phase portrait
1.4 of Figure 1.

If a = 1, there are no finite singular points among the origin, two nodes in
the local chart U1 (one stable and one unstable) and the origin of U2 is the
union of two hyperbolic sectors and four parabolic sectors. Therefore the
global phase portrait of systems (VI) with a = 1 is topologically equivalent
to the phase portrait 1.8 of Figure 1.

If a ∈ (0, 1), there are two finite singular among the origin which are
saddles, two nodes in the local chart U1 (one stable and one unstable) and
the origin of U2 is union of two elliptic and four parabolic sectors, separated
by the infinity. Taking into account the symmetry of the system and that
both saddles cannot be connected with the saddle at the origin because the
value of the Hamiltonian on the two saddles is different from the value of the
Hamiltonian at the origin, we get that the global phase portraits of systems
(VI) with a ∈ (0, 1) are topologically equivalent to the phase portrait 1.9 of
Figure 1.

If a ≤ 0, there are no finite singular points besides the origin, there are
no singular points in the local chart U1 and the origin of U2 is the union of
two elliptic and four parabolic sectors, separated by the infinity. Hence, the
global phase portrait of systems (VI) with a ≤ 0 are topologically equivalent
to the phase portrait 1.1 of Figure 1.

3.8. Global phase portrait of systems (VII). Consider systems (VII)
x′ = y + 2xy + ax2y + y3, y′ = bx3 − y2 − axy2,

with b > 0, a ∈ R. We first compute the infinite singular points because the
finite ones are more elaborated in this case. In the local chart U1 systems
(VII) become

u′ = b− 2au2 − u4 − 3u2v − u2v2, v′ = −auv − u3v − 2uv2 − uv3.

The infinite singular points are the roots of the polynomial b − 2au2 − u4.
Taking into account that b > 0 there are only two infinite singular points
which are

Q± =
(
±
√
−a+

√
a2 + b, 0

)
.

The eigenvalues at these singular points are

∓
√
−a+

√
a2 + b

√
a2 + b, ∓4

√
−a+

√
a2 + b

√
a2 + b.
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Hence, Q+ is a stable node and Q− is an unstable node.

Now we investigate the origin of the local chart U2. In the local chart U2

systems (VII) can be written as
u′ = 1 + 2au2 − bu4 + 3uv + v2, v′ = auv − bu3v + v2.

and so the origin of U2 is not a singular point.

Now we compute the finite singular points of system (VII). From equation
x′ = 0 we get that either y = 0 or y = ±

√
−ax2 − 2x− 1. The unique finite

singular point with y = 0 is the origin. Substituting y = ±
√
−ax2 − 2x− 1

into equation y′ = 0 we get the equation

C =
(
a2 + b

)
x3 + 3ax2 + (a+ 2)x+ 1 = 0.(11)

Since b > 0, C = 0 is always a cubic equation because the coefficient of x3
is always positive. We compute the discriminant of the cubic C in (11) and
we get that it is equal to

D = 4a2 − 12a3 + 12a4 − 4a5 − 32b+ 60ab− 24a2b− 4a3b− 27b2.

If D > 0, C has three distinct real roots; if D < 0, it has one real root
and two distinct complex roots and if D = 0, it has at least two equal real
roots. The solution of D = 0 gives the two curves in the parameter space
(a, b) ∈ R× R+ that we denote by b0 and b1:

b0 = − 2

27
(8− 15a+ 6a2 + a3 +

√
(4− 5a+ a2)3),

b1 = − 2

27
(8− 15a+ 6a2 + a3 −

√
(4− 5a+ a2)3)

(b1 was previously defined in (3)). We can see that b0 is always less or equal
than zero in its domain of definition, so we do not consider it because b > 0.
On the other hand, b1 is positive for a ∈ (−∞, 0) ∪ (0, 1), zero for a = 0, 1,
it does not exist for a ∈ (1, 4) and is negative for a ≥ 4.

We have the following lemma.

Lemma 5. Systems (VII) have, among the origin, at most two nilpotent
singular points and they occur when the parameters a and b satisfy D = 0.

