NEW ADVANCES IN CELESTIAL MECHANICS AND HAMILTONIAN SYSTEMS

HAMSYS-2001

Edited by

J. Delgado

E. A. Lacomba Universidad Autónoma Metropolitana-Iztapalapa Mexico City, Mexico

J. Llibre Universitat Autónoma de Barcelona Barcelona, Spain

and

E. Pérez-Chavela Universidad Autónoma Metropolitana-Iztapalapa Mexico City, Mexico

Kluwer Academic / Plenum Publishers New York, Boston, Dordrecht, London, Moscow

Preface	19	ix
Drawing		xi
Exchange	and capture in the planar restricted parabolic 3-body problem	1
Martha A	lvarez-Ramírez and Joaquín Delgado, Josep Maria Cors	
1	Historical review of escapes and capture	2
2	Final evolutions in the restricted 3-body problem	5
	2.1 Restricted parabolic problem	6
	2.2 Hyperbolic restricted problem	7
	2.3 Circular restricted problem	7
3	Scope and structure of the paper	8
4	The restricted parabolic 3-body problem in pulsating coordinates	8
5	Gradient-like property of the global flow	12
6	The asymptotic system	16
7	Structure of parabolic escape orbits	18
8	Criteria for elliptic-parabolic motion	20
9	Numerical results	23
Fitting In-	variant Curves on Billiard Tables and the Birkhoff-Herman Theorem	29
Edoh Y. A	miran	
1	Integrability	29
	1.1 Physical Integrability	29
	1.2 Geometric Integrability	30
2	Definitions	30
3	Convexity	32
4	Folds	32
5	A differentiable limit curve with constant homotopy	33
Construct	ion of Periodic Orbits in Hill's Problem for $C \gtrsim 3^{\frac{4}{3}}$	37
1	Introduction	37
2	Hill's Problem	39
3	Construction of Periodic Orbits by Homotopic Continuation	45
Apper	ıdix	60

2

v

ł

.

Are there	perverse choreographies?	63
Alain Ch	enciner	
1	The circulant mass matrix	63
2	Adapted decompositions	65
3	The equations of perversity	67
4	Choreographies with less than 6 bodies	68
5	Choreographies	72
6	Polygonal relative equilibria	73
7	Two questions	75
Blow up	of total collision in the tetrahedral non-rotating four body problem	77
Joaquín I	Delgado , Claudio Vidal	
1	Introduction	78
2	Statement of the problem	78
3	Blow up of total collision	80
4	Central configurations	83
	4.1 Linear stability of central configurations	86
	The planar (rhomboidal) configuration	87
	The spatial (tetrahedral) configuration	88
5	Linearization of the flow at the critical points	89
	5.1 Linearization at the critical points P^{\pm} associated to the planar configuration p .	91
	5.2 Linearization at the critical points E_{12}^{\pm} associated to the tetra-	
	hedral configurations $e_{1,2}$	91
6	Regularization of single binary collisions	92
Symboli	c Dynamics for Transition Tori-II	95
Marian (Gidea, Clark Robinson	
1	Introduction	95
2	The Conley index and correctly aligned windows	97
3	Preliminary results	100
4	Proof of the Main Theorem	102
A Survey	on Bifurcations of Invariant Tori	109
Heinz He	ınßmann	
1	Introduction	109
2	Bifurcations of equilibria	110
	2.1 Bifurcations at zero eigenvalues	111
	2.2 The Hamiltonian Hopf bifurcation	112
3	Bifurcations of periodic orbits	113
	3.1 Bifurcations inherited from equilibria	113
	3.2 The Hamiltonian flip bifurcation	114
4	Bifurcations of Floquet-tori	114
	4.1 Biturcations of co-dimension one	116
~	4.2 Diffurctions of night co-dimension	117
2	Reducibility	119

