DIVISION FOR STAR MAPS WITH THE BRANCHING POINT FIXED

Ll. ALSEDÀ and X. YE

Abstract

We extend the notion of division given for interval maps (see [10]) to the n-star and study the set of periods of star maps such that all their periodic orbits with period larger than one have a division. As a consequence of this result we get some conditions characterizing the star maps with zero topological entropy.

1. Introduction

The n-star is the subspace of the plane which is most easily described as the set of all complex numbers z such that z^{n} is in the unit interval $[0,1]$. We shall denote the n-star by \mathbf{X}_{n}. We shall also use the notation \mathcal{X}_{n} to denote the class of all continuous maps from \mathbf{X}_{n} to itself such that $f(0)=0$.

We note that the 1-star and the 2-star are homeomorphic to a closed interval of the real line. Thus, in what follows, when talking about \mathbf{X}_{n} or \mathcal{X}_{n} we shall always assume that $n \geq 2$.

As usual, if $f \in \mathcal{X}_{n}$ we shall write f^{k} to denote $f \circ f \circ \cdots \circ f$ (k times). A point $x \in \mathbf{X}_{n}$ such that $f^{k}(x)=x$ but $f^{j}(x) \neq x$ for $j=1,2, \ldots, k-1$ will be called a periodic point of f of period k. If x is a periodic point of f of period m then the set $\left\{f^{k}(x): k>0\right\}$ will be called a periodic orbit of f of period m (of course it has cardinality m).

The set of periods of all periodic points of a map $f \in \mathcal{X}_{n}$ will be denoted by Per (f).

In this paper we extend the notion of division given for interval maps (see [10]) and for maps from \mathcal{X}_{3} (see [4]) to the n-star and we study the set of periods of maps from \mathcal{X}_{n} such that all their periodic orbits have a division. As a consequence of this result we get some conditions characterizing the maps from \mathcal{X}_{n} with zero topological entropy.

We start by fixing the notion of division. The components of $\mathbf{X}_{n} \backslash\{0\}$ will be called branches.

[^0]
[^0]: Received October 21, 1992; revised June 9, 1993.
 1980 Mathematics Subject Classification (1991 Revision). Primary 34C35, 54H20.
 The authors have been partially supported by the DGICYT grant number PB90-0695.