Proof. We need to show that x′, y′ in systems (VII) and the determinant of
the Jacobian matrix on systems (VII) cannot vanish simultaneously at more
than two points besides the origin. The determinant of de Jacobian matrix
is
E = −3a2x2y2 − 3abx4 − 6axy2 + 3ay4 + ay2 − 6bx3 − 9bx2y2 − 3bx2 − 4y2.

Substituting the solution of x′ = 0 with y = ±
√
−ax2 − 2x− 1, into E we

get
E ′ = 2

(
ax2 + 2x+ 1

) (
3a2x2 + 6ax+ a+ 3bx2 + 2

)
.
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So we are interested in the solutions of system C = E ′ = 0. Note that if
ax2 + 2x + 1 = 0, then y = 0 and the unique singular point with y = 0
is the origin. By computing the Groëbner basis of the polynomials C and
3a2x2 + 6ax+ a+ 3bx2 + 2 we get a set of six polynomials in the variables
a, b, x, the first two being −D and also

(9b2 + 72b)x+ 4a4 + 4a3 − 2a2b− 20a2 + 28ab+ 12a+ 46b.

Since b > 0 the coefficient in x of this polynomial is different from zero.
Therefore there exist a unique solution x of C = E ′ = 0 and it occurs when
D = 0. This solution can provide at most two possible solutions for y of
system x′ = y′ = 0.

We recall that in view of Proposition 4 the non–elementary singular points
are nilpotent. So the lemma is proved. �

Now taking into account that we are interested only on the regions in the
half plane (a, b) ∈ R × R+ where there is real roots of the cubic equation
C = 0, we divide the half plane (a, b) ∈ R×R+ in the three regions R0, R1, ℓ0
given in (3).

On the region R1 the unique finite singular points of system (VII) is the
origin and there are only two infinite singular points on the local chart U1: a
stable and an unstable node. Therefore, the global phase portrait of systems
(VII) on the region R1 is topologically equivalent to the phase portrait 1.2
of Figure 1.

On the region R0 there are five finite singular points of system (VII): the
origin which is a nilpotent saddle and four more finite singular points which
are hyperbolic (see Lemma 5), and there are only two infinite singular points
on the local chart U1: a stable and an unstable node. Therefore the known
singular points have total index 2 on the Poincaré sphere. By Theorem 3,
the four remaining finite singular points must have total index 0. Since they
are hyperbolic, by the symmetry of the system, they must be two centers
and two saddles. Taking again into account the symmetry of the system
and the fact that the two saddles have the same value of the Hamiltonian
but different from the value of the Hamiltonian at the origin and so the
saddles cannot be connected with the saddle at the origin, we obtain that
the global phase portraits of systems (VII) on the region R0 are topologically
equivalent to the phase portrait 1.10 of Figure 1.

On the curve ℓ0 there are three finite singular points of system (VII):
the origin which is a nilpotent saddle and two more finite singular points
which are either hyperbolic or nilpotent (see Lemma 5), and there are only
two infinite singular points on the local chart U1: a stable and an unsta-
ble node. Therefore the known singular points have total index 2 on the
Poincaré sphere. By Theorem 3, the two remaining finite singular points
must have total index 0. Since they are either hyperbolic or nilpotent, by
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symmetry of the system, they must be two cusps. Hence, the global phase
portrait of systems (VII) on the region ℓ0 is topologically equivalent to the
phase portrait 1.11 of Figure 1 (note that they correspond to the fact that
the saddles and the centers forming the center–loop in the region R0 have
coalesced into the cusps).

3.9. Global phase portrait of systems (VIII). Consider system (VIII)

x′ = y + 2xy + ax2y − y3, y′ = bx3 − y2 − axy2,

with b > 0, a ∈ R. We first compute the infinite singular points because the
finite ones are more elaborated in this case. In the local chart U1 system
(VIII) becomes

u′ = b− 2au2 + u4 − 3u2v − u2v2, v′ = −auv + u3v − 2uv2 − uv3.

The infinite singular points are the roots of the polynomial b − 2au2 + u4.
If b > a2 there are no infinite singular points on the local chart U1.

If b = a2 and a < 0, there are also no infinite singular points on the local
chart U1.

