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Abstract. We consider a ¥°° family of planar vector fields { X} aew having a hyperbolic saddle and
we study the Dulac map D(s; i) and the Dulac time T'(s; 1) from a transverse section at the stable
separatrix to a transverse section at the unstable separatrix, both at arbitrary distance from the saddle.
Since the hyperbolicity ratio A of the saddle plays an important role, we consider it as an independent
parameter, so that o = (A, u) € W = (0,400) x W, where W is an open subset of RY. For each
fio € W and L > 0, the functions D(s; 1) and T(s; i) have an asymptotic expansion at s = 0 and
[t &~ [ip with the remainder being uniformly L-flat with respect to the parameters. The principal part
of both asymptotic expansions is given in a monomial scale containing a deformation of the logarithm,
the so-called Ecalle-Roussarie compensator. In this paper we are interested in the coefficients of these
monomials, which are functions depending on /i that can be shown to be ¥°° in their respective domains
and “universally” defined, meaning that their existence is stablished before fixing the flatness L and the
unfolded parameter fio. Each coefficient has its own domain and it is of the form ((0,+o00) \ D) x W,
where D a discrete set of rational numbers at which a resonance of the hyperbolicity ratio A occurs.
In our main result, Theorem A, we give the explicit expression of some of these coefficients and to this
end a fundamental tool is the employment of a sort of incomplete Mellin transform. With regard to
these coeflicients we also prove that they have poles of order at most two at D x W and we give the
corresponding residue, that plays an important role when compensators appear in the principal part.
Furthermore we prove a result, Corollary B, showing that in the analytic setting each coefficient given
in Theorem A is meromorphic on (0, +00) x W and has only poles, of order at most two, along D x W.
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1 Introduction and statements of main results

In this paper we consider ¥*° unfoldings of planar vector fields with a hyperbolic saddle. The study
of the so-called Dulac map of the saddle has attracted the attention of many authors (see for instance
[3, 4, 5, 12, 24, 29] and references there in) due, among other reasons, to its close connection with Hilbert’s
16th problem (see [13, 30] for details). If /i is the parameter unfolding, the Dulac map D(-; i) of the saddle
is the transition map from a transverse section X1 at its stable separatrix W, to a transverse section Yo at its
unstable separatrix Wy, whereas the Dulac time T'( - ; i) is the time that spends the flow to do this transition,
see Figure 1. In a recent paper [23] we prove a general result for studying the asymptotic developments of
D(s; i) and T'(s; i) at s = 0, where s is the variable parameterizing the transverse section ¥; and s = 0
corresponds to the intersection point W7 N X;. In short, this general result gives a remainder that behaves
well (i.e., uniformly on the parameters i) with respect to ds; and provides a detailed description of the
monomials appearing in the principal part. A key feature of this principal part is that the monomials can
be ordered as s — 0T. This is a very important result for the theoretical point of view because it enables to
bound the number of limit cycles or critical periodic orbits bifurcating from a polycycle. However there are
specific problems where it is not only interesting to bound this number but also to determine from which
parameters [ these bifurcations occur. Having explicit expressions of the coefficients of the monomials in
the principal part is crucial for this purpose, see for instance [32, 33] for limit cycles and [18, 19] for critical
periodic orbits. The present paper is addressed to this issue. There are two features to be noted with regard
to the hypothesis on the unfolding under consideration. On the one hand we suppose that the saddle is at
the origin and, more significant, that the separatrices lay on the coordinate axis for all . It is important to
point out that there is no loss of generality in assuming this since we prove in [23, Lemma 4.3] that there
exists a smooth diffeomorphism, depending on the parameters, that straightens the two segments of the
separatrices joining the points Wi N ¥, and W5 N Xo with the saddle. That being said, we suppose on the
other hand that the vector field has poles along the axis. The reason why we permit this “polar” factor is
because, when dealing with polynomial vector fields, a special attention must be paid to the study of those
polycycles with vertices at infinity in the Poincaré disc. The factor can come from the line at infinity in a
saddle at infinity or, more generally, appear in a divisor after desingularizing more general singular points
at infinity of a polycycle. We remark that (by means of a reparametrization of time) this factor can be
neglected to study the Dulac map but, on the contrary, this cannot be done when dealing with the Dulac
time.

The present paper is the continuation of [22] and [23] and concludes our contribution to the study of
the theoretical aspects of the asymptotic expansion of the Dulac map and Dulac time of an unfolding of
a hyperbolic saddle. Naturally the results that we shall obtain in this paper are strongly related with our
previous ones. For reader’s convenience we shall recall the essential results and definitions from [22, 23] in
order to ease the legibility. Before that let us specify the hypothesis that we shall use throughout the paper.
Setting fi:= (\, ) € W:= (0, +00) x W with W an open set of RV, we consider the family of vector fields

{X/:L}[LEW with

1 . N
Xﬂ(xhx?):: W(xlpl(xhx%:u)awl +332P2($17952§M)8w2)a (1)

1 2

where

o n:= (n1,n9) € Z3,,
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Figure 1: Definition of T'(-; i) and D( - ; f1), where o(¢, p; 1) is the solution of X
passing through the point p € % at time t = 0.

e P, and P; belong to €°°(% x W) for some open set % of R? containing the origin,
e Py(x1,0;/1) > 0 and Py(0,x2; /i) < 0 for all (x1,0), (0,22) € % and i € W,

__ P(0,0:1)
* A= —Fo0m:

Moreover, for i = 1,2, let 0;: (—e,¢) X W — %, be a € transverse section to X; at x; = 0 defined by
oi(s; i) = (oi(s; 1), oiz(s; 1))

such that o1 (0, 72) € {(0,2); x5 > 0} and 02(0, i) € {(x1,0); 21 > 0} for all 1 € W. We denote the Dulac
map and Dulac time of X from X, to X5 by D(-; /) and T'(-; f1), respectively (see Figure 1). Of course, in
order that these functions are well defined for s > 0 small enough, the open set % must contain the corner

{(.’ﬂl,O); X S [0,021(0)]} U {(0,932);$2 c [0,012(0)} } .

Remark 1.1. For convenience, taking p > 0 small enough, we define the open intervals
I = ( —p,o12(0) + p) and Iy:= ( —p,021(0) + p)

and assume in what follows that % contains ({0} xI1) U (I2 x {0}). Note then that, for i = 1,2 and any
k € Zso, the map (u, 1) — OFP;(0,u; 1) is € on I x W and the map (u, 1) — O5P;(u,0; 1) is € on
Io xW. Moreover 0 € I; for i = 1,2. This technical observation will be important later on. O

Definition 1.2. Consider K € Z>¢ U {+00} and an open subset U C W c RV+L. We say that a function
¥(s; 1) belongs to the class €5 (U), respectively £X(U), if there exist an open neighbourhood 2 of

{(s,0) eRY** s = 0,4 € U} = {0} x U
in RV*2 such that (s, 1) — ¢(s; ) is €5 on QN ((0,+00) x U), respectively Q. Finally we denote
EX(U) = {Y(s; ) € EX(U); (05 1) > 0 for all i € U}.

Here the letter € stands for functions in €% (U) having extension to s = 0. O
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Figure 2: The filled dots are points (i, j) € Z, in the set Ay for k = (k1, k2).

More formally, the definition of €% ((U) and ¥ (U) must be thought in terms of germs with respect to
relative neighborhoods of {0} x U in (0,400) x U. In doing so these sets become rings and we have the
inclusions €% (U) c EX(U) c €K ,(U).

We can now introduce the notion of (finitely) flatness that we shall use in the sequel.

Definition 1.3. Consider K € ZsU{+00} and an open subset U ¢ W c RN*!. Given L € R and jig € U,
we say that 1(s; i) € €5,(U) is (L, K)-flat with respect to s at fio, and we write 1) € FX (fio), if for each
v = (to,...,vn+1) € ZY? with |v] = vy + -+ + vyy1 < K there exist a neighbourhood V' of fig and
C, 59 > 0 such that B

0lly(s; 1)
5,31/03/)11’1 "'8ﬂszN++1l

< Cst=70 for all s € (0,50) and 1 € V.

If W is a (not necessarily open) subset of U then define FX (W):= Nigew FE (). O

The principal part of the Dulac map and Dulac time will be expressed in terms of the following defor-
mation of the logarithm.

Definition 1.4. The function defined for s > 0 and o € R by means of

{ U1 A0,

w(s;a) =
(532) —logs ifa=0,

is called the Ecalle-Roussarie compensator. O

Definition 1.5. Given any k = (k1, ko) € ZQZO, throughout the paper we shall use the following notation:

o Ap:i=(Z>p, x{0}) U (Z>ox Z>p,), see Figure 2.
o Df:={X>0: there exits (i, j') € Ax \ {(i,/)} such that i + Aj =i’ + \j’}.



o B :={(i,j) € Ap 1 i+ X\j < L} for each L € R and A > 0.
e D} :={A>0: there exits (i,]) € 93];# such that A € DfJ}
e For A =p/q € Qs with ged(p,¢) =1 and (i,7) € Ay,

U if (i +rp,j —rq) € Ay, for some r € N,

f%’;} = . . .
{re€Zsy: (i—rp,j+rqg € Ay} otherwise.

Observe that if k3 = 0 then Ay, = 2220 = Ag regardless of the value of k1. One can prove on the other hand,

see [23, Remark 3.3], that ij and D¥ are discrete subsets of Q. d

Let us point out that in the previous definition &k stands always for a two-dimensional vector with components

in Z>o. That being said, if & = (0, 0) then we write Ao, D?j, %’Q’L, D9 and %% for shortness.

For the reader’s convenience we merge Theorems A and B of [23] in the following result. In its statement
we use the notation introduced so far and denote

. 0 if n # (0,0),
TO(M) = —1 f _ 0 O
PO0a YN= (0,0),
where recall that the components of n = (ni,ns) € ZQZO are the orders of the poles of X}, along the axis.

Theorem 1.6. Let D(s; 1) and T(s; i) be, respectively, the Dulac map and the Dulac time of the hyperbolic
saddle (1) from %1 and Y.

(a) For each (i,j) € Ao there exists Aij € € (((0,+00)\ D;) x W) such that, for every L > 0 and Ao > 0,
the following hold:

(al) If o ¢ DY_,, then

D(sii) =5 > Ay(p)s™tN + FR({ho} x W).
(.)EB L2

(a2) If Ao € DY _,, then there exists a neighbourhood U of {Xo} x W such that

Disip) =5 >, AF(wlsa)i)s™™ + FF({Ao} x W),

(1) EBS L,

where Ao = p/q with ged(p,q) =1, a(ii) = p— Aq and Af‘jo(w; fi) € €°°(U)[w] with

Ai\jo (’LU, ﬂ) == Z Ai—rp,j—&-rq(ﬂ)(l + aw)r fOT‘ A 7é )‘O'

0
regfiﬂo

Moreover Noo(jt) > 0 for all e W.

(b) For each (i,5) € A, there exists T;; € €>°(((0, 400) \ D) x W) such that, for every L > 0 and Ao > 0,
the following hold:

(b1) If Ao ¢ D} then

T(s;f1) =To(@)logs+ > Tii()s"™ + F2({Xo} x W).

(63)€BY, L



(b2) If Ao € D} then there exists a neighbourhood U of {\o} x W such that

T(s;p) =To(i)logs+ > Ty (w(sia);p)s™N + Fr({ho} x W),
(6.3)€BL, L

where \g = p/q with ged(p,q) =1, a(ii) = p — Aq and T>‘°( fi) € €°°(U)[w] with

T)\O Z Tirpjrq()(1 + aw)” for X Xo.

n
TELQ{U *o

For every (i,j) € Ay, Theorem 1.6 shows that Tj;(A, p) is €°° on ((0,+00) \ D}}) x W. We will prove,
see Lemma 3.1, that for each Ao € D} there exists £ € Zxo such that i — (A — )\0) i () extends €
to {Ao} x W. Moreover the number ¢, which depends on (,7), Ag and n = (ny,n2), is bounded by i + j.
Hence, roughly speaking, the coefficient T;;(A, i) has poles of order at most ¢ + j along D} x W. Likewise,
by Lemma 3.1 as well, it follows that A;;(\, 1) has poles of order at most ¢ + j along D0 x W.

One of the main goals in this paper is to obtain explicit formulas for some of the coefﬁments A;; of the
Dulac map and some of the coefficients T;; of the Dulac time. More concretely, we will give the expressions
of A;; for (¢,7) € {(0,0),(0,1),(1,0),(1,1)} and T;; for (¢,7) € {(n1,0), (n1+1,0),(0,n2), (0,n2+1)}. This
information is relevant because the corresponding monomials s**/ are the first (as s — 01) that appear in
the asymptotic development of the Dulac map (see Theorem 4.1) and the Dulac time (see Theorem 4.3).
With this aim in view we next define some functions that depend uniquely on P;(x1, x2; fi), for ¢ = 1,2, and
n = (n1,n2), see (1). The latter is fixed, whereas the dependence on ji will be omitted for shortness.

Ly (u): —eXp/O (2&8 Z; A) % Lo (u):= exp/ou (ifgg; H) %

My (u) = ( ) Mo(u) = Lg(u)(?g(ij) (u,0)

_ Lit(w) LB (u)
A= 50,0 A= 500) 2)
By (u):=nq Ay (w) My (1/X, u) Bo(u):= naAg(u) Ma (A, w)

+L1H (w)d, Py (0, 1) + L2 (w) 0y P (u, 0)
Ci(u):= Li(u)d; Py (0, u) Co(u):= Li(u)d3 P (u,0)
+2L1 (u) My (1/X, w)dy Py (0, u) +2L5(u) Mo (X, u)dy Py (u, 0)

Here, given a € R\ Z>( and a real valued function f(z) that is €°° in an open interval containing x = 0,
f (a, ) is a sort of incomplete Mellin transform that we will introduce in Appendix B. In this regard we
point out, see Lemma 2.3, that the functions L;(u), M;(u) and A;(u) are € on an interval I; that contains
u = 0 for ¢ = 1,2. On the other hand, for shortness as well, in the statement of our main result we use the
compact notation o, for the kth derivative at s = 0 of the jth component of o;(s; ), i.e

oijk(it): —3 45 (0; f1).

In particular we consider the following real values (where once again we omit the dependence on ji):

0112 o121 (P 0111 ~
S = e O 7M 1 )\
1:= (Pg)( 0120) L1( 120) 1( / 70120)

20111 0120

0222 o211 [ Po 0991 R
So:= _ =l 0y — 9221 3y .
27 20001 o0 (Pl)(0210; ) La(0210) 2(A; 0210)



We are now in position to state the main result of the present paper, Theorem A, which provides the
explicit expression of the above-mentioned coefficients, see points (b) and (¢). In addition to that we also
establish in point (a) a factorization property among the coefficients A;; and T;; that holds for arbitrary
(i,7). This factorization is along the lines of the one given by Roussarie (see [28, Theorem F| or [30, §5.1.3])
for the coefficients of the local Dulac map.

Theorem A. Assume n # (0,0) and let D(s; i) and T'(s; i) be, respectively, the Dulac map and the Dulac
time of the hyperbolic saddle (1) from £1 and Xo. Consider moreover the coefficients A;; and T;; given by
Theorem 1.6. Then the following assertions hold:

(a) There exists a sequence {Qi;} i jyen, with Qi; € €°°(((0,+00) \ DY) x W) such that if (i,j) € Ao then
Aoy () = Qg (1) oy () for all jo € W with A ¢ DY,
and if (i,7) € Ay, with j > 0 then
Tii (1) = Qi1 () To; (i) for all i € W with \ ¢ Dy u DY, D?j.

(b) The coefficients A;; for (i,7) € {(0,0),(0,1),(1,0),(1,1)} of the Dulac map are given by

A
L N N ~
Ago(fr) = T 2(02;0)’ Api(f1) = —A3S2,  Aro(f) = DooAS1 and A () = —2A5,A51 52,
L{(o120) 02210519

where each equality is valid for all fi € W with \ ¢ D?j, In particular, Qy0(ft) = AS1 and Qq11(ft) = 2085
(¢) The coefficients T;; for (i,5) € {(n1,0), (n1 + 1,0),(0,n2), (0,n2 + 1)} of the Dulac time are given by

. ool
Ty o(ft) = _%A 1(n1 /XA —na, 0120),
1

n oot ol a
TOnz() Aogﬁfb(nz)\—nlﬂzw),

~ 0121 n1.51
T, = —0717,012 — Ai(ni/X—ng, o
+1,0(/1) 1119120 <0120P2(0,0120) L7 (0120) 1(n1/ 2,0120)
0111 A
+7n Bl (n1+1)/)\7n2,0120 ),
L11+1(0_120) ( )
n ni 0211 0221 i
TO n2+1( ) A 2+1g'2100'221 (0_210P1(O_2107 O) + Ln2+1(0'210)B2 (/\(nz + 1) — n170210)> P

where each equality is valid for all ji € W with ¢ Dy, except for the third one in which the values

A= k=12, [;%35] -1, must be excluded as well. Moreover, if ny =0 then
N o 01220120 + (n2 — 1)0%y; 0% 01210111 1
T 2 0Py (0 ———01P; (0
20(f1) = —015 ( 202,0P5(0, 7120 + 5010 10, 0120) + p— 1Py (0, 0120)

011151 2
/2 Bi(1/A—na, 0 ,
L I 120))

for all i € W with A ¢ D3y U{L; k=1,2,...,[%] —1}. Finally if na = 0 then

2
0111 A
—C1(2/)\ —
+2L§(0120) 1(2/ na2, 0120) +

ny [ 02120210 + (N —1)o2 o3 02110
Toa(ft) = Adyor 210( 22020 + (M~ Doou | %01 g i, 0 ) 4 2092 pot g o)

20310 P1(0210,0) 20210 09210
2
0221 A 021152 )
$TBL U oN Dy gayg) — — 02102
2L2(0210) 2( 1,9210) 20210P1(0210,0)



for all iy € W with \ ¢ Dy,.

We point out that the coefficients T;;(ft) depend on fi but also on n = (n1,n2). We do not specify this
dependence in the notation for the sake of shortness. This is the reason why, for instance, the expression
for T, +1,0(f4) does not follow by replacing nq by nq + 1 in the expression for T, o(f).

