0362-546X(95)00129-8

PHASE PORTRAITS OF PLANAR CONTROL SYSTEMS

JAUME LLIBRE \dagger and JORGE SOTOMAYOR \ddagger

\dagger Departament de Matèmatiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; and \ddagger Instituto de Matematica e Estatistica, Departamento de Matematica Aplicada, Cidade Universitaria,

Rua do Matao, 1010, 05508-900-Sao Paulo, Brazil
(Received 7 June 1994; received for publication 6 July 1995)
Key words and phrases: Nonlinear control systems, phase portrait, bifurcation diagram.

1. INTRODUCTION

Systems of the form

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x}+\varphi(\mathbf{k} \cdot \mathbf{x}) \mathbf{b}, \tag{1}
\end{equation*}
$$

where A is a $n \times n$ real matrix and $\mathbf{x}, \mathbf{k}, \mathbf{b}$ are in \mathbb{R}^{n} and "." denotes the usual inner product, are of great importance in direct control [1]. The divergence from linearity of these systems results from the presence of the characteristic function φ of the control mechanism. The purpose of this mechanism is to improve the asymptotic stability behavior of the equilibrium located at the origin. The reader is referred to Lefschetz [1] and to Narendra and Taylor [2], for details in control theory.
In this paper, we will focus our attention to the class $\mathfrak{F} S$ of two-dimensional systems (1), i.e. $n=2$, such that
(a) have the origin as an asymptotically stable equilibrium point;
(b) the characteristic function φ has the form

$$
\varphi(v)=-u, \quad \text { for } v \leq-u ; \quad \varphi(v)=v, \quad \text { for }-u \leq v \leq u ; \quad \varphi(v)=u, \quad \text { for } u \leq v,
$$

where u is positive and fixed throughout this paper.
Such systems will be referred to as fundamental systems (FS). They are symmetric with respect to the origin. That is, their solutions are exchanged under the mapping $\mathbf{x} \rightarrow-\mathbf{x}$. Orbits which are invariant under this mapping will be called symmetric.
The characteristic function φ induces a partition of \mathbb{R}^{2} into three open strips and two straight lines, as follows:

$$
\begin{gathered}
\mathbb{S}_{-}=\{\mathbf{x}: \mathbf{x} \cdot \mathbf{k}<-u\}, \quad \mathbb{S}_{0}=\{\mathbf{x}:-u<\mathbf{x} \cdot \mathbf{k}<u\}, \quad \mathbb{S}_{+}=\{\mathbf{x}: \mathbf{x} \cdot \mathbf{k}>u\} \\
\Gamma_{-}=\{\mathbf{x}: \mathbf{x} \cdot \mathbf{k}=-u\}, \quad \Gamma_{+}=\{\mathbf{x}: \mathbf{x} \cdot \mathbf{k}=u\} .
\end{gathered}
$$

Therefore, the FS splits into the following linear systems:

$$
\begin{array}{ll}
\mathbf{x}^{\prime}=A \mathbf{x}-u \mathbf{b}, & \text { in } \mathbb{S}_{-} U \Gamma_{-} \\
\mathbf{x}^{\prime}=A \mathbf{x}+(\mathbf{k} \cdot \mathbf{x}) \mathbf{b}, & \text { in } \Gamma_{-} U \mathbb{S}_{0} U \Gamma_{+} \\
\mathbf{x}^{\prime}=A \mathbf{x}+u \mathbf{b}, & \text { in } \mathbb{S}_{+} U \Gamma_{+} . \tag{2.+}
\end{array}
$$

