Limit cycles of a class of polynomial systems

Marc Carbonell

Departament de Matemàtiques i Informàtica, Facultat de Ciències, Universitat de les Illes Balears, 07071 Palma de Mallorca, Spain

and

Jaume Llibre

Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain

(MS received 26 January 1987. Revised MS received 4 June 1987.)

Synopsis

We study the class of polynomial vector fields of the form $\dot{x} = \alpha x - y + P_n(x, y)$, $\dot{y} = x + \alpha y + Q_n(x, y)$, where P_n and Q_n are homogeneous polynomials of degree n. If we define the functions $f(x, y) = xP_n(x, y) + yQ_n(x, y)$ and $g(x, y) = xQ_n(x, y) - yP_n(x, y)$, we characterise the number of limit cycles for this class when the function $g(\alpha g - f)$ does not change sign.

1. Introduction

We consider two-dimensional autonomous systems of differential equations of the form

$$\begin{aligned}
\dot{x} &= \alpha x - y + P_n(x, y), \\
\dot{y} &= x + \alpha y + Q_n(x, y),
\end{aligned} (1.1)$$

where P_n and Q_n are real homogeneous polynomials of degree $n \ge 2$. It is known that the origin of (1.1) is a focus or a centre.

In polar coordinates, system (1.1) is of the form

$$\begin{aligned}
\dot{r} &= \alpha r + r^n f(\theta), \\
\dot{\theta} &= 1 + r^{n-1} g(\theta),
\end{aligned} (1.2)$$

where

$$f(\theta) = \cos \theta P_n(\cos \theta, \sin \theta) + \sin \theta Q_n(\cos \theta, \sin \theta),$$

$$g(\theta) = \cos \theta Q_n(\cos \theta, \sin \theta) - \sin \theta P_n(\cos \theta, \sin \theta).$$

It is known that limit cycles of these systems that do not cut the curve $\dot{\theta} = 0$ can be studied by making the transformation $T(r, \theta) = (p, \theta)$, where

$$p = r^{n-1}/[1 + r^{n-1}g(\theta)]. \tag{1.3}$$

This transformation was used in [2], [9], [12], [13], [1] and [4]. In the new coordinates (p, θ) the system becomes

$$dp/d\theta = A(\theta)p^3 + B(\theta)p^2 + (n-1)\alpha p, \tag{1.4}$$