The employment of the incomplete Mellin transform introduced in Appendix B allows us to generalise
and unify several formulas that we obtained previously in [18, 21] under more restrictive hypothesis. With
regard to the hypothesis, in those papers we restrict ourselves to the analytic setting (see Remark 1.8
below) and, more restraining, we assume that the family of vector fields { X}y in (1) verifies the family
linearization property (FLP, for short), which means that {X ﬂ}ﬂeW is locally analytically equivalent to its
linear part. In the present paper we do not require the FLP assumption and we consider the smooth setting
instead of the analytic one. Furthermore the expressions for the coefficients that we obtain in those papers
are only valid for hyperbolicity ratios varying in a specific range. By using the properties of the incomplete
Mellin transform proved in Theorem B.1 we can get through this constrain as well. Let us exemplify this
by noting that if n; = 0 and ng > 0 then

. 0221800 \ " -
Ton, (1) = | 77— | Az2(n2,o
0 (N) (L2(0210)) 2( 2 210)
oa21800 \"* [ A2(0) A/0210 —nox du
= —_ 2 A —A ng A U .
(L2(021o)> ( NnaA + o210 o (Az(u) 2(0)) u "

Here the first equality follows by (c) in Theorem A (and it is valid for all A ¢ Dg, = 7%, see Remark 1.7
below), whereas the second one follows by applying (b) in Theorem B.1 with £ = 1 and assuming ns\ < 1
additionally. In [18] we study the case {n1 = 0,n2 > 0} and the integral expression for Tj,,, obtained after
the second equality is precisely the one that we give in that paper, which only holds for A € (0, n%) because
the integrand has a pole of order noA + 1 at w = 0. Similarly, if n; = 0 and ny > 0 then

N 0121 0111 A
T = _—gh2 + Bi(1/A —ng,0 )
10(#) 120 (0120P2(0,0120) L1(0120) 1( / 2 120)
n o121 0111 1/A—no /0120 na—1/A du)
= —gh2 + o By (u) u"? — .
120 <0120P2(0,0120) Li(o120) ' 0 1) u

In this case the first equality follows by (¢) in Theorem A (and it is valid as long as A ¢ D7, = see

1
N>py
Remark 1.7 below) and the second one follows by applying (b) in Theorem B.1 with £ = 0 providied2 that
1/XA — ng < 0. The integral expression for Thp obtained after the second equality is precisely the one that
we give in [18|, which only converges for A € (n%, +00). In [21] we extend the results in [18] to arbitrary
n = (n1,nz) but still in the analytic setting and under the FLP assumption. The coefficient formulas given
in that paper are also particular cases of the ones in Theorem A.

Remark 1.7. For the reader’s convenience we specify the sets D?j and D} corresponding to the coefficients
in points (b) and (¢) in Theorem A. Taking Definition 1.5 into account one can readily get that

0 0 0 1 0 1
Dgo =0, Dy =N, D3, = N and D7, :NLJ&

for the coefficients of the Dulac map. Similarly, for the coefficients of the Dulac time, we have Djy = 0,

ni . N>pn,y . ni+1 .
i —  ifng > 1, i N>,
D, o=|)=—, D¢, = 2 Dy = and Dg = ——"UN,
o Z:LJl Nan On2 { (Z) if Nog = O7 Ao Z:le N2n2 Oymatl ng + 1
together with D3, = Nf for ny = 0 and D, = § for ny = 0. O
Zn2



As we already mentioned, by Lemma 3.1 we know that the coefficients A;; (X, i) and T;; (A, 1) have poles
of order at most i + j along {Ao} x W with \g € D}, and along {\o} x W with Ao € D}, respectively. This
general result will be proved in Section 3. In that sectlon we sharpen this upper bound for the coefficients
given in points (b) and (c¢) of Theorem A and we also compute the corresponding residues. This information
is of relevance because these residues are the values at g of the leading coefficients of the polynomials
A;‘j“ (w; 1) and T;-\jo (w; 1) in Theorem 4.1 and Theorem 4.3, respectively. We illustrate this in Example 4.2
for the Dulac map.

Remark 1.8. In this paper, foreseeing future applications, we will sometimes consider the analytic setting.
By analytic setting we mean that, for i = 1,2, the function P;(x1,x2; i) in (1) is analytic on V' x W and
that the parametrization o;(s; /i) of the transverse section ¥; is analytic on (—¢,¢) X W. Note in particular,
see Remark 1.1, that 0¥ P;(0,u; i) € € (I, xW) and 05 P;(u, 0; i) € €« (IyxW) for i = 1,2 and k € Zso. O

In view of the above discussion about the poles of the coefficients, it is reasonable to expect that in the
analytic setting the coefficients are meromorphic. In the present paper we are able to prove that this is the
case for the coefficients considered in Theorem A. The following constitutes our second main result:

Corollary B. In the analytic setting the following assertions hold:

(a) For each (i,5) € {(0,0),(1,0),(0,1),(1,1)}, the coefficient A;; of the Dulac map is meromorphic on
W = ((0,+00) x W and has only poles, of order at most two, along DY x W.

(b) For each (i,

J)
morphic on w
the case for (i,

€ {(711,
= ((0,+
j) =2,

Taking this partial result into account in the analytic setting we conjecture that for arbitrary (4, 7) the

coefficient A;;(A, ) of the Dulac map is meromorphic on (0, +00) x W with poles along A € D?j and that
the coefficient T;;(A, 1) of the Dulac time is meromorphic on (0, +00) x W with poles along A € D}’

0),(0,n2), (n1 +1,0),(0,n2 + 1)}, the coefficient T;; of the Dulac time is mero-
o0) X W and has only poles, of order at most two, along D} x W. This is also
0) and (i,7) = (0,2) assuming ny =0 and ny =0, respectwely

The paper is organized in the following way. Section 2 is mainly devoted to prove Theorem A. Once this
is done, and as an intermediate step towards the proof of Corollary B, at the end of Section 2 we show that, in
the analytic setting, the coefficients A;; and T;; listed in (a) and (b) of Theorem A, respectively, are analytic
in their domains (see Proposition 2.9). In Section 3 we study the poles and residues of the coefficients. We
begin by proving the above-mentioned Lemma 3.1, which constitutes a general result about the order of
the poles. Next we prove a bunch of propositions that give the order of the pole and the respective residue
for each coefficient listed in points (a) and (b) of Theorem A. Finally we conclude the section with the
proof of Corollary B. Section 4 aims at future applications of the tools developed so far. The main result
of this paper, Theorem A, is intended to be applied in combination with Theorem 1.6, that gathers our
main results in [23]. For this reason, and in order to ease the applicability, in Section 4 we particularise
Theorem 1.6 to specify the first monomials appearing in the asymptotic development of the Dulac map
D(s; i), see Theorem 4.1, and the Dulac time T'(s; ji), see Theorem 4.3, for arbitrary hyperbolicity ratio Ag.
By “first monomials” we mean as s — 0%, more concretely with respect to the strict partial order <y,
introduced in [23, Definition 1.7]. It is here, dealing with a resonant hyperbolicity ratio Ay = p/q, where
the compensator w(s; p — Aq) comes into play and the residues of the poles are needed, see Example 4.2.

2 Proof of Theorem A

For the reader’s convenience we state first a result that we proved in a previous paper, see [23, Corollary 2.2].
In its statement we follow the notation introduced in Definitions 1.2 and 1.3.

Lemma 2.1. Consider f(s; 1) € EX(U) with K € N and any m € N with m < K. Then the following hold:



(a) There exist f;(i) € €K—(U),i=0,1,...,m —1, and g(s; i) € EX=™(U) such that

m—1
flsii) =Y fi)s' +s™g(s; ).

=0

(b) For any L >0, EX(U) c €5 (U)[s] + FE (U) provided that K > K' + L.

The previous statement is aimed to study the flatness of the remainder in the asymptotic developments
that we shall deal with. The proof of (a) shows in fact, see [23], that if f € €% (I x U) with I an open
interval of R containing 0 then g € €% =™ (I x U). We prove next that this result has its obvious analytic
and smooth analogous. From now on, for simplicity in the exposition, we shall use @ € {oo,w} as a wild
card in €% for the smooth class ¥°° and the analytic class €“.

Lemma 2.2. Let us consider an open interval I of R containing 0, an open subset U of RN and m € N. If
f(s;v) € €% (I x U) with w € {oo,w} then there exists g(s;v) € €< (I x U) such that

m—1 o; .
CT R S L)
i=0 )

Proof. Given w € {oo,w}, we claim that if f(s;v) € €7 (I x U) verifies f(0;v) = 0 for all v € U then
there exists q(s;v) € €% (I x U) such that f(s;v) = sq(s;v). In order to prove the claim note first that the
existence of ¢ in a neighbourhood of any (so,19) € I x U with sy # 0 is clear. Moreover this function is
uniquely defined on (I'\ {0}) x U. If sg = 0 then there exist €% functions ¢(s;v) and r(v) in a neighbourhood
V of (0,1p) in R¥*! such that f(s;v) = sq(s;v) + r(v). Indeed, the case @ = w follows by the Weierstrass
Division Theorem (see [11, Theorem1.8] or [15, Theorem 6.1.3]), whereas the case @ = oo is a consequence of
the Malgrange Division Theorem (see |25, Theorem 2| for instance). Furthermore, due to r(v) = f(0;v) = 0,
we get that f(s;v) = sq(s;v). Hence for each 1y € U there exist a neighbourhood V,, of (0,14) in RV+!
and a function ¢, € €< (V,,) such that f(s;v) = sqy,(s;v). Since g, (s;v) = @ for all (s,v) € V,,, with
s # 0, we conclude that q,, = g, whenever V,,, NV,, # (. This proves the claim.

The desired result follows from the claim by using induction on m. More precisely, for the base case
m = 1 we apply the claim to f(s;v)— f(0;v). For the inductive step we apply the claim to g(s;v) —g(0;v),
where g is the remainder for the inductive hypothesis. In this way one can prove the existence of functions
fi € €(U) and g € €% (I x U) verifying that f(s;v) = ZZBI fi(v)st + s™g(s;v). From here one can
readily see that f;(v) = W and this completes the proof. ]

In the next lemma we show that the regularity assumptions on the vector field (1), see Remarks 1.1
and 1.8, are transferred to the functions defined in (2).

Lemma 2.3. Fiz w € {oco,w} and let us assume the following:

(a) Pi(u,0;0) and Py(0,u; i) are non-vanishing functions on Iy x W and Iy x W, respectively.

(b) OFPy(0,u; 1) € €% (I x W) and 05 Py(u,0; 1) € €7 (I, x W) fori=1,2 and k = 0,1,2.

Then, for i =1,2, the functions L;(u; i), M;(u; i) and A;(u; ft) given in (2) are €% on I; X W. Moreover,
1. the functions By (u; fi) and Cy(u; i) are €% on Iy x ((0,400) \ &) x W, and

2. the functions Ba(u; i) and Co(u; i) are €% on Iy x ((0,400) \ N) x W.
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P2(0,0:42)
P1(0,0;2)

is €% (I; x W) for i = 1,2. In its turn this shows that A;(u; /) and M;(u; i) are €% (I; x W) for i = 1,2.
Then, by Theorem B.1, we can assert that M;(a,u; i) is €% on (R '\ Z>o) X I; x W. More precisely, we
use assertion (a) for the case w = oo and assertion (d) for the w = w. This easily implies, see (2), that the
assertions 1 and 2 in the statement are true and completes the proof of the result. [ ]

Proof. Since

= —\ by definition, the application of Lemma 2.2 with m = 1 implies that L;(u; )

All the assertions except the last one in the next result are proved in [23, Lemma A.2]. The last one
follows as a particular case of assertion (c) in [23, Lemma A.3].

Lemma 2.4. Let U and U’ be open sets of RN and RN respectively and consider W C U and W' C U'.
Then the following holds:

(a (W) € FE(W) for any W C W and N, FE(W,) = FE (U, Wa)-
(b) FE(W) C FE(W x W),
( (U) c EX(U) c FEW).

) T
) Fi(
c) €K
(d) If K > K' and L > L' then FK(W) c FE'(W).
(e) FE(W) is closed under addition.
(f) If f € FE(W) and v € ZN§ with [v] < K then 0" f € F;_ ) (w).
(9) FLW) - FLi(W) € Ffyp(W).

(h) Assume that ¢: U' — U is a €5 function with p(W') C W and let us take g € FE(W') with L' > 0
and verifying g(s;n) > 0 for alln € W' and s > 0 small enough. Consider also any f € FE(W). Then
h(s;n) = f(g(s;n); 6(n)) is a well-defined function that belongs to F& ,(W').

(i) If o € €5(U) then s* € FEK({v e U : a(v) > L}).
By applying the previous lemmas we can now prove the following:

Lemma 2.5. Let V an open set of RN and consider a polynomial Q(-;v) with coefficients in €% (V') such
that Q(0;v) > 0 for all v € V. Let us also take L > 0 and L' > 1 together with a € €% (V) such that
a(v) >0 for allv € V.. Then the following holds:

(@) (5Q(s) +F£L1 (V)" € s*Q(s) + FL(V), and
(b) FL(V)o (s°Q(s) + FL(V)) C FL ({v € Via(v) > L/L'}).
Proof. In order to prove (a) note first that
(sQ(s) + FLa (V) C s*(Q(s) + FL (V)™ € s*Q(s)(1 + Fi (V). (4)

Indeed, this follows by using twice (g) in Lemma 2.4. More concretely, in the first equality together with
the fact that 1/s € FX (V), whereas in the second one noting also that 1/Q(s) € EX(V) c F&(V). On the
other hand, by using Lemmas 2.1 and 2.4,

g(x):=(1+x)*—1€sEX(V) C F(V)F(V) C Fo(V),
Thus g o FE(V) € FE(V) by (h) in Lemma 2.4 and, therefore, (1 + FX(V))® C 1+ FE(V). Taking this

into account, the assertion in (a) follows from (4) noting that s*Q%(s)FX (V) c FE(WV)FE(V) c FE(V)
due to s* € F&(V) by (i) in Lemma 2.4.
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Let us turn next to the assertion in (b). To this end note that s*Q(s) € }"E/L,(V N{a> L/L'}) by (i)
in Lemma 2.4. On the other hand, due to L' > 1, FX(V) C fi(/L,(V) C .F[If/L,(V N{a > L/L'}) by (d)
and (a) in Lemma 2.4. Thus, by (e) in Lemma 2.4,

s*Q(s) + FL (V) € Ffyp,(Vn{a > L/L'}).

On account of this and that, by (a) in Lemma 2.4 again, FX (V) C FE(V Nn{a > L/L'}), the application
of (h) in Lemma 2.4 shows that
Fis(V)o (s°Q(s) + Fi (V) € FLo(Vn{a > L/L'}) o iy (V0 {a > L/L'})
cFEWVn{a>L/L'}).

This completes the proof of the result. ]

We only need one more technical result in order to tackle the proof of Theorem A. It will be a consequence
of the following easy observation.

Remark 2.6. If >7" a2 +¢(z) = 0 for all z € (0,g), where \; € R with A < Xy < -+ < Ay,
ai,as,...,am € R and ¥(x) = o(z*) then a; = ag = -+ = a,, = 0. O

Lemma 2.7. Consider a, 3 € R\ Z with o — 8 ¢ 7 and two functions f and g that are €% on the interval
(=6,8) with K > —min(a, B). If there exists ¢ € R satisfying that x® f(z) + 2P g(x) = ¢ for all x € (0,9)
then ¢ = 0.

Proof. Suppose that a < § and n:= min{i € Z>¢ : a« +1 > 0}. Hence K > n and by applying Taylor’s
theorem we can write

f)=ao+ a1z + ... +apz™ +2"Ri(z) and g(x) = by + byz + ... + bpz™ + 2" Ra(x),

with lim,_,o R;(z) = 0. Let us also set x:= min{i € Z>o : 8+ > « + n}. Note then that k € {0,1...,n}.
If we define 1(z) := (2" + ber12"t + ...+ by2™)2? + 2"(2¥ Ry (z) + 2° Ro(x)) then, on account of the
assumption z®f(z) + 2°g(x) = ¢, we get that

—cx® +apr® + a1z 4+ an T + b + 0P 4+ b 2P 4 P(z) =0

for all z € (0,0). Taking the definition of n and & into account, note that ¥ (s) = o(x?), ¥(s) = o(x**") and
Y(s) = o(xPT*1). Moreover all the exponents in 20, z® 2+ . gotn B F+H1  2B+r—1 are different
by the hypothesis on a and 3, so that they can be ordered. Thus, on account of Remark 2.6, we can assert
that all their coefficients are equal to zero, in particular ¢ = 0. [ |

Proof of Theorem A. Note first that by Theorem 1.6 we have two well defined sequences {Ay;}(; j)ea,
and {Ti;} i jen, With Ay € €°(((0,+00) \ DY) x W) and T;; € € (((0,+00) \ Dj}) x W) where, by
applying [23, Lemma 3.2], D?j and D} are discrete sets of rational numbers in (0, 400). In order to prove
the assertions in (a), for each (i,5) € Ag and i € ((0,+00) \ DY) x W we define 2;;(f1) by means of

j+1
ZOO Ap(fr) ,ZOO s
<1+i_1 AOO(ﬂ)S> - Qlj(,u') ’ (5)

1=0

where the equality must be thought in the ring of formal power series in s. Hence §2;; € Q [ﬁ—;g, ﬁ—ig, e ﬁoz

for each fixed (i,5) € Ag. One can verify, see Definition 1.5, that DY = U2:1 £ and thus Uj_, DY) = DY,.
Consequently, since Agp > 0 on W by (a) in Theorem 1.6, we can assert that

Qij € € (((0, +50) \ DY) x W),

12



That being said, our first goal is to prove that if (i,j) € Ag then

YR
and that if (i,5) € A, with j > 0 then

Tij(f1) — Qi j—1(1)Tos(f2) = 0 for all 1 € W with X ¢ D} U DY,. (7)
To this aim let us note that the function on the left hand side of the equality in (6), respectively (7), is €
in a neighbourhood of any i, = (A, ps) € (0,400) x W with A, outside the discrete set Dy; U D, U D,
respectively Dy U DY, U Dy;. In this regard observe that D;i C D%, see Definition 1.5. It is also easy to
show that, for any given any k € 22207 we have Df C ij and D’gj - ij Consequently

DY, U Dy, U Dy; = DY; and D}; U Dj, U Dij; = Djy U D, C DY,
so that the function in (6) is continuous on ((0, +00) \ D?j) x W whereas the function in (7) is continuous

on ((0,400)\ (Dj; UDg)) x W. Since DY; and Dj; U Djj, are discrete sets of rational number in (0, 4-00), it

is clear that both identities will follow by continuity once we prove it for any fi = (\, u) € W with A ¢ Q.
The strategy to prove the identities in (b) and (¢) will be the same. Indeed, let us write them as

Aii (A 1) = Agj (A, p) and Tij(A, p) = Ty (A, ),

ie., Aij and Tij are the functions on the right hand side of the equalities in the statement we want to prove.
As we already mentioned, we know that

A € €(((0,400) \D?j) x W) and Tj; € € (((0,+00) \ Dj}) x W)

by Theorem 1.6. On the other hand it turns out that there exist DO

i DZ C Q¢ such that

Aij € € (((0,400) \ DY;) x W) and Ty; € € (((0, +00) \ Df) x W).

The sets 13% and [?Z will be given explicitly later on but at this moment the relevant property is that they
are discrete in (0, +00) as well. That said, for simplicity in the exposition, let us explain how the proof goes
for the identity Tp , (A, 12) = To.n, (A, 11). Thus, since Dg,,, U D&m is a discrete set of rational numbers in
(0, +00), for any given A\, ¢ Dy, U ﬁ&nz there exists a sequence of irrational numbers (Ag)ren such that
limy 00 Ak = Ax. Hence, if we take any p € W then, by continuity, limy_,oc To,n, (Ak; 1) = T0,ns (As, 1) and
limy_s o0 TO,M A, ) = TO,nz (Ass ). So it is clear that the validity of the equality Tp ,, (A, p) = Tomz(/\, i)
at any A = A, which is not inside Df,,, U Da"m will follow once we prove it for any fi = (A, p) € W with
A ¢ Q. This will be precisely our goal to prove each one of the equalities in the statement. As a matter of
fact we will show that each equality is true in a neighbourhood of any fig = (Ao, po) € W with Ao ¢ Q.

