Research paper

An algorithm to compute rotation intervals of circle maps

Lluís Alsedà ${ }^{\mathrm{a}, \mathrm{b}}$, Salvador Borrós-Cullell ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Departament de Matemàtiques, Edifici C, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
${ }^{\mathrm{b}}$ Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
${ }^{\text {c }}$ Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain

A R T I C L E I N F O

Article history:

Received 11 December 2020
Revised 19 May 2021
Accepted 31 May 2021
Available online 5 June 2021

2020 MSC:

Primary 37E10
Secondary 37E45

Keywords:

Rotation number
Circle maps
Nondecreasing degree one lifting Algorithm

Abstract

In this article we present an efficient algorithm to compute rotation intervals of circle maps of degree one. It is based on the computation of the rotation number of a monotone circle map of degree one with a constant section. The main strength of this algorithm is that it computes exactly the rotation interval of a natural subclass of the continuous non-invertible degree one circle maps. We also compare our algorithm with other existing ones by plotting the Devil's Staircase of a one-parameter family of maps and the Arnold Tongues and rotation intervals of some special non-differentiable families, most of which were out of the reach of the existing algorithms that were centred around differentiable maps.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The rotation interval plays an important role in combinatorial dynamics. For example Misiurewicz's Theorem [1] links the set of periods of a continuous lifting F of degree one to the set $M:=\left\{n \in \mathbb{N}: \frac{k}{n} \in \operatorname{Rot}(F)\right.$ for some integer $\left.k\right\}$, where $\operatorname{Rot}(F)$ denotes the rotation interval of F. Moreover, it is natural to compute lower bounds of the topological entropy depending on the rotation interval [2]. In any case, the knowledge of the rotation interval of circle maps of degree one is of theoretical importance.

The rotation number was introduced by H. PoincarE̦ to study the movement of celestial bodies [3], and since then has been found to model a wide variety of physical and sociological processes. In the physical sense, it has been recently applied to climate science [4]. In the sociological one, the application to voting theory [5,6] is specially surprising in this context.

The computation of the rotation number for invertible maps of degree one from \mathbb{S}^{1} onto itself is well studied, and many very efficient algorithms exist for its computation [7-10]. However, there is a lack of an efficient algorithm for the noninvertible and non-differentiable case.

In this article, we propose a method that allows us to compute the rotation interval for the non-invertible case. Our algorithm is based on the fact that we can compute exactly the rotation number of a natural subclass of the class of continuous non-decreasing degree one circle maps that have a constant section and a rational rotation number. From this algorithm we

[^0]
[^0]: म Supported by the Spain's "Agencial Estatal de Investigación" (AEI) grants MTM2017-86795-C3-1-P and MDM-2014-0445 within the "María de Maeztu" Program.

 * Corresponding author.

 E-mail addresses: alseda@mat.uab.cat, lalseda@crm.cat (L. Alsedà), sborros@mat.uab.cat (S. Borrós-Cullell).