If b = a2 and a > 0 there are two infinite singular points on the local
chart U1 which are (±

√
a, 0). They are nilpotent. Using Theorem 3.5 in [9]

and applying blow-up techniques we obtain that they both consist in the
union of one hyperbolic and one elliptic sector separated by the infinity.

If 0 < b < a2 with a < 0 there are also no infinite singular points on the
local chart U1.

If 0 < b < a2 with a > 0 there are four singular points on the local
chart U1: u0± = (±

√
a+

√
a2 − b, 0) and u1± = (±

√
a−

√
a2 − b, 0). Com-

puting the eigenvalues of the Jacobian matrix at the singular points u0±

we get that they are ±
√

a+
√
a2 − b

√
a2 − b and ±4

√
a+

√
a2 − b

√
a2 − b,

so u0+ is an unstable node and u0− is a stable node. Moreover, the eigen-
values of the Jacobian matrix at the singular points u1± we get that they
are ∓

√
a−

√
a2 − b

√
a2 − b and ∓4

√
a−

√
a2 − b

√
a2 − b, so u1+ is a stable

node and u1− is an unstable node.

Now we investigate the origin of the local chart U2. In the local chart U2

systems (VIII) can be written as

u′ = −1 + 2au2 − bu4 + 3uv + v2, v′ = auv − bu3v + v2

and so the origin of U2 is not a singular point.

Now we compute the finite singular points of system (VIII) in a similar
way that in system (VII). From equation x′ = 0 we get that either y = 0

or y = ±
√
ax2 + 2x+ 1. The unique finite singular point with y = 0 is the
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Figure 2. The curves where the number of finite singular
points can change. The plot of the curves b = b2 (continous
thick line), b = b3 (dashed line), and b = a2 (continuous thin
line) for b > 0.

origin. Substituting y = ±
√
ax2 + 2x+ 1 into equation y′ = 0 we get the

equation

C =
(
b− a2

)
x3 − 3ax2 + (−a− 2)x− 1 = 0.(12)

If b − a2 ̸= 0, then C = 0 is a cubic equation whereas if b − a2 = 0 it is
quadratic. We compute the discriminant of the cubic C in (12) and we get
that it is equal to

D = 4a2 − 12a3 + 12a4 − 4a5 + 32b− 60ab+ 24a2b+ 4a3b− 27b2.

The solution of D = 0 gives the two curves b2 and b3 introduced in (4). So
the number of finite singular points can change only at the curves b = b2,
b = b3 and b = a2.

Note that

• b3 is less than or equal to zero for a ∈ (−∞, 1], it does not exist for
a ∈ (1, 4) and it is positive for a ≥ 4;

• b2 is positive for a ∈ (−∞, 0) ∪ (0, 1) ∪ [4,∞), zero for a = 1 and it
does not exist for a ∈ (1, 4);

• b = a2 is always positive for a ̸= 0 and zero for a = 0;
• b2 > a2 for a ∈ (−∞, 2(2 −

√
3)) ∪ (2(2 +

√
3),∞), b2 = a2 for

a = 2(2±
√
3) and 0 < b2 < a2 for a ∈ (2(2−

√
3), 1)∪ [4, 2(2+

√
3));

• b3 < a2 for a ∈ [4,∞) and b3 = b2 for a = 4.

The plot of the curves b = b2, b = b3 and b = a2 for b > 0 is given in
Figure 2.
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Proceeding in a similar way than in the proof of Lemma 5 we have the
following lemma.
Lemma 6. Systems (VIII) have, among the origin, at most two nilpotent
singular points and they occur when the parameters a and b belong to the
curve D.

Proof. As in system (VII) we need to show that x′, y′ in systems (VIII)
and the determinant of the Jacobian matrix on systems (VIII) cannot van-
ish simultaneously at more than two points besides the origin. The de-
terminant of de Jacobian matrix evaluated at the solution of x′ = 0 with
y = ±

√
ax2 + 2x+ 1 is

E ′ = 2(ax2 + 2x+ 1)t(3bx2 − 3a2x2 − 6ax− a− 2).