In addition to the identities in (b) and (c) we shall prove the equality in (6) for (¢,j) = (41,71) and the
equality in (7) for (i,7) = (i2,j2), where (i1, j1) € Ag and (42, j2) € A, are arbitrary but fixed. To this end,
in view of the previous considerations, we fix any fig = (Ao, s10) € W with Ao ¢ Q. Then by |20, Theorem A|
we know that for each K € N there exists a % diffeomorphism

(I)(ula Uz, ﬂ) = (U‘ld}l (u17 U2; :[L)v u2¢2(u17 Uz; ﬂ)a ﬂ)v
defined in an open set U x V with (0,0) € U € R? and jig € V C W, verifying

T
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T2

Figure 3: Auxiliary transverse sections in the decomposition of T

and such that ¥;(0,0; 4) = 1, i« = 1,2. Let us point out that in the forthcoming analysis it will be crucial
that K is larger than some fixed quantity N' = N (Ao, n1, 12,141,142, 71, 52). We will specify at each step of
the proof which is the necessary lower bound for K and, at the end, N will be the maximum of them. This
provides us with a specific value for N (that is not relevant at all) and in what follows we simply suppose
that we take a ¢’ normalising diffeomorphism ® with K > N.

For convenience we assume, without lost of generality, that
U = {(u1,u2) € R?: Juy| < 6 and |ug| < 8} = (—6,6)?

for some § > 0 small enough such that, see Remark 1.1, ®((—4,0)*x V) C (—p, p)*> x V. Taking €1, 2 € (0,4)
we consider auxiliary € transverse sections ¥¢ and ¥4 to 2; = 0 and 25 = 0, see Figure 3, parametrized by

T1(s5€1, fi):= ®(s,e1; 1) and Ta(s; €2, i) := P(ea, s; /i), (9)

respectively. From now on, in addition to [, we will also consider e:= (£1,e2) as parameter. In this respect
we remark that 7;(s;e;, 1) is a €% function on U x V for i = 1,2. Similarly as we did with o;, we denote

Tijk(Eiaﬂ) = 3§Tz’j(0; €iy ﬂ)

and we will write 7;;; for the sake of shortness.

The idea now is to decompose the Dulac map D(s; /i) and the Dulac time T'(s; ji) as
D(s) = Ra(Do(R1(s))) and T(s) = T (s) + T°(Ri(s)) + T?(Do(R1(s)))- (10)

Here Ry(-;e1,/1), Do(-;¢,ft) and Ry(-;e0, /1) are, respectively, the transitions maps from ¥; to ¢, from
¥4 to ¥§, and from X5 to Yo, whereas TV (-;e1, 1), T°(-;¢e, 1) and T?(-;eq, i) are, respectively, the time
that spends the flow to do this transition. It is well known that Dy and T° are singular at s = 0, whereas
the other ones are regular. We study the latter by applying the results obtained in Appendix A and to this
end, see (42), we rewrite the given vector field as

1
Xp= (0, P p) P O )= = (B, 4 (235,700
f x?lx;fz (1‘1 1(171’:52) 2, + T2 2(131,£E2) 962) xingiz(xiuxig) ( Tiq + 12(1721 xtz)xlz 3%2)
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where (i1,12) € {(2,1),(1,2)} and

B unz—t . v) = M
fi(u,v) = Polor) ha(u,v) uPy(v,u) (11)
faluv) = % halu,0) = m

(At this point, and in what follows, we omit the dependence on the parameters for the sake of shortness when
there is no risk of ambiguity. Moreover all though the proof the scripts 1 and 2 refer, respectively, to the
first and second regular passage.) Setting I:= (0, ), we apply (twice) Lemma A.3 with v = (g;,4) € I X V
for i = 1,2. In doing so, and taking Lemma 2.1 also into account, we can assert that

L; L;
Ri(siei 1) = > Rin(e, f)s* + F o (IxV) and T'(s;e5,0) = > Tiles, f)s* + FL o (IxV),  (12)
k=1 k=n;
with R, T} € €°(I x V) provided that K > L; +1 for i = 1,2. We know furthermore that R;; > 0.
Turning to the assumption K > N, let us advance that we will also require that L; > N for i = 1,2, which
is neither a problem because, as we explained before, N' = N'(X\g, n1,n2,41,42, j1,j2) and we can take K
large enough from the very beginning.

With regard to the passage from X{ to %, taking (8) and (9) into account (see also Figure 3), an easy
computation shows that

Do(s) = ds* with d:= g1e5* (13)
and
2 M ul? duy
T%(s :/ 1 2 — =TYs™ + T9(ds™)™2, 14
( ) . P1 (0, O) I (ﬁ)x Uy 1 2 ( ) ( )
where
_n2 ni
TP = ‘1 and T20 = £2

(711 — )\ng)Pl(O, 0) (n1 — AnQ)Pl(0,0) '

(Here, on account of \g ¢ Q, we reduce V so that n; — Any # 0 for all i € V.) Hence D(s) = Ra(dR}(s)).
If we take any strictly positive 3(j1) € €°(V) then, due to Ry; > 0,

B
Ly L,i—1
R
RP(s)=s°RY, (1 +y° R11];8k_1> +FL I xV)y=s"RY ST 0Pt + B (1< V), (15)
k=2 =0

where in the first equality we apply by (a) in Lemma 2.5 and in the second one we define TEB = Téﬁ ] (€1, f2)
for £=0,1,...,L; — 1 as the €°(I x V) functions verifying

N R = (8]
14 ) i) = TVt + FO (I x V). 16
< ,;Rn ) ; i Ly ( ) (16)

(Here we apply Taylor’s theorem at order L; to the function z + (1 + x)? taking a uniform estimate of the

remainder by means of its integral form.) Note in particular that Tgﬁ] = 1. Taking (15) with () = A and
applying (b) in Lemma 2.5 we obtain

Ly
D(s) = Ro(dR)(s)) = P Ropd® R (s) + FL. ({(e,ﬂ) € IPxV A > g })
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Now we choose L; and Lo such that \g > ij_l and we shrink V if necessary in order that A > ij_l for all
i € V. In doing so we get that
Lo
D(s) = Ra(dR}(s)) = > Roxd"RY%(s) + FL (I X V).
k=1
Next, by taking (15) with S(i) = Ak, k=1,2,..., Lo,
Ly Li—1
D(s)=>" 3" RuR}FdE TN 4 FD (12 V)
k=1 =0
Li—1Ly—1
_ S)\ Z Z R27k+1Ri\1(k+1)dk+1’r£)\(k+1)]5€+)\k +_/_'.21 (IQXV)
(=0 k=0
Since A\g ¢ Q, assertion (al) in Theorem 1.6 shows that
Agk = Ry o1 RYFID @1 DEIL o0 all (e, 1) € 2% V. (17)

Here we also take Remark 2.6 into account, shrinking (if necessary) the neighbourhood V of fig = (Ao, o)
in order that all the exponents £ + Ak are different for every ji € V. At this point it is worth to make the
following remarks with regard to the previous equality:

o It gives the expression of A;; provided that 0 <7< Ly —1,0 < j < Ly —1 and ¢ + A\oj < Ly. Since
we are just interested in (7, 7) € {(0,0), (0,1),(1,0),(1,1), (i1, 1)}, these conditions reduce to specific
lower bounds for L; and Ly that depend only on Ag, 47 and j;. For instance, in order to prove that
the factorization in (6) holds for (i,7) = (i1,71) we need that

Ly > max(i1 + Aoj,il + ].) and Ly > Jo + 1.
This does not constitute a problem because we can take K, and therefore L and Lo, arbitrarily large.

e The coefficient Ay is a function that depends only on /i, whereas each function on the right hand side

of (17) depends on /i but also on £. This constitutes a key point that we will exploit in the forthcoming
arguments. Particularized to ¢ = 0, from (13) and (17) we get that

AOk _ (R27k+1€2_)\(k+1)) (Ri\lel)k+1 (18)

does not depend on £ = (1, £2). Since the first factor does not depend on &1 and the second one does
not depend on €5, taking k = 0 and using that Agg(ir) # 0 for all i € W, we conclude that

Ry1(e9, i)ey ™ and R}, (1, 1)e1 do not depend on ¢,
which in its turn, again from (18), implies that

R k11(e2, ﬂ)ez_/\(lﬁ_l) does not depend on ¢ for all k£ > 1. (19)

Since T,[Jﬁ = 1 for any function B, the factorization in (17) also shows that

Ag, = TREDIAG, (20)
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Consequently

Ly—1

A(k+1)
S PRI F (1 V) 1+Z R o
= Ri”

Li—1 k+1 Li—1 A k+1
- ( STt + F (1 x V)> = ( > A—(‘;‘;sufgl(f x V))
=0

Lot k+1 Li—1
( Z Aeo /> _|_]:21(I><V)= Zng35+]:21(I><V),
00 =0

where in the first and second equalities we use the definition of TLﬁ] in (16) with 8(&) = Ak + 1) and
B(t) = A, respectively, in the third one we use (20) with & = 0, in the fourth one we apply the binomial
formula and Lemma 2.4 and, finally, the last one follows from the definition in (5). Clearly this implies that

YR — 0 for £=0,1,..., Ly — 1. (21)
Particularized to (¢, k) = (i1, j1), from (20) once again we obtain that

A _ Tgi\(thl)]Aojl = 04, Aoj, -

111
This identity holds for all i € V. On account of the considerations explained in the beginning of the proof
this shows that the assertion in (6) is true for (4,j) = (i1, j1) as desired.

We turn now to the study of the coefficients of the Dulac time. For convenience we write it as
T(s) = T (s) + T*(s),
where we define, recall (10) and (14),

T~ (s):=T"(s) + TYR*(s) and T (s):= (T?(u) + Tgu") |u:D0(R1(s))'

With respect to the first summand we observe that, from (12) and taking (15) with (i) = nq,

L1 1
Z T8 —|—]:21 (I x V) where T} : —Tk +T1R?11T£€ ]nl (22)
k=nq

Ly _
On the other hand, from (12), we can write T2(u) + T9u™ = Y Tpuk + F) . (I x V) where

k}:nz

_ T2+ T9 if k = no,
=9 F 7 (23)
T if £ > no.
Consequently, taking (15) with 8(&) = A and applying (b) in Lemma 2.5 we obtain
TH8) = (T30 )y = 30 TR+ 71, (1)
k=nqg
Lo Li—1
=Y 1 (WR%{“ ST aMst+ (1 x V)) +F (IPxV)
k}:’ﬂz =0
Ly Li—1
= > N T (P XV). (24)
k):’nz =0
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Here we also use A > Lﬁil for all 1 € V' in the first equality, in the second one we take (15) with (1) = Ak,

whereas in the last one we use that d = e1e5 A and define

72— Ak
= (TRe ) (e R, (25)

1 due to TEO] = 0 for all £ > 1. Consequently, since Ty is by definition the
T~ (s) + T (s), from (22) and (24) we get that

[ TL ifk>o.
Tek_{TZO ifk=0and (> 1. (26)

Note that T}, = 0 for all £ >
coefficient of s*T** in T'(s) =

(To be more precise, the above equality follows from Remark 2.6 and by applying (b1) in Theorem 1.6
thanks to A9 ¢ Q and shrinking, if necessary, the neighbourhood V' of fig = (Mg, 50) in order that all the
exponents ¢ + Ak are different for every i € V.) Finally, since the coefficient Ty only exists in case the that
ning = 0 and n # (0,0) by hypothesis, we have that

TOTJ if ny = O7
Too = .
Too if ng = 0.

Similarly as we noted previously for A;;, let us remark that since we are only interested in the coefficients
Tij with (17.7) € {(nlvo)a (nl + 170)a (07n2)7 (OvnQ + 1)7 (i2’j2)}’

from (22) and (24) we get specific lower bounds for Ly and Lo to be satisfied. Once again, this is not a
problem because these lower bounds are given in terms of g, ni, ne, is and jo and, on the other hand, we
can take K, and so L; and Lo, arbitrarily large. For instance, in order to show that the factorization in (7)
holds for (¢, 7) = (i2,j2) with jo > 0 we argue as follows. Precisely due to js > 0, we get that

=Tr

_ pt Al
Ezjz i2J2 TszT

%

Aj2]
o =T, -1,

where in the first equality we take (26) into account, the second one follows readily from (25) thanks to
T([)’\”] =1, and in the last one we apply the identity in (21). For this to happen, see also (24), we need that

Ly > max(iz + 1,15 + )\sz) and Lo > jo.

This shows the validity of the factorization for all i € V. As we explained at the beginning of the proof,
this factorization extends to all i = (A\,u) € W with X ¢ D}, U DJ, by continuity and the fact that
Dn

s U D?zo is a discrete subset of rational numbers in (0, +00).

So far we have proved (6) and (7), which constitute assertion (a) in the statement. In doing so we have
also identified all the elements needed to compute A;; and Tj; but recall that we must only analyze the
cases (i,7) € {(0,0),(1,0),(0,1),(1,1)} and (¢,5) € {(n1,0),(n1 + 1,0),(0,n2), (0,72 + 1)}, respectively.
With this aim in view we shall apply Lemma A.3 to obtain the explicit expressions of the coefficients R;1,
Riz, T} and T}, ,, in (12) for i = 1,2. Let us advance that the formulae for i = 1 and i = 2 are related by
switching A and 1/A, ¢ and 7, the subscripts 1 and 2 (with the exception of the third subscript k£ in ;i
and 7;;,) and by exchanging the order of the variables in the functions f; and h;.

For the reader’s convenience we sum up in Table 1 the fundamental information for applying the results
in Appendix A to study the regular passages, see Figure 3, together with the functions L, defined in (2)
and the functions f; and h; given in (11). On account of this the application of Lemma A.2 yields
1
01110799

L, (0120) (27)

1 )
)011(.13) = anxTLl(m) with aq1:=
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FIRST REGULAR SECOND REGULAR
PASSAGE PASSAGE
J4 ni n2
v (€1, 1) (€2, /1)
h(w,y) ) B
H(r,y) (B 56 (426
(z,9) o e
(siv) (12(s5 /1), 011 (55 1)) (121 (55 €2, 1), T2 (53 €2, /1))
Cls;v) | (ma2(sser, ), ma(s;en, b)) (021(s5 1), 022(s; 1))

Table 1: Information related with the application of the results in Appendix A.
The auxiliary sections ¥{ and Xf are given by 7(s;e1, /1) = ®(s,e1;/1) and
To(s;€2, i) = P(e2, s; f1), respectively, see (9).

for the first regular passage and

A
T221T210

Lo(7210)

for the second one. (Here, to be consistent with the previous notation, the subscript ¢ in p;; refers to the
first or second regular passage, whereas j refers to the derivation’s order.) Next, by applying Lemma A.3,

,021(:2) = Oéglxi)\Lz(Q?) with ag1 =

-1
TL L
150 L1(T120) and Roj = a1 2(0210)

Ryy = an S
T111 0221035719

(28)

Observe at this point that a;; does not depend on € and that, see (19), this is also the case of Ry,&1. From the

(7'120)

A
first equality in (28), this implies that I;§ Sl does not depend on . On the other hand, 7120 = €192(0,¢1)
111

and m11 = ¥1(0,£1), see (9), together with ,(0,0) = L1(0) = 1, imply that lim., o WQ = 1. Thus

1117120
Ly(ri20) . _ Ao
e C1 = 1 and, consequently, R{,e1 = a7;. In short,
1/A
7'1)\117120 -1/ 0'111(7140 —1/X
L)‘i =£&1 and R11 = (11&4 = Li&‘l . (29)
1 (T120) 1(0120)

Furthermore, from (19) again, Raje5 * does not depend on e. This implies, on account of the second equality
in (28), that aa1e5 A does not depend on ¢ neither. Then, taking €5 — 0 exactly as before, we conclude that

Qo1 = E%. (30)

Therefore Ry = € L;(lgzi(’) and consequently, from (18),
02210319

N _ 010120 Lo(o
AOO(,U) _ (Ri\lal)(RZF’iQ )\) _ ill 120 2( 210)
L7 (o120) 02210510

forall o e V.

On account of the considerations explained in the first paragraph of the proof, this shows the validity of the
first equality in () for all i = (A, p) € (0, +00) x W. Indeed, following the notation introduced there, Agg is
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the function on the right hand side of the above equality, which belongs to ¢ ((040c) x W) by Lemma 2.3,
i.e., DYy = ), and we have on the other hand, see Remark 1.7, DS, = ) as well.

Next we proceed with the computation of the second order derivatives in Lemma A.2. Using the first
column in Table 1, some long but easy computations show that

- 2 P z P —1d
p12(z) = &x%h(x) (0112 _ 2012 (P;) (0,0120) + 20111a11/ Li(u) &, (P;) (0,u) u = :)

J111 0120 o120
M (u)
= apa™ Ly(2) + 2032 Li(@)Mi(1/), @), (31)
for all x € I N (0, +00) with
« 201210 P -1 .
12 1= 711 (0'112 - M ( 1)(0 (7120)> — 204%10'130]\41(1/)\,0120). (32)
0111 0120 Py

Here we use for the first time the properties of the incomplete Mellin transform introduced in Appendix B.
More concretely, by Lemma 2.3, M (u; i) € €°(I; x W) with 0 € I;. Hence, by applying Theorem B.1
there exists a unique M, (o, u; u) € €((R\ Zso) x I x W) such that 9, (Ml(a wu~*) = My(uw)yu= "
for all w € I; N (0, +00). Analogously, taking the second column in Table 1, one can also verify that

P22 () = agox ™ Lo(z) + 202,872 Lo (2) My (X, ) for all z € I N (0, 400), (33)

with

21 2111101 (P2 9 A
Qo= —— | Tagg — ———— (T210,0) | — 23, 7910 M2 (A, T210)-
To21 T210 P

We claim that ag = e3¢ (g2, i) with 1 € €% ((—4,0) x V). Indeed, this is so due to the following facts:

1. Py(x1,29; i) and Pay(x1,x2; fi) are € and do not vanish on 22 = 0 and 21 = 0, respectively.
2. Lo(u; i) and My(u; i) are €°°(Iy x W) by Lemma 2.3 and the first one does not vanish.

3. The parametrization 73(s;e9, fi) of the section ¥ is defined by means of ® € €% (U x V), see (9),
where recall that U = (=4, 4) x (=0, 9),

4. and therefore, the map (ea, /1) + Ma(\, T210; /1) belongs to €% ((—6,0) x V) by (a) in Theorem B.1
since A ¢ Z>o due to Ao ¢ Q and shrinking V' if necessary.

5. T221 — ¢2(6270) and 7210 — 621/)1(6270) with 1/)1(0,0) =1. MOI‘GOVGI‘, see (30)7 Qa21 = 6%\.

The key point for our purposes will be that, for each fixed /1, the function ¢, is €% in a neighbourhood of
g2 = 0. On account of this, for simplicity in the exposition we will say that age = 51 (e2) with ¢ € €K.
In what follows we will deal several times with this type of situation and for shortness we will omit the
previous details. More generally, for the same reason, when we write ¢ (¢;) with ¢ = 1,2 and any subscript &
we shall mean that (y, is some function depending only on &; and i that belongs to €% ((—4,d) x V).

