ABELIAN INTEGRALS OF QUADRATIC HAMILTONIAN VECTOR FIELDS WITH AN INVARIANT STRAIGHT LINE*

Chengzhi Li, Jaume Llibre and Zhifen Zhang

Abstract

We prove that the lowest upper bound for the number of isolated zeros of the Abelian integrals associated to quadratic Hamiltonian vector fields having a center and an invariant straight line after quadratic perturbations is one.

1. Introduction

Let $H(x, y)$ be a real polynomial of degree $n+1$, and let $P(x, y)$ and $Q(x, y)$ be real polynomials of degree at most m. The problem of finding an upper bound $N(n, m)$ for the number of isolated zeros of the Abelian integrals

$$
\begin{equation*}
I(h)=\int_{\Gamma_{h}} Q(x, y) d x-P(x, y) d y \tag{1.1}
\end{equation*}
$$

where Γ_{h} varies in the compact components of $H^{-1}(h)$ is called the weakened 16th Hilbert problem. It was posed by Arnold in [1].

The weakened 16th Hilbert problem is closely related to the problem of determinating an upper bound for the number of limit cycles of the perturbed Hamiltonian system

$$
\begin{align*}
& \frac{d x}{d t}=\frac{\partial H}{\partial y}+\varepsilon P(x, y) \\
& \frac{d y}{d t}=-\frac{\partial H}{\partial x}+\varepsilon Q(x, y) \tag{1.2}
\end{align*}
$$

*The authors are partially supported by DGICYT grants, the first and third authors are also partically supported by NSF of China, the second one is also partially supported by a CIRIT grant.