As above, if ax2+2x+1 = 0, then y = 0 and the unique singular point with
y = 0 is the origin. By computing the Groëbner basis of the polynomials
C and 3bx2 − 3a2x2 − 6ax − a − 2 we get a set of six polynomials in the
variables a, b, x, which are the polynomial −D and also

F1 =
(
9b2 − 72b

)
x+ 4a4 + 4a3 + 2a2b− 20a2 − 28ab+ 12a− 46b,

F2 = (3ab− 12b)x+ 2a3 − 4a2 + 2a− 9b,

F3 =
(
6a2 − 6a− 9b

)
x− 2a2 + 10a− 8,

F4 = 9bx2 + 9bx+ 2a2 − 4a+ 2,

F5 = 3ax2 + (2a+ 4)x+ 3.

The coefficient in x of the polynomial F1 is zero when b = 8, so if b ̸= 8
there is a unique solution of system C = E ′ = 0 for x. When b = 8, the
coefficient in x of the polynomial F2 is zero when a = 4, so if b = 8 and
a ̸= 4 there is also a unique solution for x. Finally if b = 8 and a = 4, then
Fi = 0 for i = 1, 2, 3, F4 = 18(2x+ 1)2 and F5 = 3(2x+ 1)2. So in this case
there is also a unique solution for x. In short, there exist a unique solution
x of C = E ′ = 0 and it occurs when D = 0. This solution can provide at
most two possible solutions for y of system x′ = y′ = 0.

We recall that in view of Proposition 4 the non–elementary singular points
are nilpotent. So the lemma is proved. �

In some regions of the parameter space (a, b) there could be finite singular
points of system (VIII) that are saddles. Now we investigate the possible
connections among these saddles. Note that the origin is always a nilpotent
saddle of systems (VIII) and that the remaining singular points of system
(VIII) always go in pairs: if (x, y) is a singular point, then so is (x,−y). On
the other hand due to the symmetry of the system, the phase portraits of
systems (VIII) are symmetric with respect to the x–axis.
Lemma 7. If b = (a − 1)2 and a > 1, the saddles (−1,±

√
a− 1) can be

connected to the saddle at the origin.
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Proof. The Hamiltonian of system (VIII) is

H =
1

2
ax2y2 − bx4

4
+ xy2 − y4

4
+

y2

2
.

Since the Hamiltonian H at the origin is zero, a saddle (x, y) can be con-
nected with the saddle at the origin if the value of the Hamiltonian evaluated
at (x, y) is equal to zero. We compute the Groëbner basis of x′, y′,H and we
obtain a set of eight polynomial equations in the variables x, y, a, b whose
solutions with (x, y) ̸= (0, 0) are

x = −1, y = ±
√
a− 1, b = (a− 1)2.

The singular points (x, y) = (−1,±
√
a− 1) are defined for a > 1 (recall

that b ̸= 0) and the eigenvalues of the Jacobian matrix at these critical
points are ±

√
2(a − 1), so they are saddles. Therefore the saddles (x, y) =

(−1,±
√
a− 1) on the curve b = (a − 1)2 can be connected with the saddle

at the origin. �
Lemma 8. Let (x, y) and (x̃, ỹ) with x̃ ̸= x be two saddles different from
the origin. They can be connected when (a, b) satisfy one of the following
relations

(13) b = a2, b = a2 − 2a, b =
a3 − a2

a+ 2
, b = b2, b = b3.

Proof. It is not difficult to prove that the solutions of x′ = y′ = 0 are
y = ±

√
ax2 + 2x+ 1 with

x = x0 =
1

b− a2

(
a− 21/3A

3C
+

C

3 21/3

)
,

x = x1 =
1

b− a2

(
a+

(1 + i
√
3)A

3 22/3C
− (1− i

√
3)C

6 21/3

)
,

x = x2 =
1

b− a2

(
a+

(1− i
√
3)A

3 22/3C
− (1 + i

√
3)C

6 21/3

)
,

where A = 3a3− 3a2− 3ab− 6b, C = (B+K)1/3, B = −27a2b+54ab+27b2

and K =
√
4A3 +B2.

Let H0, H1 and H2 be the value of the Hamiltonian evaluated at the
solutions with x0, x1 and x2 respectively. We factorize H0−H1 and we drop
the denominators obtaining a polynomial equation g0 = 0. We consider two
additional equations

g1 = C3 − (B +K) = 0, g2 = K2 − (4A3 +B2) = 0.