We are now in position to compute the second order derivatives by means of Lemma A.3. In this case,
for the sake of convenience in the exposition, we begin with the second regular passage. In doing so, and
using Table 1 together with the expressions for Ra; and pag given in (28) and (33), respectively, we get

2 Y

o211 ( P» 0222 9 0'21 9 @22 091y

Ros = << )(0210,0) - > Qi L5(0210) + — Ly (0210)
o210 \ P1 20921 0391 2 0921

—2A

o .
+ a3 2L Lo (0210) M2 (A, 0210).
0221
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This implies that asgsey 2X does not depend on ¢ because this is the case for oy and Rgg&Q , see (19), and
moreover o, = €5 from (30). Hence the previous claim shows that agees - =&5 @1(52) = ¢ where c is a
constant depending only on ji. Therefore ¢ (s2) = ce3. Since Ao ¢ Q, we have that \ ¢ Z>q for all i € V
(shrinking V' if necessary) and, consequently, ¢ = 0 because ¢; is €% in a neighbourhood of e = 0 with
K arbitrarily large. (More precisely it suffices to take K > A9 and make smaller V so that K > X for all
i € V.) Accordingly

Qoo — 0 (34)

and, since ap; = €3 on account of (30),

oaxnf 022 o211 ( P 0221 Ls(o210 ?
Rop = =5 | —/— — — (0210,0) — 7)]\/[2()\,0210) — ] . (35)

20991 0210 \ Py Lo (0210 02210910

Sa

Then, using (18) with £ =1 and the expression of Ry; in (29),

Lo (0210 2 oN10120 2 2
A(n:—sz( 2 ) < L ) — _SyAZ, forall g e V.
02210519 Li(o120)

By applying Lemma 2.3 and Theorem B.1, the function MQ()\ 0210) In Sy is €*° in a neighbourhood of any
(Axs px) € (0,400) x W such that A, ¢ Z>o. Thus the function on the right hand side of the above equality,
that we denote by Ag; in the second paragraph of the proof, is > on ((0, +oo) \ D) x W with Dy, := N.
Since we know on the other hand by Theorem 1.6 that Ag; € €°°(((0,+00) \ D§y) x W) with Dfj; = N, see
Remark 1.7, this implies by continuity that the second equality in (b) is true for (X, p) € ((0, +00)\Df; ) x W.
Certainly we also use here, and it is essential, that the parameter fig = (Ao, po) € W with Ao ¢ Q that we
fix at the very beginning is arbitrary.

Let us begin now with the computation of Rsq, i.e., the second coefficient of the transition map for the
first passage, by means of Lemma A.3. In this case, using Table 1 together with (29) and (31), we get

1 —2

—2

T P T 0 a1e T

Rip = (m(Pl)(O T120) — 2112)0431 =20 L3 (T120) +$ T3 L1(T1zo)+a11 7L1(T120)M1(1//\ T120) -
T120 2 T111 Ti11 T11

e er”* SRECY
Since R11 = sl_l/AaH from (29) once again and, on the other hand, 7120 = €1%2(0,e1) with 12(0,0) = 1, it

follows that we can write
Ry

Ry
Observe that the quotient gﬁ’ does not depend on e because, from (16) and (17)

1/A-1 12

= p3(e1)e, + %011

Ry

A
Stk RO (k4 1) =22
Rll

Aok

1/x-1

Since this is also the case for the quotient 212, see (27) and (32), it turns out that p3(e1)e; = ¢ for

some constant depending only on ji. Thus p3(e1) = cs}//\Jrl and, due to A & A\g ¢ Q, this implies ¢ = 0.
Therefore,

Ri2 a2 oz o (P o111 -~
. = - 0 —— M, (1/X, =S, 36
Rii 2011 20111 o0\ P2 (0, 0120) = Li(o120) 11/A,0120) = 51 (36)

where the second equality follows from (27) and (32) again and the last one from the definition in (3). Hence

AIO = Aoo/\sl and All = A012)\51 = —AgOQ/\Sng for all [L eV.
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On account of the expression of Sy and Sy given in (35) and (36), respectively, the application of Theorem B.1
shows (following the notation introduced in the first paragraph of the proof) that D9, = L and DY, =NuU .
Since these sets coincide with DY, and DY, respectively, this concludes the proof of assertion (b).

Let us show next the validity of the identities in assertion (c), that deal with the coefficients of the Dulac
time. As before we begin with the study of the regular passages and the computation of the first coefficients
of their time functions. With regard to 7" (s; ey, 1) it turns out that

T120 Lnl d g oy
T — ™ / 17@3) x"z—"Tl z ny (7-1”220 A Al(nl/)\ — n2,7'120) _0-;1220 X Al(nl/)\ — n270-120)>.
g

= — =
n 11 11
! 120 P2(071')
~—— np— 5L
Aq(x) €1 wa(e1)

The first equality above follows by Lemma A.3 taking into account the expression of p1; in (27) and
Table 1. The second equality follows by applying Theorem B.1 with A, (z; i), that belongs to € (I3 x W)
by Lemma 2.3, and the fact that 7199 = €1¢2(0,e1) with 12(0,0) = 1. Then

Too=T, =Ty +1T7

ni ng— L 1 Ny L A
= of] (512 8 (@4(51) - (1 — /\n2)P1(070)> — 0190 * Ar(ni/A - n2,0120)>
o111075 A,
LY (o120)

(711/)\ n2,0120)

The first and second equalities above follow from (26) and (22), respectively, and the third one by using (14)

1110140
Li(o120)
this, on account of A = A\g ¢ Q, implies that p4(e1) = m. For the reader’s convenience let us
be more precise in this last implication because we use the same argument repeatedly. The point is that
there exists ¢, not depending on €1, such that

together with (29). In the last equality we use that 1,0, a1 = and o1 do not depend on ¢ and

nq

% (e

1
— Ang)P1(0,0)

) =c for all ;

and we know on the other hand that o4 is €% ((—6,9)) with K arbitrarily large. In this case for our purpose
we need K > 3L — ny, so that (by shrinking V') we have K > & —ny for all i € V. Since Ao ¢ Q we
can also assume that % —ny ¢ Zx for all 4 € V. That being said, note then that from the above equality

ny
it turns out that o, is a €% function that is written as @4(e1) = ce? "* 4 ¢ with the exponent 5= ng
smaller than K and not being in Z>¢. It is evident that this is only possible if ¢ = 0, as we claimed. Hence

U U N
Th0 = %Al(nl/)‘ —ng,0190) for all € V.

By Theorem B.1, the function on the right hand side is ¥*° in a neighbourhood of any (As, s) € W with

M= n2 & Zxo, le, A ¢ Dn1 0 N>n . Thus Dn oC Dl o=U N>n , see Remark 1.7, and therefore

by continuity the above equality is Vahd provided that A ¢ Dy, . This proves the first identity in (c).

n1,0

Regarding the time function T?2(s;es, i) of the second regular passage one can check that

2 na A na\ ni—Ans A
T —522 <O’210 2 AQ(n2>\7n170'210) ’7'2110 2A2(7’L2)\ﬂ1,7’210)>

ny—ngA
€2

ws5(e2)

= 632/\(7”110 nz)‘AQ(nz)\ - Ny, 0'210) + é‘gl @5(62),
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where the first equality follows by Lemma A.3 and on account of poi(x) = €£1‘_)‘L2($), and the second
equality by applying Theorem B.1 with As(x; /i), that belongs to €°°(I; x W) by Lemma 2.3. Hence,
taking (14) and (23) into account,

_ s 1
Ty, =T, + T3 = €52 03iy "M Ay (noh — ny, 0210) + €5 (‘PS(Ez) + (n1 — Ang) Py (0 O))

and, accordingly,

A 2
_ _ _ -~ g 0120
Ton, = T(;rn2 = (13252 ") (Ryyer)™ = T310 22 Ay (naX — n, 0210) }\11 )
, L3} (o120)

where the first and second equalities follow from (26) and (25), respectively. Finally, in the last equality we

A _ omoyly
~ Li(o120) "

Since A & Ao ¢ Q, this implies p5(e2) = m and finishes the proof of the second identity in (c¢).

use that o1 and o2 do not depend on € and that this is also the case for Ty ,,, and, see (29), Rusi/

We proceed next with the computation of the coefficient T; ;. To this end we apply Lemma A.3 taking
account of Table 1 and the expressions of p11, R11 and pi2 given in (27), (29) and (31), respectively. In
doing so we obtain

_ ni+1 ny _na—1 ni ona2—1 7120 n
Tl _ (5T1a11> 1 T1217T111T120 _0'1210'1110’120 +an1+1/ Ln1+1(x)xn2— 1)\+1 81P71(0 x)dj
ni+1 = 1 1 ! ? ’
1 P»(0,7120) P(0,0120) T120 v
_ni+1
e’ % peler)
T120 net
N1 o1 ny—1 —(ng=1) =1 2 =2 Y z
+ Moy L o)z % (auor ™ Li(z) + 202> Ly () My (1)), ) mdﬂ
o120 2

Here we also use that 7 does not depend on €5 and that 799 and 7127 vanish at €y = 0. Then some easy
manipulations first, on account of the definitions of A; and B given in (2), and next the application of
Theorem B.1 yields to

+1 ny ’IL271
Tl Enz—"lfgoﬁ(gl) _ 012101119139
ni+1 — <1
! P5(0,0120)
T120 d ni;—1 T120 d
1 _nmi+l ar niio2& _n1 AT
+ OZ?{JF B1 (:E)l'nQ X — + 72 11 Al (Qj)znZ N —
o120 z 0120 xz
ny _na—1 41
_ 012107111033 np— 5 -

np—5L
P5(0,0120) 1 pr(e1) +e; ws(e1)

—1
—mdt g+ 1 N0t _™ .o/
n1+1_"n2 1 1012004 ng— = 1
—afi o9y Bl< \ — N2,0120 - T— 190 ~ A1 BY —ng,019 ),

where in the second equality we also use that 11 and a5 do not depend on ¢, see (27) and (32), respectively.
Notice that

_p—  _ml 0 pra e[l _ ol 0pm B12
Tni41,0 = Tn1+1,0 =T, +TTRAY Y =T, 1y + Iy Ry} R711 =T,

L +mTYRY S,
where in the first equality we use (26), in the second one (22) with & = ny + 1, in the third one the fact

that T[lm] = nl%f from (16), and in the last one that S; = g—ﬁ = 552 from (36). On account of this and
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ni n1

) 0pn1 _ _ "2 X S35
using also that, from (14) and (29), TY R}} = —¢, AT AR
01210?1110”220—1 e o L
_ 1 277X 27X
Tnyt1,0=— Po(0,0100)  °! pr(e1) +&; po(e1)
b
_mtl . ng+1 LN )
ni+1 _mo 1 ny M2 1
—aq1 o9 1( —n2,0120 | — 1510470159 * Al(j —n2,0120>

ny _na—1 )

012101110120 ny _na—ok 2. (ng+1 ~

:_—P 0 —ay10159 | Q11015081 N —ng,0120 | + 1151 4: By —nN2,0120 ) | -
2( 70120)

Here we also use that o1, ai1, Tn,+1,0 and S1 do not depend on ¢ and apply Lemma 2.7 to conclude that

ny41 ny

no—

ey’ pr(er) +e1° X pg(e1) = 0.

Then by using the expression of a7 in (27) and an easy manipulation we get that

A 0121 n1S1 2
T, = —ot,07 Ay(ny /) -
na+1,0(f1) 01119120 (0120P2(0,U120) L7 (0120) 1(n1/ N2, 0120)
0111 S
+ Tl N Bl (n1+1)/)\—n2,0120 )
L11+1(0'120) ( )

for all 4 € V. The application of Lemma 2.3 and Theorem B.1 shows that the function on the right hand
side is € in a neighbourhood of any (\,, ) € W such that {/\%, =g, ML — ng}m Zso =0, ie.,

~ 1 ni ny+1
A & Dy =—U U .
* ¢ ni1+1,0 N NZnQ NZnQ

Since Dy o = U?:lfl N:nQ’ see Remark 1.7, by continuity we can assert that the third identity in (c) is

true at any i = (A, u) € W with \ ¢ Dy 10 UD,’{H_LO =Dp 110U {%, k=1,2,....[;%] - 1}.

We begin at this point the computation of the coefficient 7},, 1. To this aim we apply Lemma A.3 using
in this case the second column in Table 1 and the expressions of Ra1, p21 and paa. We thus obtain

na2+1 ny—1 na _ni—1
T2 . = o™t gy 072 <L2(0210)> 9210 _ 721173217210
na+1 — 21 221
2 022101 P (0210,0) P (7210,0)
n N————
E;\( 2+1) -
€gy 5910(52)
1 1 7210 5\ 1 1 9 X ) R xnl—l
+ 5 agf"" / x (n2— )LELQ_ (x) no <a21 oo T LQ((E) + 2z~ LQ(Z‘)MQ()\, x)) Pi
~ T210 VO 1($, O)

A(ng+1)
€2

+ 207 L2 (2)a™ 0, P (i, O)) dz,

where we use that ag, = 5% from (30), g2 = 0 from (34) and the fact that 7919 and 7917 vanish at €5 = 0.
Notice on the other hand that, by using (23), (25) and (26),

_ mt o 2 —A(n2+1) A \na+1
Tona+1 = To,n2+1 = (Tn2+152 (e1Ryy)™ ™,
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which in particular shows that 777, ;&5 A1) qoes not depend on e. Having said this, note that

nl—l—)\(ng—i-l) Ln2+1(
2

—A(n2+1) _ 02110210 0210) ni—A(na+1)

Tg c +e €
o 0221 Py (0210,0) 2 P10(e2)
e Ly (z) dzx
—2 7/ na+1 —1 n1—A(na+1) 4T
Ma(A Ly* Do P 0
+/‘r210 <n2P1(:L‘,()) 2( ,37)“!‘ 2 (LU) 217 (l’, ))a: .
Ba(x)
n1—1-=XA(n
02110979 1=A(n2+1) L;L2+1(0210) + €n1_)\(n2+1)§010(52)
B 2

0221 P1(0210,0)
+ O_;Lfo—)\(7lz+l)B2()\(n2 + 1) — n170'210) — T;llo_k(n2+1).éz()\(n2 + ].) — TL1,T210)

Y 1
em (na+1)

p11(e2)

n1—1=A(n2+1) rna+1
_ 02110919 Ly* ™ (

0221 P (0210,0)

0210) n U;zllo—/\(”2+1)1§2(/\(n2 +1) — ny,0210),

where in the second equality we apply Theorem B.1 and in the third one we take advantage of the fact that

T,ZLQH&:Q_)‘(WH) and o2 do not depend on ¢ to conclude, thanks to A =~ \g ¢ Q, that @19 = ¢11. Hence, due

A
to e1 R}, = A72% by the second equality in (29), we get that

" L (o120)
_ 2 —A(n2+1) A \na+1
Ton,t1 = (Tn2+152 (e1Ry1)™

A no+1 n1—1—=A(na+1) rno+1
- (01110120) 02119310 Ly (0210) | _ni—(

+o m2 DB (A(ng + 1) —n 0 )
Ly (o120) 0221 Py (0210,0) 210 2(A(n2 +1) 1,9210)

From here, taking the expression of Ay into account, we can assert that

T 0) = Azt n gne ( 0211 + 0221 By (\n +1)—nio >
0,n2+1 (/) 00 2109221 72101 (7210, 0) L7212+1(0210) 2( (n2 ) 1 210)

for all 1 € V. Exactly as in the previous cases, by applying Lemma 2.3 and Theorem B.1 it turns out that

the function on the right hand side is 4> on ((0, +00) \ D&nzﬂ) x W with [)g’nﬁl = 1:22:11 Furthermore,

by Theorem 1.6 we know that the function on the left hand side is 6> on ((0,+00) \ D§,,, 1) X W where,

N>, . ~ -
see Remark 1.7, Dy, 1 = n2+11 UN. Accordingly, due to D(,,, .1 C D ., 1, by continuity we can conclude

that the fourth equality in (cg) is true on the given domain.

It only remains to compute T5y and Tps in the case that n; = 0 and ny = 0, respectively. Let us consider

first the case n; = 0. To this end we begin by computing the coefficient of s2 in the time function T of the
$71271
Py (19527131)

first regular passage. By applying (b) in Lemma A.3 for the case ¢ = 0 and taking f(x1,x2) =
Table 1, we know that it is written as Ty = $(Uy — V4 + W) with

, see

Ur = (T120RT; + T121R12) f (7120, 0) + Ty B3 101 f (7120, 0) + 271217111 R} 192 f (120, 0)

71//\9012(51) + 5711272//\,013(&),

= 8?2
Vi = 0122 f (0120, 0) + 079101 f (0120, 0) + 20121011102 f (7120, 0)

no—1 2 ng—2
01220150 01219150 ( ng — 1

- 2P5(0, 0120) 2 P5(0,0120)

+ 712002 P5 (0, 0120)> + 012101110?22(;151P{1(0,0120)
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and

Wi = / T (00 La@)203 7 (.0) + (cn22 ™ Ly (@) + 203,05 L (@) 311 (1/,2)) 02 (,0) )

120

T120 d T120 d
2 ne—2 AT no—1 X
:a11/ Cy(z)z" A?"f'0412/ By (x)z™
(o

120 70120 Z

Nno—2 A no—2 A
:Oéfl(Tleo A01(2/)\—Tl2,7'120) —0'1220 AC’1(2//\—712,0'120)>

-2/
127 pra(en)

ng— 1 na—L =
+0412(71220 ABl(l/)\—ng,Tmo) —0'1220 ABl(l/)\—’/lg,a'lgo)>.

no—1/X
€1

p15(e1)

Let us note that to rearrange U; we use that Ry = 041151_1/’\ and Rio = %041251_1//\ from (29) and (36),
respectively, and moreover that 7122, 7199 and 7121 vanish at e; = 0. On the other hand, to simplify W,
we apply Theorem B.1 and use that, in this case, Bi(z) = L1(2)0; Py ' (0,z) due to n; = 0. By the same
reason, using also (22) and (26), we get that

T20 = T2O == TQ + Tl T[O] (Ul Vi + Wl)

since T[QO] = 0. This shows in particular that U; — V; + W; does not depend on € and, since this is also the
case for ;1 and 12, we can assert that

nog— 1/

£y (p12(e1) + araprs(er)) + 6727

p13(e1) + aiyp1a(e1)) =0

by applying Lemma 2.7 and using that A = A\g ¢ Q. Finally, since ay; = % and a9 = 201151 by (27)

and (36), respectively, we obtain that

Too(2) 01220135 1 otai0i3 0 [ ma—1 ¢ 12082 P5 (0,0120) 1215 P1 (0, 0130)
== - o , o — 012101110 o
20 2P5(0,0120) 2 P5(0,0120) 1200252 120 12191119120 91472 120

‘7111‘7120 01110750
7(] 2/\ — S 73 1/X—
2L (0120) (2/X = ng,0120) — T (o1m0) 2t (1/X = ng,0120)

for all i € V. By applying Lemma 2.3 and Theorem B.1 we have that 6’1(2/A — ng,0120) I8 € in a
neighbourhood of any (A, f1x) € W such that {1/\,,2/\, — n2}NZ>o = (0. The condition for the function Si,
see (3), and By (1/X — ng, 0190) is 1/A, ¢ Zso and 1/\, — ng ¢ Zs, respectively. Therefore the function
on the right hand side in the above equality is € on ((0, +o0) \ D5, o) X W with D3y = & Ux2—. Due to

Djy = ﬁ from Remark 1.7, we get that D5, U D20 =Dy U {k, E=1,2,...,[%] - 1} and, on account
>nso
of the considerations in the second paragraph of the proof, this shows that the above equality is true in the

domain given in the statement.
Let us turn finally to the computation of Ty for the case ng = 0. Similarly as before we apply (b) in

Lemma A.3 with f(z1,22) = W to get that 7% = 1(Us — Vo 4+ Wa). In this case some long but easy
computations taking account of Table 1 give

Uy = (0212R3) + 0211 Ra2) (0210, 0) + 03,1 k3,01 f (0210, 0) + 202110221 B3, 02 f (0210, 0)
= 2Pgm <L2(0210))2 (QZ _ 021152)
2 720\ 9910900 0210P1(0210,0) )’
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2
where we use that Ro; = 5%% from (28) and (30) and that Rgy = —2*55 (ino)) from (35) and,

0221051 922103510
for the sake of shortness, we denote

+ (n1 — )03 3 —
02120210 + (N1 o511 + 9211 01 P; 1(021070)+

02110221 P
2
205,,P1(0210,0) 20210 0210

Z:: 2P1_1(O'210,0).

