A NOTE ON THE SET OF PERIODS FOR CONTINUOUS MAPS OF THE CIRCLE WHICH HAVE DEGREE ONE

LLUÍS ALSEDA AND JAUME LLIBRE

Abstract

The main result of this paper is to complete Misiurewicz's characterization of the set of periods of a continuous map f of the circle with degree one (which depends on the rotation interval of f). As a corollary we obtain a kind of perturbation theorem for maps of the circle of degree one, and a new algorithm to compute the set of periods when the rotation interval is known.

Also, for maps of degree one which have a fixed point, we describe the relationship between the characterizations of the set of periods of Misiurewicz and Block.

1. Notation. We denote by N, Z, Q and R, as usual, the set of positive integers, integers, rational and real numbers, respectively.

Let S^{1} be the circle and $C_{1}\left(S^{1}\right)$ be the set of continuous maps from the circle into itself of degree one. For a map $f \in C_{1}\left(S^{1}\right), P(f)$ denotes the set of periods of f (from now on, by period of a periodic point, we will mean the least period of this point).

We consider Sarkovskii's ordering \rightarrow on N, defined as follows

$$
\begin{aligned}
3 \rightarrow 5 \rightarrow 7 & \rightarrow 9 \rightarrow \cdots \rightarrow 2 \cdot 3 \rightarrow 2 \cdot 5 \rightarrow 2 \cdot 7 \rightarrow 2 \cdot 9 \\
& \rightarrow \cdots \rightarrow 4 \cdot 3 \rightarrow 4 \cdot 5 \rightarrow 4 \cdot 7 \rightarrow \cdots \rightarrow \cdots \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 .
\end{aligned}
$$

For every $s \in N$ we denote by S_{s} the set $\{n \in N: s \rightarrow n\} \cup\{s\}$. Also we define $S_{2^{\infty}}=\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$. Similarly, for every $b \in N$ we denote by B_{b} the set $\{n \in N: b \leqslant n\}$, and we write $B_{\infty}=\varnothing$.
Let $f \in C_{1}\left(S^{1}\right)$ and let F be a lifting of f. If x is a periodic point of f of period n and X is a real number which satisfies that $\exp (2 \pi i X)=x$, then we have $F^{n}(X)=$ $X+k$ for some $k \in Z$. We shall call the number k / n the rotation number of x and denote it by $\rho(x)$ or $\rho_{F}(x)$. We denote by $L(f)$ or $L_{f}(f)$ the set of all rotation numbers of periodic points of f. The following statements are known (see [BGMY and $\mathbf{M}]$).
(1) $\rho(x)$ does not depend on the choice of X.
(2) If $F^{\prime}=F+m$, then $\rho_{F^{\prime}}(x)=\rho_{F}(x)+m$.
(3) $\rho_{F^{m}}(x)=m \rho_{F}(x)$.
(4) If $a<b<c, a, c \in L(f)$ and $b \in Q$, then $b \in L(f)$.
(5) $L(f) \cap Z \neq \varnothing$ if and only if $1 \in P(f)$.

[^0]
[^0]: Received by the editors October 25, 1983 and, in revised form, February 14, 1984.
 1980 Mathematics Subject Classification. Primary 54H20.