We treat C and K as variables and we eliminate them in equation g0 = 0 by
means of resultants in the following way. First we eliminate the variable C
by doing the resultant R1 = Res[g0, g1, C] and then we eliminate the variable
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K by doing the resultant R2 = Res[R1, g2,K]. Hence we obtain R2 = kR2

where
R2 = b2

(
a2 − b

)6 (
a2 − 2a− b

)2 (
a3 − a2 − ab− 2b

)12(
4a5 − 12a4 − 4a3b+ 12a3 − 24a2b− 4a2 + 60ab+ 27b2 − 32b

)3
,

and k is a large number. By properties of the resultants, the set of solutions
of equation R2 = 0 contains all solutions of g0 = 0 and probably new ones.
If we do the same for equations H1 −H3 = 0 and H2 −H3 = 0 we arrive to
the same equation R2 = 0. The solutions of this equation are

b = a2, b = a2 − 2a, b =
a3 − a2

a+ 2
, b = b2, b = b3.

So these are the curves where the connection of saddles can occur. Note that
the solutions x0, x1 and x2 are not defined when b = a2 and that on the
curves b = b2 and b = b3 the number of finite singular points can change. �

Later on we will see that on the region R2 there are no saddles different
form the origin and that on the region R4 there are at most four saddles
different from the origin. Clearly (a− 1)2 < a2 when a > 1. Moreover, it is
not difficult to see that

b2 < (a− 1)2 for a < 5,

b2 = (a− 1)2 for a = 5,

b2 > (a− 1)2 for a > 5

and
{
(a3 − a2)/(a+ 2) = b3 for a = 4,

(a3 − a2)/(a+ 2) < b3 for a > 4.

The possible curves with connection of saddles are plotted in Figure 3. We
have plotted them only in the interval [0, 6] for clarity.

As for system (VII) we only need to distinguish between regions with
different number of real solutions of C = 0. Recall that the number of
positive real solutions of C = 0 can change at the curves b = b2, b = b3,
b = a2. Moreover, for the infinite singular points we need to distinguish
between the regions b = a2 with a > 0, b < a2 with a > 0 and the rest.
Doing so, we end up with p0, p1, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, R2, R3, R4 and R5 given in
(4).

The number of real solutions of C = 0 are: one double solution on p0; one
triple solution on p1; no solutions on ℓ1; two solutions (one being double) on
ℓ2, ℓ3 and ℓ5; two simple solutions on ℓ4; three simple solutions on R4 and
R5, and one simple solution on R2 and R3.

On the region R2 there are no infinite singular points and besides the ori-
gin there are two finite singular points which are hyperbolic (see Lemma 6).
Therefore the known singular points have total index - 2 on the Poincaré
sphere. By Theorem 3, the two remaining finite singular points must have
total index 4. Since they are hyperbolic, taking into account the symmetry
of the system they must be two centers. Hence, the global phase portrait
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Figure 3. The black lines correspond to the curves where
the number of finite singular points can change (see Figure 2
for more details), and the gray lines correspond to the curves
where the connection of saddles can occur. The connection
with the saddle at the origin can occur on the upper gray
line, and the connection between two saddles different from
the origin can occur on the lower gray line.

of systems (VIII) on the region R2 is topologically equivalent to the phase
portrait 1.3 of Figure 1.

On the region R3 besides the origin there are two finite singular points
which are hyperbolic (see Lemma 6). On the local chart U1 there are four
nodes (two stable and two instable) and the origin of U2 is not a singu-
lar point. Therefore the known singular points have total index 6 on the
Poincaré sphere. By Theorem 3, the two remaining finite singular points
must have total index −4. Since they are hyperbolic, taking into account
the symmetry of the system they must be two saddles. By Lemma 7 they
can be connected with the saddle at the origin on the curve b = (a−1)2. The
global phase portraits of systems (VIII) on the region R3 are topologically
equivalent to the phase portraits 1.5, 1.12 and 1.13 of Figure 1. We recall
that all these phase portraits are realized. The case 1.5 is realized in the
region R3 ∩ {b < (a− 1)2} (in this case there is no saddle–connections and
we can take for example a = 8 and b = 10). The case 1.12 is realized in the
region R3∩{b > (a−1)2} (in this case there is a connection between the two
saddles that are not at the origin and we can take for instance a = 2 and
b = 3/2). Finally, the case 1.13 is realized in the region R3 ∩ {b = (a− 1)2}
(in this case there is a saddle connection between the two saddles and the
saddle at the origin and we can take for instance a = 9/2, b = 49/4).