Since 7910, 7211 and T212 vanish at eo = 0, one can also verify that
Vo = T212 f2(T210, 0) + 731101 f2(T210, 0) + 27211722102 f2(T210,0) = 5 16(€2).
Furthermore, on account of the definition of the function Cy given in (2) and applying Theorem B.1,

0210 ~ dx
Wy :/ ((sgx**Lg(x))%”lagpfl(z,0) + 253%”1*2%2(:6)1\42@,x)aQPﬂ(a;,O)) —

T210

7210 dx ~ A
=5’ / Co(w)a™ 22— =&’ (o;ﬁlo”cgm —n1,0210) = 73y 2 Ca(2X — m1, Tan0) )
T

210

mni

€y 72/\@17(52)
Notice at this point that, from (23), (25) and (26), To2 = Toh = (T9e5 **)(e1R3,)?, which shows in particular
that T225§2A does not depend on & because this is the case for Tp and, see (29), e; Ry, = a11. Consequently
Uy — Vo + W5 does not depend on & and so 531_2)‘(9016(52) — ¢17(e2)) = c. Since A = Ao ¢ Q, this implies
that ¢16 = 17 and therefore

oN10120 ) Ly (0210) ? 021152 1 A
7. — (2 ) o ( ) (Z— B e > + oA (20 — ny, 0
02 (Li\(0210) 2O\ o909 20210 P1(0210,0) 2 210 2( 1,9210)

SQ O'2 ~
N 221 (o) — .
007210 < 20210P1(0210,0) * 2L2(0210) 2( 1, 9210)

for all 1 € V. Exactly as before, by applying Lemma 2.3 and Theorem B.1 we can assert that ég(ZA—nl, 0210)
is €°° in a neighbourhood of any (A, ) € W such that {2\ =11} N Z>g = 0. The corresponding
condition for the function Ss, see (3), is A\, ¢ Z>o. Thus the function on the right hand side in the above
equality is € on ((0,+00) \ Dg) x W with D := NU Nle Due to D, = & from Remark 1.7, it turns
out that D3y U DSO = DJ; and, on account of the considerations in the second paragraph of the proof, this
shows that the above equality is true in the domain given in the statement. This concludes the proof of the
result. ]

Lemma 2.8. Let ®(z,y), with x = (x1,72,...,2,) € RY and y € R, be a countinuous function in a
neighbourhood of (0,0) € RN x R. If y®(x,y) is analytic in a neighbourhood of (0,0) then ®(x,y) is analytic
in a neighbourhood of (0,0).

Proof. By the Weierstrass Division Theorem (see [11, Theorem 1.8] or [15, Theorem 6.1.3]) there exist a
neighbourhood U of 0 € RY and an open interval I containing y = 0 such that y®(z,y) = yg(z,y) + r(z)
with g € €“(U x I) and r € €*“(I). The evaluation of this equality at y = 0 yields » = 0. Consequently
O(z,y) = g(x,y) for all (z,y) € U x (I \ {0}) and, by the continuity of ® in a neighbourhood of (0, 0), we
easily get ® = g on U x I. This proves the result because g € €“(U x I). ]

Proposition 2.9. In the analytic setting (see Remark 1.8), the following assertions hold:

(a) The coefficient Aij of the Dulac map is € on ((0,4+00)\Dg;) xW for (i, j) € {(0,0),(1,0), (0,1), (1,1)}.
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(b) For each (i,7) € {(n1,0),(0,n2), (n1 +1,0), (0,n2+ 1)}, the coefficient T;; of the Dulac time is analytic
on ((0,+00) \ DY) x W. This is also the case for (i, j) = (2,0) and (i, j) = (0,2) assuming n1 =0 and
ng = 0, respectively.

Proof. By applying Lemma 2.3 we know that, for i = 1,2, the functions L;(u; 1), M;(u;fi) and A;(u; f1)
given in (2) are analytic on I; x W. In addition,

e the functions By (u; i) and Ci(u; fi) are analytic on I1 x ((0,+00) \ &) x W, and
e the functions Bo(u; i) and Ca(u; i) are analytic on Iy x ((0,+00) \ N) x W.

Moreover, since the parametrization o;(s; i) of the transverse section X; is analytic by assumption for
i = 1,2, from (3) we get that S1(X, 1) and Sz(A, p) are analytic on ((0, +00)\ &) X W and ((0, +00) \N) x W,
respectively.

The fact that each coefficient Ay;(X, p) in assertion (b) of Theorem A is analytic on ((0,+00)\ DJ;) x W
follows readily from regularity properties stated in the previous paragraph because, see Remark 1.7,

1 1
Dy =0, D§; =N, DYy = — and DY, =NU —.
N N
This proves assertion (a).
By the first assertion in (d) of Theorem B.1, the regularity properties established in the first paragraph
also imply that each coefficient 7T;;(A, u) listed in (c) of Theorem A is analytic on ((0, +o0)\ D}}) x W, with
the exception of the special values

e A=, withke {1,2,..., 2211 — 1} for Ty, 41,0(A, 1), and

e A=1 with k€ {1,2,...,[%] — 1} for Tao(X, p),

where the respective formula does not hold. Indeed this follows using that, see Remark 1.7 again, D, = 0,

ny . I\ . ny+1 .
i —  ifng > 1, i N>
n _ n _ n n _ n _ Zni
Dn1,0 - U N ) DO,ng - 2 . Dn1+170 - U N and DO,n2+1 - +1 UN7
=1 Zn2 0 if ng = 0, i—1 >ng ng

together with Df, = 2— for ny = 0 and Df}, = § for np = 0. For instance, due to As(u; 1) € €% (I x W),

>no

the first assertion in (d) of Theorem B.1 implies that Ay (e, u; i) is analytic on (R\ Zsg) x Io x W and hence
niy _no
Toma () = Apg—210722L Ay (nyX — 0y, o210)

00 LSQ (0210)

is analytic at A = Ao provided that naAg —ny & Zxo, i.e., Ao ¢ Dg,,,. The analysis of the other coefficients
follows similarly and the details are omitted for the sake of brevity.

So let us focus on the analyticity of T}, +1,0 and T5g at the special values listed above. In order to study

the first case let us fix A\g = ¢ with k € {1,..., 271 —1}. Note that we can write, see (c) in Theorem A,
Toit10 = fo + f1S1A1(n1 /X — na, o120) + f2é1((n1 +1)/X = ng,0120) (37)

where, see (2), By (u) = g1(u)My(1/X, u) + g2(u) and Sy = fs+ faM1(1/X, 0120) with g;(u; i) € €“(I, x W)
and f;(f1) € €“(W). That being said we argue as follows:

1. Al(nl//\ —n2,0120) is analytic at A = Ay due to 7/{—; —ng = n1k —ng € Z<o by the first assertion in (d)
of Theorem B.1.
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2. (A= Xo)Mi(1/X, u; ), and consequently (A — Ag) By (u; fi) and (A — \o)S1(fi), extends analytically at
A = Ao by the second assertion in (d) of Theorem B.1 since 1/X\g =k € Z>,

3. and this implies (in this case by applying the first assertion) that (A — Xo)By((n1 + 1)/A — ng, o120)

extends analytically at A = )y because ”3\—?1 —ng = (n1 + 1)k —ng € Zcp.
Taking this into account, from (37) it follows readily that (A — Xo)Ty,+1,0(/1) extends analytically at A = Ao.
On the other hand, since Ao ¢ Dy ., ¢, note that T, y1,0(f2) is smooth at A = Ag by (b) in Theorem 1.6.

Accordingly, in view of Lemma 2.8, we can assert that T),, 11,0(f) is analytic at A = Ao as desired.

Let us turn next to the second case. So let us fix Ao = + with k € {1,...,[%2] — 1} and observe that

from (c) in Theorem A we get that if ny = 0 then we can write
Tao = fo+ fiC1(2/A = na, 0120) + f251B1(1/X — na, 0120) (38)

with, see (2), C1(u) = Bi(u)(Li(u) + 2M;i(1/A,u)) and Si = f3 + faMi(1/), o120) for some f; € €« (W).
We point out that in this case, since n; = 0, By(u) = Ly (u)d1 Py (0, u) is analytic on I; x W. Then we
proceed as follows:

1. Bi(1/\ —ny,0120) is analytic at A = X due to 1/\g —ng = k — ng € Z g by the first assertion in (d)
of Theorem B.1.

2. (A — Xo) My (1/X,u; i) extends analytically at A = A by the second assertion in (d) of Theorem B.1
because 1/Ag = k € Z>¢ and,

3. consequently, this is so for (A—Xg)S1 () and (A—Ag)C1(2/A—ng, o120), the latter by the first assertion
in (d) of Theorem B.1 since 2/\g — ny = 2k — ng € Z<y.

On account of this, from (38) we get that (A—Ag)T20(ft) extends analytically at A = Xg. Exactly as before, it
happens that Th (i) is smooth at A = Ag by (b) in Theorem 1.6 due to Ag ¢ D%,. Therefore, by Lemma 2.8
again, we can assert that Tho(ji) is analytic at A = Ag as desired. This proves the validity of (b). [ |

3 Poles and residues of the coefficients

Let us recall, see Theorem 1.6, that the coefficient A;; (A, i) of the Dulac map is > on ((0, +00) \D?j) xW
for each (7,j) € Ag and the coefficient T;;(A, 1) of the Dulac time is 4> on ((0,+oc) \ Df;) x W for each
(i,7) € Ay,. The next result is addressed to the behaviour of these coefficients at the boundaries of their
respective domains of definition.

Lemma 3.1. Consider the coefficients A;; and T;; of the Dulac map and the Dulac time, respectively, given
by Theorem 1.6. The following assertions hold:

(a) If (i,5) € Ao and \g € Dy; then there exists £ € Lo such that the function fi — (X — Xo)fA;(f1) extends
€ to {No} x W.

(b) If (i,§) € A, and Ao € D}} then there exists £ € Z>o such that the function fi = (A —Xo)*Ti;(ft) extends
G to {)\0} x W.
+

Moreover, setting Ao = p/q with ged(p,q) = 1, the estimates £ < < i+ 7 hold in both cases.

4
P g

Proof. For convenience we prove (b) first. Due to A\g € D}, we have Ao € Q and we write Ao = p/q with
ged(p, ¢) = 1. Setting r,, ;= max{r € Zx¢ : (4,§) + r(p,—¢) € A}, we define (in,jn) = (4,7) + rn(p, —¢).
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Then Ao € D} ; , ", \, # 0, see Definition 1.5, and we take £:= max.&"; , . By (b2) in Theorem 1.6

we know that Tf‘OJ (w; i) € €(U)[w], where U is an open neighbourhood of {\} x W, and

T (i) = > Tiprpjutrg(@)(1+ aw)” for X # Ao,
Teg{rnﬂn%o

where av = p — A\g. Let us write TAo (w; ) = Zi o A ()wk with Ay € €°°(U 7). For convenience we define
u= 1+ ow, sothatw—a’l(u—l) for a # 0. Thus w* = *kzr 0( )(—=1)F~"u" and, for A # Ao,

£ L k
T, (i) =3 (Z Al (1) <—1>’H> (1+aw).
r=0 \k=r

Accordingly this shows that T5, _yp j. +rq(ft) = Zk s Ar()a™ (ﬁ)( 1)¥=" provided that r € a5 and
A # Xo. With regard to the first condition let us observe that r, € " " by construction. Hence

T; ;i (p) = Zk:rn Ar()a~ (k)(fl)’c ™ and, due to a = g(Ag — \),

Tn

k
_ é ~ rn —k
(A= 20)Ti () Zq Ap()(X = o)™ (Tn>for)\7é>\0.
k=r,
Since Ay € €>°(U), this shows that fi — (A — \o)!T}; (1) extends € to {A\o} x W and proves (b).

The proof of (a) follows verbatim replacing n = (n1,n2) by 0 = (0,0) and is omitted for the sake of
shortness. Let us turn now to the proof of the last assertion in the statement. The estimate for the the case
in (a), ie., (i,5) € Ag and Mg € D?j, is clear because

0 0 (N I

maX@{zogoAO < > Z];'H“o < 1;+6 <i+ .
Here the first inequality follows using that . WO/\ # 0 and (ip — rp,jo +1q) € Ao = Z>o X Z>q for all
r e 'Q{oaoko’ see Definition 1.5, the equality is due to (ig, jo):= (4,7) + ro(p, —¢), the second inequality is a

consequence of j —1roq = jo =2 0 and the third inequality is evident since p, ¢ € N. Finally, the estimate for
the case in (b), i.e., (i,7) € A, and Ao € D}}, is a consequence of the previous discussion and the fact that,

# 0 and max &7, \ < max .o,

by construction, sz 0400

o . This completes the proof of the result. [ ]

By Lemma 3.1 the coefficients A;; and T;; have poles at D0 x W and D}’ x W, respectively, of order
at most 7 + j. This is a general result, meaning that it holds for any (4,7). Theorem A provides the explicit
expression of some of these coeﬂﬁcients and the rest of the present section is devoted to give sharps bounds
for the order of their poles. We will also compute the residues of these coefficients at their poles, which
determine the values of the leading terms of the polynomials Af‘j“ (w;fi) at Ag € D?j and Tf‘j“ (w; 1) at
Ao € Dfj (see Theorem 4.1 and Theorem 4.3, respectively, in Section 4). We illustrate the use of the
residues for this purpose in Example 4.2. Let us also advance that at the end of the section we will finish
the proof of Corollary B, which shows that in the analytic setting these coefficients are meromorphic on

W = (0,+00) x W.
With regard to the next statement we recall that D3, = N, D}, = % and DY, = NU % (see Remark 1.7).

Proposition 3.2. The following assertions hold:

(a) For any fig = (Mo, o) € DYy x W, the function i — (A — Xg)A1o(ft) extends € at i = o, and if

S TR . -\ Agooi110} M (0)
Ao = 7 with i € N then ﬂlir%O(A — Xo)Aro(it) = — g Sy |

a=fo’
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(b) For any fip = (Xo, o) € DYy x W, the function fi — (A — Xg)Ao1(f1) extends € at i = fig, and if
i (i)
Xo =1 €N then lim (A — Xo)Ap1(ft) = e MziI(O)‘

A= o La(o210)

(¢) For any fio = (Mo, o) € (DY, \ {1}) x W, the function ji+— (A — Xo)A11(f1) extends € at i = g and

fi=iio”

i (i)
(cl) if Ao =2 with i € N> then lim (A — Xo)A11(f1) = 2485071117150 My (0) So

> fio Li(0120)i3 3! |ﬂ=ﬂ0’

iA2 gon b o MY
(€2) if Ao =i € N>y then Mli)nﬁo(/\ Xo)Aqr (1) = —2 e 2“(0) Sl‘ﬂ:ﬂo'
Finally, for any fip = (Ao, o) € {1} x W, the function fi — (A — Xo)2A11(f1) extends €>° at fi = fig

. 2 2 01110 M (0) 02210210 M4 (0)
and ﬂlglﬂlg(/\ — M) Ari (i) = 208 P E S S PR

a=po”

Proof. In order to show (a) we fix fig = (1/i, o) € DYy x W with i € N and note that, by (b) in Theorem A,

A1p = AgoAS; where Agg € €°(W) and, see (3), S; = f1 — Ll‘zgllgo)Ml(l/)\,Ulgo) with f; € €°°(W). On

account of this and (¢) in Theorem B.1, the function (A — 1/i)A19(ft) extends €= at i = fip and

w0,

. ) —0111 . —1/X -
lim (A —1/i)S; = ———— lim Ti(on)2 T120 im0

M, (1 Ao
fi—fuo Li(o120) la=po i—i0 Z/)\ 1(1/X 0120) =

i ()
Therefore Ty, (A — 1/i)Arg () = —Spegingizn M (O

To prove (b) we fix fig = (i, o) € Dy x W with i € N and note that, by (b) in Theorem A, Ag; = —A3;S2

where Sy = fo — L2(§210)M2()\ 0210) Wlth f2 € €°°(W). Exactly as before, (¢) in Theorem B.1 implies that
the function (A — ¢)Ag1(fi) extends € at i = fip and, moreover, that
(@)
) . 0221 L ~ o1 My7(0)
lim (A—14)Sy = ——— lim (i — A)Ma(\, o = - o 40
ﬂ%ﬂo( ) ? L2(0210) A=fo ﬂ%ﬂo( ) 2( 210) L2(0’210) 1! 210 A= ( )
i (i)

and, consequently, limg_, (A —9)Ao1 (1) = —A?’L";T(f;;?)m M, © |ﬂ:ﬂo'

Let us turn to the proof of (¢). To this end we note that, by (b) in Theorem A, Aj; = —2A2,\51S,. If
fio = (1/i, fig) € DY, x W with i € N>o then S is smooth at i = fip by (a) in Theorem B.1 and therefore
from (39) it follows that

()
lim (A —1/i)Aq1 () = 208001110159 M (0)

5
fi—fo Ly(0120)3 i! 2

i=fo

Exactly as before, the fact that (A —1/i)Aq1(ft) extends € at i = jig follows by (¢) in Theorem B.1. This
shows the assertion in (cl). Similarly if g = (4, fig) € DY; x W with i € N>o then S; is smooth at fi = fig
by (a) in Theorem B.1 and, from (40),

| 2iA3 M
Ahm (/\ _ Z)An(ﬂ) ¢ 0002210210 '( )Sl B
fi—fuo Lo(0210) i! fi=fio

which proves (¢2). Finally, if fig = (1, po) with po € W, the combination of (39) and (40) easily implies that

lim (A — 1)2A11 () = 242, lim (A —1)S; lim (A —1)S,
A—flo A=flo fA—flo A—flo
_ 2A3)0111012002210210 MI(0)M(0)
L1(0120)L2(0210) ! 2 A=

and, on the other hand, (c) in Theorem B.1 shows that (A —1)2A1; (1) extends ¢ at fi = fip. This proves
the last assertion in (¢) and concludes the proof of the result. [ |
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We omit the proof of the next result for the sake of brevity since it is very similar to the previous one.

