DIVISION FOR STAR MAPS WITH THE BRANCHING POINT FIXED

LL. ALSEDÀ AND X. YE

ABSTRACT. We extend the notion of division given for interval maps (see [10]) to the *n*-star and study the set of periods of star maps such that all their periodic orbits with period larger than one have a division. As a consequence of this result we get some conditions characterizing the star maps with zero topological entropy.

1. INTRODUCTION

The *n*-star is the subspace of the plane which is most easily described as the set of all complex numbers z such that z^n is in the unit interval [0,1]. We shall denote the *n*-star by \mathbf{X}_n . We shall also use the notation \mathcal{X}_n to denote the class of all continuous maps from \mathbf{X}_n to itself such that f(0) = 0.

We note that the 1-star and the 2-star are homeomorphic to a closed interval of the real line. Thus, in what follows, when talking about \mathbf{X}_n or \mathcal{X}_n we shall always assume that $n \geq 2$.

As usual, if $f \in \mathcal{X}_n$ we shall write f^k to denote $f \circ f \circ \cdots \circ f$ (k times). A point $x \in \mathbf{X}_n$ such that $f^k(x) = x$ but $f^j(x) \neq x$ for $j = 1, 2, \ldots, k-1$ will be called a **periodic point of** f **of period** k. If x is a periodic point of f of period m then the set $\{f^k(x) : k > 0\}$ will be called a **periodic orbit** of f of period m (of course it has cardinality m).

The set of periods of all periodic points of a map $f \in \mathcal{X}_n$ will be denoted by $\operatorname{Per}(f)$.

In this paper we extend the notion of division given for interval maps (see [10]) and for maps from \mathcal{X}_3 (see [4]) to the *n*-star and we study the set of periods of maps from \mathcal{X}_n such that all their periodic orbits have a division. As a consequence of this result we get some conditions characterizing the maps from \mathcal{X}_n with zero topological entropy.

We start by fixing the notion of division. The components of $\mathbf{X}_n \setminus \{0\}$ will be called branches.

Received October 21, 1992; revised June 9, 1993.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 34C35, 54H20.

The authors have been partially supported by the DGICYT grant number PB90–0695.