On the region R4 besides the origin there are six finite singular points
which are hyperbolic (see Lemma 6). On the local chart U1 there are four
nodes (two stable and two instable) and the origin of U2 is not a singu-
lar point. Therefore the known singular points have total index 6 on the
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1.17’ 1.21’

Figure 4. Global phase portraits of systems (VII) for a = 7
and b = 34.7 (1.17’) and b = b2 and a = 4.5 (1.21’). The
separatrices are in bold.

Poincaré sphere. By Theorem 3, the six remaining finite singular points
must have total index −4. Since they are hyperbolic, taking into account
the symmetry of the system they must be four saddles and two centers.
From Lemmas 7 and 8 the connection of saddles can occur on the curves
b = (a− 1)2 and b = a2 − 2a (this last curve is the only curve in (13) inter-
secting R4). The global phase portraits of systems (VIII) on the region R4

are topologically equivalent to the phase portraits 1.14, 1.15, 1.16, and 1.17
of Figure 1. We recall that all phase portraits are realized. The case 1.14 is
realized in the region R4 ∩ {b = a2 − 2a} (we can take for instance a = 7,
b = 35) and it corresponds to the case where the two saddles with y > 0
(respectively, the two saddles with y < 0) are connected to each other. The
case of 1.15 is realized in the region R4 ∩ {b = (a − 1)2} (we can take for
instance a = 7, b = 36) and it corresponds to the case where two saddles
are connected with the saddle at the origin. The case 1.16 is realized in

(R4∩{(a−1)2 < b < b2, a < 2(2+
√
3)})∪(R4∩{(a−1)2 < b < a2, a ≥ 2(2+

√
3)})

(we can take for instance a = 7, b = 38.5) and it corresponds to a connection
between a saddle and its symmetric with respect to the x–axis. The case of
1.17 is realized in the region R4 ∩ {b3 < b < (a − 1)2} \ {b = a2 − 2a}. In
fact in the region R4 ∩ {a2 − 2a < b < (a − 1)2} we can take, for instance,
a = 7 and b = 35.5 and the phase portrait is 1.17 of Figure 1 whereas in
the region R4 ∩ {b3 < b < a2 − 2a} we can take, for instance, a = 7 and
b = 34.7 and the phase portrait is 1.17’ of Figure 4. Note that the phase
portraits 1.17 of Figure 1 and 1.17’ of Figure 4 are topologically equivalent.
Indeed, in both in the half disc y > 0 (respectively, y < 0) we have a saddle
connected with the four nodes at infinity and a saddle connected with two
of the nodes at infinity and forming a center–loop inside the region between
the separatrices of the other saddle connecting these two nodes.

On the region R5 there are no infinite singular points and besides the
origin there are six finite singular points which are hyperbolic (see Lemma 6).
Therefore the known singular points have total index -2 on the Poincaré
sphere. By Theorem 3, the six remaining finite singular points must have
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total index 4. Since they are hyperbolic, taking into account the symmetry
of the system they must be four centers and two saddles. Note that in view
of Lemma 7 in this region the saddles cannot be connected with the saddle
at the origin. Hence, the global phase portrait of systems (VIII) on the
region R5 is topologically equivalent to the phase portrait 1.7 of Figure 1.

On the curve ℓ1 there are no finite singular points and there are two
points on the local chart U1 that consist in one hyperbolic and one elliptic
sectors. Hence, the global phase portrait of systems (VIII) on the curve ℓ1
is topologically equivalent to the phase portrait 1.18 of Figure 1.