With regard to its statement we recall that D, = stl and D} o= U2, N; (see Remark 1.7).
>no

Proposition 3.3. The following assertions hold:

(@) For any fio = (Mo, po) € D, x W with ng > 0, the function i — (A — Xo)Ton,(f1) extends € at

fi = fio, and if Ao = " with i € Zso then lim (A — Ao)Tom, (ji) = — 208 73ls 038 45)(0)
’ nz = i "

nz2 L 2(0210) il |ﬂ:ﬂ0'

(b) For any fig = (Ao, o) € Dy o X W with Ao ¢

Mo ni0(f1) extends € at fi = [ig. In the

case that A\g = ;“i with © € Z>q, then the functzon = (A= Xo0)Tn,0(ft) extends € at i = [ig and
fim (3 = Xo)Toso () = — i 2iye SIS A5
#gﬁo 0)4m0lH) = ("2""2)2 T1(o210) @ A=fo"

Let us recall in regard to the next statement that Dg,, ., = i:’ill UN, see Remark 1.7.

Proposition 3.4. The following assertions hold:

(a) For any fio = (Ao, o) € D, 41 X W with N\g € Ny ny, the function i — (A—=X0)*To n,+1(f1) extends €
: >l
at i = fig, and if Ao =1 € Ny n1 then
—ngy

An2+1 (n2+1)i_ny+1 M(i) A("ﬂ—nl)
lim ()\ o )\0)2T0,712+1(ﬂ) n2 210+1 0221 : ( ) 2 : (0) )
A= o (na + 1) L5> T (0910) il (noi —n1)! la=po

(b) For any fio = (Mos fto) € Dy 11 X W with Ao ¢ Nxni, the function fi = (A—Xo)To,n,+1(f2) extends €=
>
at L = fig, and

(b1) if Ao =i € N_ny then, setting i1:= (no+1)i —nq,

no

lim (A — Xo)T0,ny+1(2) =

Anztl nat+l n M(i)(O) N
00 9231 210 2 )
ne— 910A42(in2 — n1,0210)

A—rfio - ng+1(0210)
maohy Z M (A5 0)
n2 +1 ZQ' j—1 o ’
=fo

where R = ﬁ@;j (L5 (w)92 P (u, 0)) ‘u:O for i1 > 0 and R = 0 otherwise,

; — nitie i g 3 _ 0) — — Ag()z+1”;1221+1 ;110+l B(l)(o)
(02) if Ao = ;57 € N with i € Z>o, then ﬂlmﬂo()\ 20)T0,ms+1 (1) = DL oy T =0

Proof. For the sake of convenience we write T ,,+1, see (¢) in Theorem A, as

Tone+1 = fo (fl + f2Ba((ng + 1)\ — ny, 0210)) (41)
with fo:= Am2 oM om | f = TooPrloao0) 12 = % and where, recall (2),

By (u) = naAg(u) My (X, u) + f3(u) with fs(u):= L32" (u)8y P (u, 0).

That being said we begin with the proof of (b2). With this aim we note first that Ba(u; A, ) is smooth

along A = \g ¢ Zso because so is Ma(\, u; i) by (a) in Theorem B.1. For this reason, since Z;ﬂ ¢ Z>o by
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assumption, we can apply Corollary B.4 taking a = A\, v = (A, p), ag = Zzl_ti, vy = (Z;L,MO) K1 =mn9+1
and k92 = —ny to conclude that

B5”(0) o]
(Tl + 1) | 210 A=fio

. ny+1 -
lim —A) Ba((ne +1)A —nq,0 =
Paryh (n2+1 ) 2(( 2 ) 1 210)

Hence, on account of (41) and by applying Corollary B.4, the function i (/\ )To na+1(f1) extends €

natl notl niti p(i)
Agg 0931 Ta1g B3 (0)

(na+1)L32  (0910) 7 ‘u o

n2+1

at fi = fip and tends to — as fi — fip and this shows (b2).

Let us turn now to the proof of assertion (a). So assume that A\g = i € N with ngi — n; > 0 and
observe that, by Corollary B.4, the function i — (A — i)2f3((n2 + 1)A — ny,0210) extends €°° at i = fig
and tends to 0 as i — fip. Thus, by applying firstly (a) in Corollary B.3 and secondly (a) in Lemma B.5
with {& = X\, v = (\,p),p = n1,q = na}, from (41) we can assert that fi — (A — i)?Tp n,+1(ft) extends €
at i = fip and, moreover,

o5t " My (0) A" (0)

li A — T n 210
ﬁggo( 0)*Tony+1(f1) = nafofol 1l A (i)

fi=iio”
which proves (a). In order to show (bl) we consider Ao = i € N with ngi —mn1 < 0. In this case, if

R )
i1:= (ng + 1)i —ng > 0 then limg 50 (A —7) f3((n2 + 1)X — ny, 0210) = ﬁ 750 - (0) ’# 4o by Corollary B.4,

whereas if 7; < 0 then limg (X — Z)f3((7l2 + 1)A —n1,0910) = 0 by (a) in Theorem B.1. Taking this into
account the assertion in (b1) follows by applying firstly (a) in Corollary B.3 and secondly (b) in Lemma B.5
with {o« = A\,v = (\, p),p = n1,q = n2}. This concludes the proof of the result. [ ]

Regarding the next statement let us recall, see Remark 1.7, that D | o = U:L:li'l N: .
Zn2

Proposition 3.5. Let us consider any fio = (Mo, po) € Dy, 41 9 X W. Then the following assertions hold:

(a) Case \g € +.

(al) If Ao = 1+ with i € N> n2 then the function fi — (A — Xo)?Ty,+1.0(ft) extends €= at i = fig and

lim (A~ A otii otz MV (0) AT (0)
im ( 0)° T, 11.0(f2) = ] S . ,
A= fio (n1 + 1)i2L7" " (0120) ¥ (n1i —na)! e

(a2) If Ao = % with i € NN [ 210 72) then the function fi— (A — Xo)Tn,+1,0(f1) extends € at fi = fip

and, setting io = (n1 + 1§z — na,

ni+1 _i(ni+1)

. A) (i0—1J)
. N o o 0)A 0
lim ()\ )\0> a1, 0(//[/) — 111 120 U (nl E ( ) ( ) 1. ( )
120

fi=fio (ny + 1)i2ig! L7 T1( Jj—i

+ 820 (L;“H(u)alP;l(u,O)) ‘u_())

A=fo
(a3) If Ao = + withi € N_ 2 then Ty, 41,0(ft) extends € to {\o} x W.
(b) Case Ao € (N; g:zl) \ L.
(b1) If Ao = ngﬂ gl—ﬂ with i € Z>o then the function fi — (A—Ao)Th,+1,0(ft) extends € at i = fio
and lim (A — Ag)Th,+1,0(f4) = n1A0,0111101L220+L 4°(0) .
A—fuo ! (2t LyT(o120) A A=fio
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(b2) If \g = it ¢ 11 with i € Zsq then i — (A — Xo) T, +1.0(7t) extends € at fi = i and

na+i NZnQ

. oy _ oot on (A, )Y (0)
lim (A= A0)Tn,+1,0(ft) = N7 i+l ]
P (n2 + 1)L (0120) v

A=po

(03) If \g = - = L for some iy, iy € Z>q then the function i — (A — Ao)Tn,+1,0(ft) extends €

. na2+i1 na+is
at i = 19 and

lim (A= Ao)To, +10(3) = nidootl; [ oz Al () St oyat (A1M1(,\1*0»'))(i2)(0)
f—fio mtl, L?l (0'120) no + il ’Ll' No + ig ’LQ'

fi=fio

(c) Finally, if Ao & % U NZ—L U g;—ti then T, +1,0(ft) extends €°° at 1 = fio.

For the sake of brevity we omit the proof of Proposition 3.5. Let us only mention for reader’s convenience
that, by (¢) in Theorem A,

Thi+10 = fo (fl + foBi((n1 + 1)/A — ng, 0190) + f3S1 41 (01 /A — n270120))

with f; € €°°(W). This expression is similar to the one in (41) for Tj ., +1 that we analysed in the proof of
Proposition 3.4, but with the additional summand f357A4;. This extra term increases the number of cases

to be studied in terms of Ay but they follow using exactly the same arguments as those explained in the
proofs of Propositions 3.2 and 3.4.

Lastly we state a result concerning the poles of the coefficients Toy and Ty in the cases n; = 0 and
ng = 0, respectively. For the sake of shortness we do not specify the value of the residues, which can be
computed using the same techniques as in the previous results. For the same reason we neither include the
proof. With regard to its statement let us recall that D35, = ﬁ and Dy, = %, see Remark 1.7.

Proposition 3.6. The following assertions hold:

(a) Assume that ny = 0 and consider any fig = (Ao, to) € D5y x W.
(al) If o € @ then the function fi — (A — Xg)?To (1) extends € at fig.
(a2) If Ao & ~=— then the function fi+— (A — \o)Ta0(f1) extends € at fig.

N>n,y

(b) Assume that ny = 0 and consider any fig = (Ao, o) € Dy x W.
(b1) If \o € Nxy,, then the function fi— (A — Xo)*To2(f1) extends € at fip.

(b2) If Ao € Ny, U (NZQ’” \N) then the function fi — (A — Xg)To2(ft) extends € at fig.
(b3) If Ao € N<Tl \ N then Ton, (1) extends € at fig.

We are now in position to conclude the proof of Corollary B.

Proof of Corollary B. In the analytic setting (see Remark 1.8) we know by Proposition 2.9 that the
coefficients A;; and Tj; listed in Theorem A are analytic on ((0,+00) \ Df;) x W and ((0,+00) \ DY;) x W,
respectively. The fact that each A;; is meromorphic on W = (0, +00) x W with poles of order at most
two along D?j x W follows by realising that in the analytic setting the statement of Proposition 3.2 is
true replacing ¢°° by €, i.e., that the extensions are analytic. Indeed, the proof of this analytic version is
literally the same but appealing to the analytic assertions in Theorem B.1 instead of the smooth counterparts.
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More specifically, using (d) in the place of (a) and (c). Similarly, the fact that each T;; is meromorphic on
W = (0,+00) x W with poles of order at most two along D} x W follows by noting that in the analytic
setting the statements of Propositions 3.3, 3.4, 3.5 and 3.6 are true replacing > by ¢*. In this case, besides
appealing to (d) in Theorem B.1 in the place of (a) and (c¢), we apply the analytic versions of Corollary B.4
and Lemma B.5, i.e., taking w = w instead of w = oo. This completes the proof of the result. [ |

4 First monomials in the asymptotic developments

Theorem A is the main result of the present paper and it is intended to be applied in combination with
Theorem 1.6 (which in fact gathers our main results in [23]). Because of this, in order to ease the applicability,
we next particularise Theorem 1.6 to specify the first monomials appearing in the asymptotic development of
the Dulac map, see Theorem 4.1, and the Dulac time, see Theorem 4.3, for arbitrary hyperbolicity ratio \g.
In both statements, the order L ranges in a certain interval depending on Ag. The left endpoint of this
interval is only given for completeness to guarantee that none of the monomials in the principal part can
be included in the remainder.

Theorem 4.1. Let D(s; i) be the Dulac map of the hyperbolic saddle (1) from %y and %,.
(1) If Ao < 1 then D(s; 1) = Ago(f1)s* + Ao1 (1) s** + F2({Ao} x W) for any L € [2X0, min(3Xo, 1 + Ao)).
(2) If Ao = 1 then D(s; i) = Ago(1)s* + AL (w; 1) s + F2({ N} x W) for any L € [2,3), where
A (wi 1) = Avo(f1) + Aor () (1 + aw),
a=1-Xandw=w(s;a).

(3) If Ao > 1 then D(s; i) = DNoo(f1)s™ +A1o (1) sM 1+ Fp2({Ao} x W) for any L € [Ao+1, min(24 g, 2X0)).

Proof. (1) We begin by showing that the assumptions on \g and L imply '%?\O,L—/\o = {(0,0),(0,1)}. Let
us prove first that L < min(3Xo, 1 + Ao) implies 3 ;€ {(0,0),(0,1)}. Indeed, we claim that if
(i,7) € Ao\ {(0,0),(0,1)} then (i,5) ¢ ‘@AO,L—AO’ ie, i+ Agj > L — Xg. It is clear that the claim will
follow once we prove its validity for (i,5) = (0,2) and (i,7) = (1,0). For the first case observe that
2Xo > L — Ao holds because L < 3\ and, for the second one, 1 > L — A\g holds due to L < 1+ Ag. One
can verify similarly that the reverse inclusion %E}\O L2 2 1(0,0),(0,1)} is guaranteed by 2o < L.

Let us show next that Ao < 1 implies Ao ¢ DY _ - To prove this we use firstly that D, U DY, =N by
Remark 1.7, so that Ao ¢ Dy U Dg,;. Secondly, see Definition 1.5, we use that Ao € DY _ 1f and only if
there exists (i,7) € ‘@Ao e such that Ao € D”, which is not possible since %Ao Lox, = 1(0,0),(0,1)}

and \g ¢ DJ,UD,. Hence Ao ¢ DY _ A, and the asymptotic development follows by (al) in Theorem 1.6.

(2) Exactly as we did in the previous case, Ao = 1 and L € [2,3) yields &3 ; _, = {(0,0),(1,0),(0,1)}.

This implies, due to \g = 1 € DY, = N by Remark 1.7, that \o € DL_/\O Then, by (a2) in Theorem 1.6,
D(s; 1) = Doo(f1)s™ + A (w; 1)s" ™ + F2({ Ao} x W)

with w = w(s;a), @ = 1— X and A (w; 1) = Z:,:O Ay yp04rg (1) (1 +0w)” = Ayo(i) + Ao1 (£) (1 + aw)
because, see Definition 1.5, </, = {0,1}, &}y, = 0 and o/, = {0}.
(3) Similarly as we argue in (1), in this case the assumptions on Ao and L imply &3 ;_, = {(0,0),(1,0)}.

Then, since Dy U DYy = & and Ao > 1, it turns out that Ag ¢ D?_, and thus the asymptotic
development in the statement follows by (al) of Theorem 1.6.

This proves the validity of the result. [ ]
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Example 4.2. By Theorem 4.1, if A\g = 1 then D(s; i) = Ago(j1)s™ + AN (w; 1)s T + Fe2({ Ao} x W) for
any L € [2,3), where

A (w; 1) = Ao (1) + Doa () (1 + ow),
a=1-Xand w = w(s; ). The order of monomials in the principal part as s — 0 is s* <y, s'T*w <, s'*,
see [23, Definition 1.7] for details. The coefficient of s* at jig = (1, o) follows directly by evaluating the
expression of A given in assertion (b) of Theorem A. The subsequent coefficient is the one of s'**w and,
by applying (b) in Proposition 3.2 with ¢ = 1, its expression at jig = (1, o) is equal to

2
lim (1~ A)Aos () = W0 01 )

A= fro L2 (0’210) a=po"

Moreover some easy computations on account of the definitions given in (2) show that
o) ) Py
/ —
M5(0) =01 <P1>(0 0)0, <P1>(0 0) +812(P )(0 0).
Let us also remark that, more generally, one can compute all the derivatives of L;(u), M;

(u
and Cj(u) at w =0, for i = 1,2, in terms of the derivatives of P;(z,y) and Py(z,y) at (z,y) =

The second part of Theorem 1.6 provides the asymptotic expansion of the Dulac time associated to a
vector field (1) having poles of arbitrary order n = (ny,n2) € Z2,. In Theorem 4.3 we restrict ourselves to
the case n; = 0 and ny > 1 for several reasons. Firstly, for the sake of simplicity in the exposition, since
dealing with the general situation will increase very much the number of cases to consider. Secondly because
the study of the Dulac time of a hyperbolic saddle at infinity of any polynomial vector field of degree d
yields to the case n; = 0 and no = d — 1. Thirdly, and more important for us, because it allows to tackle the
conjectural bifurcation diagram of the period function of the quadratic centers that we undertook in [19].

Theorem 4.3. Assuming ny = 0 and ng > 1, let T(s; 1) be the Dulac time of the hyperbolic saddle (1)
from X1 and 3.

(1) If Ao € (0, 7257) then T(s; i) = Too(ft) + Ton, ()™ + To,ny 11 ()™ + F2({Ao} x W) for any
L € [Ao(n2 + 1),min(1, Ag(n2 + 2))).

(2) If 2o € (s mrr) \ {55} then
T(s3 1) = Too(A) + Tons ()8 + Tro(f1)s + Tony+1(2)s* "D + FE2({Ao} x W)
for any L € [max(1, Ag(nz + 1), min(2, Aona + 1, Ag(n2 + 2))).

(3) If Mo € (27, %) then T(s; i) = Too () + Tao(f1)s + Ton, (1)s™"2 + Tao()s* + Fi2({ Ao} X W) for any
L € [max(2, A\gna), Agnz + min(1, Ag)).

(4) If o > n% then T (s; ) = Too(ft) + Tro (1) s + Tao () s* + F°({ Ao} X W) for any L € [2,min(3, Agnz)).

(5) If ho = 7 then T(s; 1) = Too(ft) + Ton, ()52 + sT3S (w3 1) + F£2({ Ao} x W) for any L € [1, 2242),
where

Ti\g(w;u) Tio(f2) + Tony+1(f2)(1 + aw),
a=1-Anz+1) and w = w(s;a).

(6) If Ao = = with ng > 1 then T(s; 1) = Too () + ST (w3 1) + To.my41 ()24 + Fpo({Xo} x W) for
any L € [”2+1, ”i;rQ), where

T8 (w; 1) = Tro(f1) + Tony (1) (1 + aw),

a=1-2Ang and w = w(s; o).
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(7) If Mo = 727 withny > 1 then T(s; 1) = Too(f1) + Tao(f1)s + Ton, ()52 + 52 T8 (w; 1) + F5° ({Xo} x W)

for any L € [27 min (%f;ff", 37:’22fll )), where

Tg\(o)(wv.[l’) TQO( )+TO n2+1( )(1 +aw) )

d

d=gcd(2,n2+ 1), a= and w = w(s; ).

(8) If \o = 1 and ny = 1 then T(s; i) = Too(f1) + sT18(w; 1) 4+ s2T53 (w; 1) + F2({ Ao} x W) for any
L €[2,3), where

T;\O ZT’“ i )1+ aw)?, forr=1,2,

a=1-Xand w=w(s;a).

(9) 1FXo = 35 then T(ss jo) = Too 1)+ Tao(1)s-+*Taf (w3 )+ F 1 ({Ao} x W) for any L € [2,min (3,2457)),
where
TS (w; 1) = Tao(ft) + Ton, () (1 + aw)?,

d = ged(2,n2), a = % and w = w(s; a).