vi

Contents		vii
Perturbin E. Piña, I	g the Lagrange solution to the general three body problem	123
1	Introduction	123
2	Hamilton equations	127
3	The lagrange case of the three-body problem	129
4	Dimensionless variables	132
5	Perturbing the Lagrange solution	133
Horsesho	e periodic orbits in the restricted three body problem	137
J. Llibre,	Mercè Ollé	
1	Introduction	137
2	The restricted three-body problem	138
3	Horseshoe periodic orbits and the invariant manifolds of Lyapunov periodic orbits emanating from L_3	139
Instabilit	y of Periodic Orbits in the Restricted Three Body Problem	153
Daniel O	ffin, Wojciech Skoczylas	
1	Introduction	153
2	Planar R3BP, mass normalized to one	155
3	A variational principle for hyperbolicity	158
4	Fixed energy variational problem	161
Syzygies Christon	and the Integral Manifolds of the Spatial N-Body Problem	169
1	Introduction	169
2	The Manifolds	170
3	The Vector Field α	173
-	3.1 Away from Collinear	174
	3.2 At Collinear	175
4	Limiting Behavior	175
5	Coordinates near Syzygies	177
6	Homology of the Integral Manifolds	178
7	The Three-Body Problem	179
Dynamic M. Ollé,	s and bifurcation near the transition from stability to complex instability J. R. Pacha and J. Villanueva	/ 185
1	Introduction	185
2	Formulation of the problem and methodology	186
3	Normal form process	187
	3.1 The Jordan structure of the monodromy matrix	187
	3.2 The quadratic part of the Hamiltonian in the adapted coordinates	188
4	Normal form at higher order	190
5	The resonant normal form	192
6	Infolding and stability of the bifurcated 2-dimensional tori	193

Invariant Manifolds of Spatial Restricted Three-Body Problems: the Lunar Case 199

/

١

	•	٠	٠
v	1	1	1

Jesús	Palacián	Patricia	Yanguas

Jesus rui	ucian, raincia tanguas		
1	Introduction 1.1 Canonical Variables for the Problem 1.2 Aim and Scope of the Paper	200 200 203	
2	The Normal Form Setting	204	
	2.1 Making Formal Integrals with Lie Transformations	204	
	2.2 Change of Co-ordinates	206	
3	Passage to a 2DOF System	206	
	3.1 The Normalisation of Delaunay	206	
	3.2 Analysis of the Resulting System in $S^2 \times S^2$	209	
4	Passage to another 2DOF System	212	
	4.1 The Elimination of the Node	212	
	4.2 Analysis of the Resulting System in $\mathbb{R}^6/(\mathbb{S}^1 \times \mathbb{S}^1)$	214	
5	Passage to a 1DOF; the Integrable Approximation	216	
	5.1 The Second Normalisation	216	
	5.2 The Resulting System: Quasi-Periodic Orbits and 2D Tori	217	
	5.3 New Families of Symmetric Periodic Orbits	221	
Path Inter	gral Quantization of the Sphere	225	
Walter Re	cartes		
1	Preliminaries	225	
	1.1 The 1-Step Propagator	225	
	1.2 The Propagator	229	
2	An Idea of the General Case	229	
	2.1 The 1-Step Propagator	229	
	2.2 The Propagator	231	
3	Case $M = S^n$	232	
4	Propagators for α -densities		
Non-holo	nomic systems with symmetry allowing a conformally		
symp	lectic reduction	239	
Pedro de	M. Rios and Jair Koiller		
1	Introduction	239	
2	The contact non-holonomic system	240	
3	Almost-poisson brackets via moving frames	241	
4	Contact almost-Poisson structure 2		
5	The compressed system 24		
6	The conformally symplectic structure on the compressed system 24		
7	Non-Jacobi for the constrained almost-Poisson 2		
8	Non-Jacobi for the constrained almost-Poisson, bis 24		
9	The compressed almost-Poisson structure is not conformally sym-		
	plectic in general	250	
10	Conclusions	251	

* *	
1000	100.00
A	

253