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Abstract. We characterize all possible sets of periods for all continuous self-maps on a
tree having all branching points fixed. This result solves a problem which was originally
posed by Alseda, Llibre and Misiurewicz.

1. Introduction and statement of the results

In the 1960s Sarkovskif [Sa] proved a remarkable theorem about the interrelationships
of periodic points of continuous maps on the closed unit interval. Let < (the Sarkovskir
ordering) be the following linear ordering of the positive integers (a more precise
definition will be given below):

12«22«22 . 722 5.2 3.2 ...
<~ T724+5.2+3.2«.-.«7<«5«3

Let f:X — X be a continuous map on the topological space X. A point x of X
will be called periodic with respect to f (or just periodic, if f is obvious from context)
if f"(x) = x for some integer n > 0, where f” is f composed with itself n times.
The least n satisfying the above equality is called the period of x. The orbit of x is
the set {f"(x):n > 0}, where f° is the identity map. We denote by Per(f) the set
{n: f has a point of period n}.

SARKOVSKII'S THEOREM. Let I be the unit interval,

(1) For every continuous map f:1 — I, if k € Per(f) then m € Per(f) for every
m <« k.

(2) Conversely, if S is any initial segment of the Sarkovskit ordering (i.e. a set of positive
integers which is closed under <—-predecessors), then there is a continuous map
f:1 — I such that Per(f) = S.
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