Proof. The asymptotic developments in (1), (2), (3) and (4) will follow by applying (b1) in Theorem 1.6
once we determine the grids %) ; and show that, under the respective assumptions on Ag and L, we have
Ao ¢ D}. Next we particularise the arguments leading to this in each case:

(1) In this case the hypothesis Ag(n2+1) < L < min(1, Ao(n2+2)) yield £% ; = {(0,0), (0,n2), (0,n2+1)}.
For instance let us show that L < min(1, Ado(n2 + 2)) implies £} ; C {(0,0),(0,n2),(0,n2 + 1)}. To
prove this it suffices to check that (1,0) and (0,n2 + 2) do not belong to %% ;, which is indeed a
consequence of L < 1 and L < Ag(n2 + 2), respectively. The reverse inclusion D follows similarly
taking Ag(ne + 1) < L into account. Since the assumption g € (0, ﬁ) and Remark 1.7 imply that

Ao ¢ DU DG, UDg, .1 =0U n% U (25 UN), we can assert that Ao ¢ D7.

no+1
(2) In this case it turns out that max(1, Ag(ne+1) < L < min(2, A\gna + 1, Ag(n2 + 2)) implies that the grid
is given by #3 ; = {(0,0),(0,n2),(1,0),(0,n2 + 1)}. For instance, to show the inclusion C is enough
to verify that (2,0), (1,n2) and (0,n2 + 2) do not belong to %} ;, which is a consequence of L < 2,
L < 1+Xgng and L < Ag(n2+2), respectively. That being said, we know by Remark 1.7 that D, = Bl

na’

D7y = @ and Dy ,,, 11 = % UN. Thus, on account of the assumption A\ € (ﬁ, m%rl)\{n%}’ we
get Ao ¢ Dgy U Dg,,, U DYy U Dy, 1. Hence, see Definition 1.5, Ao ¢ D7.

(3) If max(2,n2A0) < L <min(Aonz + 1, Ao(n2 +1)) then B ; = {(0,0),(1,0),(2,0), (0,n2)}. Indeed, the
lower bound gives the inclusion D . To prove the inclusion C it suffices to check that (3,0), (1,n2) and
(0,m2 4+ 1) do not belong to #Y, 1» which is a consequence of L < 3, L < 1+ Agnz and L < Ao(ne + 1),
respectively. These three inequalities follow by the assumption L < min(Agng + 1, Ag(ne + 1)) together

with the fact that A\gne < 2 due to A\g € (n T nz ). This last condition, taking Remark 1.7 also into

account, implies Ao ¢ Dy U DYy U D, U D3y = 0 U — U - and then Ao ¢ D7.

n2

(4) Similarly as in the previous cases, if 2 < L < min(3, Agnz) then Y ;= {(0,0),(1,0), (2, )} Moreover,
by Remark 1.7 and the hypothesis Ao > =, we get Ao ¢ Dy U D7 U D5y = QU N> Uy
n2 n2

Ao ¢ D7

. Therefore

The remaining assertions follow by applying (62) in Theorem 1.6. To this end we need to verify that Ay € D}

and determine the grid %Y | together with the corresponding sets <7, . As before we next particularise
05 J

this in each case:
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(5)

If \o = ﬁ and 1 < L <1+ =7 then &5 ; = {(0,0),(0,n2),(0,n2 +1),(1,0)}. Indeed, to show
the inclusion C it suﬂices to check that (1, ng) (0,n2 4+ 2) and (2, ()) do not belong to #% ;, which is
equivalent to L < 14+ Agng = 1+ e +1’ L <Xma+2) =1+ and L < 2, respectively. These
three conditions are a consequence of the assumption L < 1 + +1 With regard to the inclusion D,
the fact that (0,0), (0,n2), (0,n2+1) and (1,0) belong to 93/\0’L is written as L > 0, L > Aona = 47,
L > M(na+1) =1 and L > 1, respectively, Which are guaranteed by the assumption L > 1. Since,
on the other hand, A\g = € D1 = by Remark 1.7, it turns out that \g € D7, see
Definition 1.5.

Finally the result follows, see Definition 1.5 again, using that </, = {0,1}, &5, = 5, = 10}

and ', 01y, = = (), together with p =1 and ¢ = ny + 1, so that a =1 — A(ng + 1).

n+1

1
na+1 n2+1

If \g = n—z with ny > 1 and "fl—jl <L < "i—? then, just as we argue in the previous cases, we
get that &% ; = {(0,0),(1,0),(0,n2),(0,n2 + 1)}. Furthermore, since Ao = n% e DYy = S by
il noy

Remark 1.7, it turns out that A\g € D7. On account of this the result follows using that o/, = {0,1},
Dong = Domat10, = 10} and &,y = 0, together with the fact that a = 1 — Ana, which in turn
follows due to p =1 and g = nas.

If \g = ﬁ with no > 1 and 2 < L < min (27;‘221147 3:22111) then

;\’Lo,L = {(07 0)7 (1’ O)a (07n2)7 (2’ 0)7 (07n2 + 1)}

As usual, the inequality L < min (i?;jf, %) gives the inclusion C, in this case by showing that

(3,0), (1, n2), (0 ng + 2) ¢ f@f\bo » Whereas the inequality 2 < L implies the reverse inclusion D. Hence,
s +1 € Dy by Remark 1.7, we conclude that Ao € D}. On the other hand, due to
ng > 1, one can verlfy that 42{00/\ = or0 = Domarne = 10} Dinyi10, = 0 and 3, = {0, d}, where
d = ged(2,n2 + 1). Since p = d and ¢ = ”2'*'1, the last equality yields

since \g =

T (wii) = D Ty oz e, () (1+0w)" = Too(@) + Tomg1 (1) (14 aw)”,
re{0,d}

where w = w(s;a) and a =

%. This proves the validity of the statement.

If \p =1, no=1and 2 < L < 3 then one can readily show that

‘%QO,L = {(O,O)v (1v 0)7 (07 1)v (2’0)7 (13 1)’ (07 2)}

On account of this, since A\g = 1 € D§; = N by Remark 1.7 due ton = (0, 1), we can assert that A\g € D7.
In this case one can easily verify that o7j, = {0}, iy, = Fsy, = iy, = 05 “hy, = {0,1} and
o5, = 10,1,2}. Since p = ¢ = 1, the two last equalities show, respectively,

Ti‘g ZTT il 1+ aw)’, for r = 1,2,

where a =1 — X and w = w(s; ).

If \g = l and 2 < L < min(3,2+ n%) then #} ;= {(0,0),(1,0),(2,0),(0,n2)}. Consequently, due to
Ao = E G Dg,, = % by Remark 1.7, we have \g € D}. Moreover o/, = 5y, = {0}, ;.\, =0

and o, = {0,d} with d = ged(2, ng). Since p = 2 and ¢ = 22, from the last equality it follows that

Ty (wii) = > Ty 2 me (@) (1+aw)” = Tao(ft) + Ton (1) (14 aw)”,
re{0,d}
where w = w(s; ) and a = 22312,
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Figure 4: Going upward from each abscissa A\ € (0, +00), order of monomials
SH—)\j as s — 0" and A\ = Ao for (’Lm]) € {(07O)a (1a0)7 <2a0)a (07712), (07n2 + 1>}

This concludes the proof of the result. [ ]

Let us finish this section by pointing out that the formula of every coefficient 7;; appearing in Theorem 4.3
is given in assertion (c) of Theorem A, except for T7; in point (8), that corresponds to A\g = ne = 1. The
formula of this coefficient follows by applying also assertions (a) and (b), which show that 711 = Q1971 and
Q19 = AS;. Also with regard to this statement, it is worth noting that the order as s — 07 of the monomials
in points from (1) to (4) follow readily from Figure 4. For instance, 1 <y, s™2 <, s*"2F+D < "5 < s

for Ao € (0, ﬁ) and 1 <y, s22 <y, 5 <, s2 "2 HD <y 8% for \g € (mlJrl,n%), see [23, Definition 1.7] for
details. For A = )y = ﬁ, which corresponds to an intersection between two straight-lines in Figure 4,

the compensators come into play and we have 1 <y, s*2 <, sw(s;a) <y, 8 <, 2 With &« = 1 —A(na+1),
see point (5) in Theorem 4.3. This type of information is very relevant in order to apply [23, Theorem C]
to bound the number of critical periods or limit cycles that bifurcate from a hyperbolic polycycle.

A Derivatives of regular transition map and transition time
In this section we consider a family of vector fields of the form

Y, (02 + yh(z,y;v)0y), (42)

"yl ()

where

e (€ Z and v € U, where U is some open set of RV,
o f,h e €K (VxU) with V:= (a,b)x(—c,c) CR? a < band c >0,
o f(x,0;v)#0 for all x € (a,b) and v € U.
We also consider two €% families of transverse sections £(-;v): (—e,e) — Iy and (-;v): (—¢g,e) — Iy

to the straight line {y = 0}, i.e., verifying £2(0) = (2(0) = 0 together with &5(0) # 0 and ¢4(0) # 0. Our goal
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is to give the first non-trivial terms of the transition map P(-;v) and the transition time T'(-;v) between
IT; and II5. More precisely, denoting by ¢(¢, po; ¥) the solution of Y;, with initial condition pg € V', we define
P(s;v) and T'(s;v) by means of ¢(T'(s),£(s)) = ((P(s)). The smoothness assumption for the results in this
appendix is K > 3.

In what follows ¢(t,po;v) denotes the solution of Z, := 0, + yh(x,y;v)0, with initial condition at
po = (x,y). It is clear that ¢(t,po;v) = (w +t,02(t, po; v)). With regard to the second component we prove
the next result:

x
Lemma A.l. Let us define H(x,y;v) = exp </ h(u, 0; V)du). Then the following hold:
y

(a) Ora(t, (2,0)) =0 and 82,¢2(t, (x,0)) =0,
(b) Dya(t, (2,0)) = H(x +t,x) and 82,¢2(t, (x,0)) = H(zx +t,z) (h(z +,0) — h(z,0)),
(¢) 02,¢a(t, (2,0)) = 2H(z + t,2) [} H(x +v,2)dh(z + v,0)dv.

Proof. On account of d;¢2(t, (z,y)) = ¢2(t, (z,y))h(z + t,2(t, (z,y))) and ¢2(t, (z,0)) = 0 we obtain

y)
010 ¢2(t, (2,0)) = h(z +¢,0)0:¢2(t, (x,0)).

Since 0, ¢2(0, (x,0)) = 0 due to ¢2(0, (z,y)) =y, we get Oz p2(t, (x,0)) = 0. Accordingly 97, d2(t, (z,0)) =
and this shows (a). Similarly we obtam 010y (t, (x,0)) = h(xz +t,0)0,02(t, (x,0)) and ay¢2( (2,0)) =
Consequently

Dy s (. (,0)) = exp ( /0 Ch O)du> — H(z+t,2) (43)

and

8_Ly¢2( (2,0)) = exp (/ h(z + u,0) du) / Oh(z +u,0)du = H(z + t,z) (h(z +t,0) — h(z,0)),
which shows the validity of (b). Finally, using that

005, 62(1, (2,0)) = 3, (e +1.0(t, (2.1))o (0. (2. 0)) |
= 205h(x +,0)(9yda(t, (2,0)))* + h(z +t,0)0;, ¢2(t, (x,0)),
together with 82, ¢2(0, (x,0)) = 0 and (43), we get

8§y¢2(t, (z,0)) = 2exp (/Ot h(z + u, O)du) /Ot exp (/OU h(z + u, 0)du> Ooh(z + v,0)dv.

Taking (43) into account once again, the above equality shows (¢) and concludes the proof of the result. B

Let us remark that in the previous result (and in what follows when there is no risk of ambiguity) we
omit the dependence with respect to the parameter v for the sake of shortness. Note on the other hand that
the solution ¢(t,&(s)) of Y, is inside {y = ¢a(z — &1(s),&(s))}. Thus, in order to obtain the first coefficients
of the Taylor expansion of T'(s) and P(s) at s = 0, we compute first the ones of

s+ Qx, s;v):= ¢ (m —&(s;v),&(s;v); 1/).
This is done in the next result, where H(z,y) = exp (f; h(u, O)alu)7 see Lemma A.1, and we use the compact

notation &, = §i(k) (0) for i =1,2.
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Lemma A.2. The function Q(x,s;v) is €% on (a,b) x (—e,e) x U. Moreover it verifies Q(z,0;v) = 0,
p1(@;v) = 0, 0;v) = &1 H(x, §10) and

pa(x;v) = 02,0z, 0;v) = H(x,&10) <§22 —2611€217(£10,0) + 2531/5 H(u, 510)3271(“70)6116) .

Proof. The fact that  is €% on (a,b) x (—¢,e) x U follows from the smooth dependence of solutions with
respect to initial conditions and parameters (see for instance [9, Theorem 1.1]) and that Q(z,0;v) = 0 is
due to the invariance of the straight line {y = 0}.

Since ¢(t, (z,y)) is the solution of Z, with initial condition at (x,y), in order to to avoid any ambiguity
we consider (z, s) = ¢a(z—£&1(s),&(s)) and so we keep the notation d;, 0, and 9, for the partial derivatives
of ¢2(t, (z,y)). In doing so we obtain

p1(z) = Os02(2 — &1(5),£(s)) ’s:O = — Oypa(z — &1(5),&(5))€1(s)
+ Oupa(z — &1(5), £(5))€1(5) + Oyda(z — &1(5), £(5))&(5)| =g
= — 2z — &1(5),£(5)) (2, d2(2 — &1(5), &(5))) €1 (s)
+02h2(z — &1(5), £(5))€1(5) + Oyd2(z — &1(5), £(5))&(8) (=g (44)
=& H(z,614),
where in the third equality we use that ¢ is the flow of Z,, = 0, + yh(x,y;v)0, and in the fourth one that

d2(z — £1(0),£(0)) = 0 due to &2(0) = 0, together with d,¢2(¢, (z,0)) = 0 and Oy ¢2(t, (2,0)) = H(z + ¢, x),
as established by Lemma A.1.

Next we proceed with the computation of py(z). With this aim in view note that, from (44),

pa(z) = 02,02(2 — €1(5), €(5))| ;g = — €1111(2,0)0562 (2 — &1(5),&(5)) + €11050:02(2 — €1(5), £(5))

+ 0,(0,02(2 — &1(5). £(5)a(5)) (45)

s=0 '

By applying Lemma A.1, some computations show that

050,02(2 — £1(5),£(5))| o = &11 ( — 00,02 + a£w¢2) (2 = &10, (£10,0)) + 5215;1,(1)2(2 — &10, (£10,0))
= 521H(Z’ 510)(}1,(2’, O) - h(§107 0))

and

050y (2 — &1(5),€(5))|,—o = &11 ( — 010y 2 + 5§y¢2) (2 = &10, (€10,0)) + €105, 02(2 — 10, (€10, 0))

= I’I(Z7 510) <_§11h(€107 0) + 2521 H(u, flo)agh(u, O)du> .

&10

Since 952 (2 — &1(s),€(s)) ’5:0 = 0yd2(z — £1(0),£(0))€5(0) = &1 H(z,&10) by Lemma A.1 once again, the
substitution of the two previous identities in (45) yields

z

p2(z) = H(z,&10) (522 — 261161 0(&10, 0) + 265, H(u,&10)02h(u, O)du) ;

510
as desired. Hence the result is proved. [ |
We are now in position to give the two first non-trivial coefficients of the transition map P(-;v) and the

transition time T'(-;v) between IT; and IIp. In this regard it is to be quoted a previous result by Chicone
(see [8, Theorem 2.2]), where it is given the expression of 9sP(0;v) for vector fields in general position,
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i.e., not assuming that the straight line {y = 0} is invariant. He also gives the formula of 9,7°(0;v) in
the case that ¢ = 0. More recently, explicit formulas of 9;P(0;v) and also 955 P(0;v) for vector fields in
general position are given in [16, Theorem 4.2]. The proofs in [8, 16] are based on Diliberto’s theorem on
the integration of the homogeneous variational equations of a plane autonomous differential system in terms
of geometric quantities along a given trajectory. (Similar results for the transition map can be found in
the book of Andronov et al. [1].) In our next lemma, besides these coefficients, we also give the second
coefficient of the transition time, which to the best of our knowledge constitutes a new result. The lemma
is in fact an upgrade of [23, Lemma 2.4], where we study the regularity properties of these maps without
giving the expression of the coefficients. In the statement for the sake of shortness we use the compact
notation & = fl-(k)(O) and (;, = CZ-(k) (0), i = 1,2, for the derivatives of the parametrization of the transverse
sections. We also remark that the functions p; and p appearing in these coefficients are the ones given in
Lemma A.2.

Lemma A.3. Let P(s;v) and T(s;v) be respectively the transition map and transition time of the flow
given by (42) between the transverse sections £(-;v): (—e,e) —> I; and {(-;v): (—¢,e) — T3 to {y = 0}.
Then the following hold:

(a) The function P(s;v) is €% on ((—e,e) x U). Moreover P(0;v) =0,
B L &n C1o
p1(v):= 0, P(0;v) = o exp h(u,0)du
21 10

and

(2¢11¢21h(C10,0) — Ca2)pT + p2(Cr0)
a1

pa(v)= %P (0;v) =

CIO
(b) T(s;v) = s'T(s;v) with T € €K1 ((—e,e) x U) wverifying T(0;v) = / Pl (x) f(z,0)dz and
510

05T(0;v) = G11¢s1pi ™ £(C10,0) — €115, £ (€10, 0)
Clo
g [ @ (trel)f.0) + 26002 (2,0)) dr
Moreover if £ =0 then T € €% ((—e,e) x U) and

92,T(0;v) = (G2} + C11p2) f(Cr0,0) + (F1pi01 f(C10,0) + 2¢11¢o1p702 f (€10, 0)

— €12 (€10,0) — &101 f(€10,0) — 261162102 f (€10, 0)
C10
4 [ ()08 ,0) + pa(0)92 (2,0)) d

Proof. The assertion concerning the smoothness of P(s;v) follows by the smooth dependence of solutions
with respect to initial conditions and parameters and the application of the implicit function theorem (see
for instance [9, Theorem 1.1]). Note on the other hand that, by definition, ¢(7T'(s),&(s)) = ((P(s)) where
©(t, po) is solution of Y, with initial condition py € V. Since Z,, = y*f(z,y;v)Y, = 0, +yh(x,y)d,, it follows
that
C2(P(s)) = ¢2(C1(P(s)) = &i(s),€(s5)) = (G (P(s)), ),
where ¢(t, (z,y)) = (t + z, p2(t, (x,y)) is the flow of Z, and, by definition, Q(z,s) = ¢2(x — £1(),E(s)).
Accordingly
G(P(s))P'(s) = 019(C1(P(5)), 8) G (P(5))P'(5) + 02 Q2(CL(P(5)), 5),
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which, evaluated at s = 0 and applying Lemma A.2, gives (21 P’'(0) = 922((10,0) = p1(C10) = €21 H (C10,€10)-
Therefore p; = P'(0) = %H (10, &10), as desired. By computing an additional derivative with respect to s
in the above equality and evaluating at s = 0 afterwards we get

CoopT + (21 P (0) = 207,2(C10, 0)Ci1p1 + 9352(Ci0,0) = 21 (C10) (G105 0)Ciapr + p2(Cao),

where we apply Lemma A.2 and take pf((10) = £2101H (C10:610) = €21.H (10, €10)7(C10,0) = C21p17(C10,0)
into account. Consequently,

2¢11¢21h(C10,0) — Ca2) T + p2(Cro)
C21

and this proves (a). Let us turn now to the proof of the assertions in (b). With this aim we note first that
the transition time between II; and IIs has the following integral expression

P//(O) =py = (

C1(P(s)) .
T(s) /g() Q(x, s)" f(x, 2z, s))dz.