On the curves ℓ2 or ℓ5 there are four finite singular points among the
origin and there are four infinite singular points which are nodes (two stable
and two unstable) and all of them are on the local chart U1. Moreover, the
finite singular points can be either hyperbolic or nilpotent and there are at
most two cusps (see Lemma 6). Therefore the known singular points have
total index 6 on the Poincaré sphere. By Theorem 3, the four remaining
finite singular points must have total index −4. Since they are hyperbolic
on nilpotent and taking into account the symmetry of the system they must
be two saddles and two cusps. Note that in view of Lemma 7 there can
be a connection of a pair of saddles with the saddle at the origin on the
intersection between the curve b = b2 and b = (a− 1)2, that is, at the point
a = 5 and b = 16. The global phase portrait of systems (VIII) on the curve
ℓ2 is topologically equivalent to the phase portraits 1.19, 1.20 and 1.21 of
Figure 1. We recall that all phase portraits are realized. The case of 1.19
is realized on the curve ℓ2 with a > 5 (we can take for instance b = b2 and
a = 6 and in this case there is a connection between the two saddles with
y ̸= 0). The case 1.20 is realized for b = b2 and a = 5 and it corresponds to
the connection of the saddles with the saddle at the origin. The case 1.21
is realized on the curve ℓ2 with a < 5 (we can take for instance b = b2 and
a = 4.5, in this case all saddles are connected with the nodes at infinity).
The global phase portrait of systems (VIII) on the curve ℓ5 is topologically
equivalent to the phase portrait 1.21’ of Figure 4 which is topologically
equivalent to the phase portrait 1.21 of Figure 1. We observe that in the
phase portrait 1.19 (respectively, 1.20, 1.21 and 1.21’) the saddles and the
centers forming the center–loop in the phase portrait 1.16 (respectively, 1.15,
1.17 and 1.17’) have coalesced.

On the curve ℓ3 there are no infinite singular points and besides the
origin there are four finite singular points that can be either hyperbolic
or nilpotent and there are at most two cusps (see Lemma 6). Therefore
the known singular points have total index -2 on the Poincaré sphere. By
Theorem 3, the four remaining finite singular points must have total index
4. Since they are hyperbolic or nilpotent, taking into account the symmetry
of the system they must be two centers and two cusps. Hence, the global
phase portrait of systems (VIII) on the curve ℓ3 is topologically equivalent
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to the phase portrait 1.22 of Figure 1. Note that this corresponds to the
fact that one center coalesces with the saddle (both for y positive and y
negative) in phase portrait 1.7.

On the curve ℓ4 there are two points in the local chart U1 that consists in
one hyperbolic and one elliptic sectors, and besides the origin there are four
singular points which are hyperbolic (see Lemma 6). Therefore the known
singular points have total index 2 on the Poincaré sphere. By Theorem
3, the four remaining finite singular points must have total index 0. Since
they are hyperbolic, taking into account the symmetry of the system they
must be two centers and two saddles. Taking also into account the fact that
the saddles cannot be connected with the saddle at the origin, we get that
the global phase portrait of systems (VIII) on the curve ℓ4 is topologically
equivalent to the phase portrait 1.23 of Figure 1.

On the point p0 the are two points in the local chart U1 that consists in one
hyperbolic and one elliptic sector separated by the infinity and besides the
origin there are two finite singular points that are hyperbolic (see Lemma 6).
Therefore the known singular points have total index 2 on the Poincaré
sphere. By Theorem 3, the four remaining finite singular points must have
total index 0. Since they are either hyperbolic or nilpotent and there are at
most two cusps (see Lemma 6), we conclude that they must be two cusps.
Hence, the global phase portrait of systems (VIII) at p0 is topologically
equivalent to the phase portrait 1.24 of Figure 1. Note that in this case the
saddles and the centers forming the center–loop in phase portrait 1.24 have
coalesced.

On the point p1 the are four nodes on the local chart U1 (two stable and
two unstable), the origin of U2 is not a singular point and besides the origin
there are two finite singular points which are either hyperbolic or nilpotent
(see Lemma 6). Therefore the known singular points have total index 6 on
the Poincaré sphere. By Theorem 3, the four remaining finite singular points
must have total index −4. Taking into account the symmetry of the system
they must be two saddles. Hence, the global phase portrait of systems (VIII)
at p1 is topologically equivalent to the phase portrait 1.25 of Figure 1.
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