By Lemma A.2 we know that  is a €% function such that Q(z,0) = 0 and 929(x,0) = p1(x). Hence,
the application of Lemma 2.1 shows that Q(z,s) = s(p1(z) + R(z,s)) for some €%~ function R with
R(x,0) = 0. Accordingly T'(s) = s*T(s) with
B CL(P(s)) )
(5= [ (o) + Rlw9) o, e, 9)d
£1(s)

Then, since p; does not vanish, by a well-known result on the regularity properties of integrals depending

on parameters (see [34, page 411]) it follows that T is €*<~! as well. Let us compute now 7°(0) and 7"(0).

This is easy for the first one because T'(0) = ;1100 pi(z)f(z,0)dr. Concerning the second one we note that

- C10
T'(0) = p{(C10) £ (C10,0)C11p1 — P (€10) F (€105 0)énn +/ Pt () (;Kpg(x)f(x, 0) + azf(x,O)p%(x)) dx.

Here we use that, thanks to Lemma A.2, 9;R(z,0) = $02,Q2(z,0) = 1ps(x). Now, taking p1(&10) = &o1
and p1(C10) = (21p1 into account, one can verify that the above expression is equal to the one given in the
statement. Hence it only remains to prove the assertions concerning the case ¢ = 0. The fact that if £ =0
then T is €% follows from the regularity properties of integrals depending on parameters that we mention
above. With regard to the expression of 7" (0) we note that if £ = 0 then

T'(s) =f (QL(P(s)), G (P(s)), 5))CL(P(5)) P’ (5) — f(&1(5), 2&1(5), 5)) €1 (5)

Ci1(P(s))
+ / 0o f (2, Q(z, 5))02Q(x, s)dx.
&1(s)

Accordingly, since 9;2(z,0) = 0, 32Q(x,0) = p1(x) and 93,Q(x,0) = pa(x), some easy computations give

T"(0) = 91 f(¢10,0)¢HpT + 202.£ (C10,0)p1(C10)C11p1 + (C10,0) (G127 + 2C11p2)
— 01f(£10,0)&71 — 205 (£10,0)p1(€10)&11 — f (€10, 0)E12

+/<1° (aézf(x,o)pf(x) +p2(x)a2f(x70))dm.

Finally the substitution of p1(£10) = €21 and p1(C10) = C21p1 yields to the expression of T"(0) given in the
statement. This concludes the proof of the result. [ ]
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B An incomplete Mellin transform

In this appendix we introduce a sort of incomplete Mellin transform that is a key tool for giving a closed
expression for the coefficients of the first monomials in the asymptotic expansion of the Dulac map and
Dulac time. In short, given o« € R\ Z>( and a smooth function f(x) on an open interval I that contains
x = 0, we consider the singular scalar differential equation

zy —ay = f(x).

It turns out that this differential equation has for each o a unique solution y = f(«a,z) which is smooth
on I. As we will see, the fact that 0 € I turns out to be crucial for the uniqueness. The idea is to relate
this particular solution with the trajectories of the autonomous planar differential system

{ T =ux,

g =oy+ f(x),

that has a hyperbolic critical point at (0, —f(0)/a) being a saddle for & < 0 and a focus for a > 0. In
the saddle case, which is the simplest one, y = f(«, z) is no more than the graph of the stable separatrix.
This is in fact the idea in the proof of our next result, which is a little more complicated than it should be
because in our applications f depends on parameters and we need good regularity properties of the solution
with respect to a and these parameters as well. For that purpose we apply the so-called center-stable
manifold theorem (see for instance [14, Theorem 1]) but instead one may use the parametrization method
for invariant manifolds (see [6, 7]).

Theorem B.1. Let us consider an open interval I of R containing x = 0 and an open subset U of RN .
(a) Given f(z;v) € €(I x U), there exits a unique f(o,z;v) € €°((R\ Zso) x I x U) such that

20, f(, z;v) — af(a,z;v) = f(a;v). (46)
(b) If z € I\ {0} then 8,(f (e, x;v)|x|~*) = f(x; u)@ and, taking any k € Z>o with k > «,

(0 v s
Flaaiv) = 32 Sl Ot jafe [ (f(siv) = T s) o (n

i=0
where T¥ f(z;v) = Zf:o %5‘;]”(0; v)z® is the k-th degree Taylor polynomial of f(x;v) at x = 0.

(¢) For each (ig,zo,v0) € Z>o x I x W the function (o, z,v) = (io —a)f(a, x;v) extends € at (ig, To, Vo)
and, moreover, it tends to %8;0 (0;v9)zy’ as (o, z,v) — (g, To, Vo).

(d) If f(z;v) is analytic on I x U then f(a,x;l/) is analytic on (R\ Zx¢) x I x U. Finally, for each

(v, 0, 10) € Z>o x I x U the function (o, z,v) — (ap — &) f(a, z; v) extends analytically to (o, To, o).

Proof. The plan to prove (a) is the following. The uniqueness will be proved firstly. We will show, secondly,
the existence for @ < 0 and, thirdly, the existence for @ > 0.

To prove the uniqueness let us suppose that, for some a ¢ Zx>, the differential equation zy’'—ay = f(x;v)
has two solutions, y = f1(o, z;v) and y = fo(o, x;v), that are ¥ on (R\ Z>o) x I x U. Then f; — fa is a
smooth function that verifies the homogeneous linear differential equation xy’ — ay = 0 which, in the case
that o ¢ Z>g, has y = 0 as unique € solution passing through = = 0. Consequently fi = fs, as desired.

Let us prove now the existence for the case @ < 0. To this end, related with the scalar differential
equation in (46), note that the planar vector field 9, + (ay + f(z;v))0d, has, for each fixed o < 0 and

44



v € U, a hyperbolic saddle at (0,—f(0;v)/a) with a non-vertical stable separatrix. In order to study its
regularity with respect to the parameters we consider the augmented system

T=u,
y=oy+ flz;v),
a =0,
v=0.

For each fixed oy € (—00,0) and vy € U, the application of [14, Theorem 1] shows that for every k € N
there exists a local center-stable manifold W at (0, —f£(0; ) /v, avg, 1) that is written as y = foe (e, z; 1)
where floe is a €* function in a neighbourhood V of (0,0, 1p). In this context, contrary to what happens
in general, it turns out that the center-stable manifold is unique, which implies that fgoc is € (see [27, p.
165]). That being said, we assume without lost of generality that V is a cube with center (ag,0,1p) and
edge length 4e. Then for the points in the strip S = {(o, z,v) : € I and («,0,v) € V} we define

<floc(a &, V / f S; V a) fxeln (0,+OO),

f(a, Tyv)i= ﬁoc(av 0;v) ifx=0, (48)

v d

(—x)” (floc( —g;v)e “ + f(s;u)(—s)ass) ifx € IN(—o0,0),
—€

which is clearly °° on S\ {x = 0}. An easy computation shows that the above function verifies the scalar

differential equation (46) for all (a,z,v) € S with z # 0. Hence, due to f(a,%e;v) = fioe(a, 2e; 1), by the
existence and umqueness theorem for solutions of differential equations (see [9, Theorem 1. 1] for instance)
we have that f|y = fioe and, consequently, f € €>(S). On account of the uniqueness of f proved firstly,
the arbitrariness of g € (—00,0) and vy € U shows that (48) provides a well defined ¥ function f(a, z; )
on (—00,0) x I x U. This proves the existence for the case a < 0.

Let us show next the existence for the case @ > 0. In what follows we shall use the more compact
notation /o (z; 1) = (e, z; ) omitting also the dependence on z and v when there is no risk of ambiguity.
Following this notation, some easy computations show that

1. If { =g+ h then Za = Go + fza, provided that g, and iLa exist.

2. If b(z;v) = Zf:o d;(v)zt and o ¢ {0,1,2,...,k} then /o (z;v) = Ek div) i,

=0 i—a
3. If U(z;v) = 2™ g(z; v) with m > a then Lo (2;v) = ™ Go—m(T; V).

That being said, let us fix an arbitrary m € N and note that, by applying Lemma 2.2, we can write

m—1
di(v)z' + " g(x;v),
=0

with d; € €°(U) and g € €°°(I x U). On account of this, since we have already proved the existence of fu
for a@ < 0, the three properties above imply the existence of f(a,z;v) € %w(((—m,m) \ Z>o) x I x U)

satisfying (46). Finally the arbitrariness of m € N and the uniqueness of f proved firstly imply that f (o, z;v)
is a well defined € function on (R \ Z>¢) x I x U verifying (46). This concludes the proof of (a).

Let us prove next the assertions in (b). The fact that the equality 8, (f(a,z;v)|z|=®) = f(z;v) ‘zl
holds for all z € I\ {0} follows easily from (46) by considering the cases > 0 and z < 0 separately. In
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order to prove (47) we note first that, thanks to Lemma 2.2, we can write f(z;v) —Tp* f(2;v) = 2*g(z;v)
with g € €>°(I x U). Taking this into account and performing the coordinate change s = tx we get

z d x d 1 dt
2] / (Fls) = T f(si0)s| 2% = Jafe / s*g(s; )]s 2 = o / =g (ten) .
0 s 0 s 0 t

We claim that this is a € function of (a, z,v) € (—o0, k) x I x U. To prove this we apply assertions (i), (¢)
and (g) in Lemma 2.4 to conclude that (t; o, z,v) = t* =2~ 1g(tz;v) belongs to F°((—o0,k—1—L)x I x U)
for any L € R. Consequently, if we fix any g € (—o0, k) and take L = M —1 then for any z¢ € I, vy € U,

K € Zso and v € ZY? with |v| < K there exist a compact nelghborhood Q of (ag,x0, ) and constants
C,tyo > 0 such that the absolute value of

oMI(th g (ta; v))
oV - - - OYNUNOYN+LOYN+2

o (tk*aflg(t:n; 1/)) =

is bounded by Ct* for all (o, x,v) € Q and t € (0,ty). It is clear on the other hand that there exists C’ > 0
such that 0¥ (tF=*~1g(tz;v))| < O’ for all (o, x,v) € Q and t € [tg, 1]. Accordingly |0” (t*=*"1g(tx;v))] is
bounded by an integrable function of ¢ € [0, 1] not depending on («, z, v). Hence, by applying the Dominated
Convergence Theorem (see [31, Theorem 11.30] and also [34, pp. 409-410]) we can assert that the function
(a,z,v) — fol th=eg(ta; l/)% is € on a neighbourhood of (ag, zg, 1/9). This proves the claim and shows in
particular that the function on the right hand side of the equality in (47) is written as

k—1 5; 1
9L f(0; ; . dt
Yo, zyv)i= ; sz + :ck/o th=ag(ta; 1/) for all z € T\ {0}.
Furthermore, on account of the claim, 1) € > (((—00,k) \ Zx0) x I x U). On the other hand, by applying
the integration by parts formula it follows easily that 9,9 — arp = f. Consequently

k—1

f(a,x; v) = Z z'(z(—7a)) / th=g(tx; 1/)% (49)

—; PO spale [ (s =7 s sl

—a)”

where the first equality is true for all (o, z,v) € ((—00,k) \ Z>o) X I x U by the uniqueness of f and the
second one holds only for « # 0 by the variable change s = tx. This completes the proof of (b).

In order to prove (c) let us fix (g, zo, %) € Z>o x I x U and take any k € Z> such that k > iy. Then
the equality in (49) shows that (a, z,v) = (ig — o) fo, 3 v) extends € at (ig, 2o, o) and, moreover, that
it tends to %8;0]”(0; vo)xy as (o, x,v) — (ig, To, 10)-

Let us turn finally to the proof of (d), so we assume henceforth that f(x;v) is analytic on I x U. Fix
any ap € R\ Z>¢ and vy € U. We claim that the singular differential equation zy’ — ay = f(z;v) has a
solution y = fioe(a, z;v) with fioe(a,0;v) = fé (0; ) that is analytic in a neighbourhood of («y, 0, 1)
inside (R\ Z>o) x I x U.

To prove the claim we consider the holomorphic extension (
(0,19) € CNFL and for each i € Zsq we define G;(o, z,v) == 2
function on (C\ Z>¢) x 2. We will see that

v) of f(z;v) in a neighbourhood € of

e F(O, ))xi, which is clearly a holomorphic

S(a, z,v) ZGaxu (50)

is a holomorphic function in a neighbourhood of (v, 0,v9) € (C\ Z>o) x Q. To this end we observe that:
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(¢) By Cauchy’s Estimates, see for instance [31], if |F(z,v)] < M for all (z,v) € Q with || < R and
|v —vg| < € then |0LF (0 v)| < B4

(i4) There exist d1,02 > 0 small enough such that if | — ag| < 61 then |i — «| > 5 for all i € Zxy.

Consequently |G;(a, z,v)| < % (%)l for all (o, z,v) € CN*2 with |z| < L < R, |[v—wp| < € and |a—ayp| < §;.
This shows that (50) converges uniformly in a neighbourhood of (ag,0,vp) € (C\ Z>g) x £2. On account
of this, and the fact that G;(c, z,v) is holomorphic on (C\ Zx¢) x 2 for all ¢ > 0, we can assert (see for
instance [17, Proposition 2|) that S(«,x,v) is holomorphic on (C\ Z>o) x Q. We have on the other hand
that 20,5 — aS = F because, by the uniform convergence again,

20:58(, z,v) — aS(a, x,v) = xz z'z—a il—azwxizzwxi:F(my).

ps (i — )

Therefore the claim follows taking floc(a, x;v) to be the restriction of S(«, z;v) to the real domain.

Suppose that floc(a,x; v) is analytic in some open cube V with center (g, 0,1) and edge length 4e.
Then from here we follow exactly the same approach as in the proof of (a), i.e., we define f(oz,:z:; v) in
S = {(a,z,v) : € I and (a,0,v) € V} by means of (48) and it turns out that f(a,z;v) is analytic
on S\ {z = 0}. Indeed, this follows from the analyticity of f(z;v) and that, on account of the previous
claim, (a,v) — floc(er, ££; 1) is analytic at (c, ). Then, exactly as for the regularity assertion in (a), by
the existence and uniqueness theorem for solutions of differential equations we have that f is an analytic
function on S. By the arbitrariness of vy € U and ag € R\ Z>¢, this shows that f(oz, x;v) is analytic on
(R\Zzo) x I xU.

In order to prove the second assertion in (d) we fix ag € Z>¢ and vy € U. Then the proof of the previous
claim shows that (o, z,v) — (o — o) f (@, z,v) is analytic at (g, zo, 1) for o = 0. To prove that this is
also true for any x¢ € I we argue exactly as before by using the extension defined in (48) and, for the sake
of shortness, it is left to the reader. This concludes the proof of the result. [ |

Remark B.2. There are some previous results related with the function f (o, z;v) defined in Theorem B.1
that should be referred here:

(¢) Bénoit uses in [2, p. 106] a transformation M, : C[[t]] — C][[t]] for every fixed o € Rs \ Z defined, for
each formal series f € C[[t]], by means of the differential equation —t-= M, (f) + aM,(f) = f. Hence,

)
by assertion (@) in Theorem B.1, if f € R][t]] is convergent then M, (f) —f(a,t).

(#9) If o < 0 then we can take k = 0 in (47) and get that
aw—x/f —for:v>0
Therefore if o > 0 then lim,_, o0 2 f(—a, z) coincides with the usual Mellin transform (see [10])
*° ds
— [ 19
0
(#31) Novikov introduces in [26] a truncated (the author calls it one-sided) Mellin transform as
1
u € Lj,, ((0,1]) — Au(a):= / s Lu(s)ds
0
and observe in this regard that .Zju(a) = 4(—a, 1) for a > 0.
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The formula in (47) enables to interpret f(a,z;v) as a sort of incomplete (and parametric) version of the
Mellin transform of f(x;v). As we have seen in the proof of Theorem B.1, (47) extends € to x = 0 by

f@w)=T§* flaw)

means of the expression (49) taking the ¢’*° function g(x;v) = 5

, see Lemma 2.2. O

The proof of the following two results is omitted because it is an easy application of Theorem B.1.

Corollary B.3. Consider an open interval I of R containing z = 0, an open subset U of RN and o € R\Zxo.
Then the following hold:

(a) If f(z;v) = g(x; v) + h(a;v) with g,h € €°(I x U) then f(o,x;v) = §(o, 5 v) + h(o, z;0).
(b) If f(z;v) = c(V)g(z;v) with g € € x U) and ¢ € €= (U) then f(o, x;v) = c(v)j(a, z;v).
(¢) If f(a;v) = a™g(x;v) with g € €°(I x U) and n € N then f(a, x;v) = 2"§(a — n, 23 v).

Q=

The next two results are equally valid in the smooth category 4> and the analytic category ¢“. For
simplicity in the exposition we write €% with the wild card w € {oco,w}.

Corollary B.4. Let us fix w € {oo,w} and consider an open interval I of R containing x = 0 and an open
subset U of RN. If f(z;v) € €%(I x U) and k1, k2,0 € R verify k1 # 0 and ig:= K100 + k2 € Z>o then,

for any (zo,v0) € I x U, the function (a,x,v) — (o — &) f(k1a + ko, x5 ) extends € at (ap, xo, Vo) and

it tends to mliola;of(o; vo)rly as (a,z,v) — (oo, o, ).

We conclude the present appendix by proving a technical lemma to be applied for studying the poles of
the coeflicients obtained in Theorem A.

Lemma B.5. Let us fir w € {oo,w} and consider an open interval I of R containing x = 0, an open
subset U of RN and a € R\ Zxq. Let M(x;v) and A(z;v) be €% functions on I x U and define

B(z;a,v):= A(z;v)M (o, z;v),

which is a €% function on Ix (R\ Z>o)xU by Theorem B.1. Finally let us take io,p,q € Z, with iy > 0
and ¢ # —1, and set i1:= qig — p and iz:= (¢ + 1)ig — p. The following assertions hold:

(a) If iy > 0 then, for any (zo,10) € I x U, the function (o, z,v) — (ig — @)2B((q¢ + 1) — p, x50, 1)
extends €% at (ig,xo, o) and it tends to

ziz M) (0;15) AU (0; 1)

as (a,z,v) = (ig, o, Vo).

(b) If iy < O then, for any (zo,v0) € I x U, the function (o, x,v) — (ip — a)B((q + 1)a — p,z;a,v)
extends €% at (ig,xo, o) and it tends to

Iéz 1o in M(]) (O;V())A(hij) (O;VO) i M('LO)(O,I/O) ~ .
_To : : . +p—1 A , T s by >0 ’
(q+1) ! > <J) J—io o io! (i1, w03 v0) as (a,x,v) = (io, To, o)

where the summation is zero in the case that i < 0.
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Proof. By applying Lemma 2.2 we can write M (x;v) = Zio Mxhrxi““g(x; v) with g € €= (IxU).

j=0
. 4 @ (00
Then the application of Corollary B.3 shows that M(a, T;v) = Z;‘O:o %

Consequently, on account of B(z; «,v):= A(z;v)M (o, z;v), we get that

2+ 2ot g(a —ig — 1, 2;0).

OG0 ) . .
B(z;a,v) = Z MmJA(x; V) + 2" N(z;a,v),
= U —a)

where we set N (z; o, v):= A(z;v)§(a—ip—1, z;v) for shortness. Observe that, since §(a—ig—1,x;v) is €%
along a = ig by Theorem B.1, so is N(z; o, v). Hence, by applying Corollary B.3 again with o/ = (¢+1)a—p
and v/ = (a, V),

; A1) (0
B((g+1)a—p,z;0,v) :ZM

e ] xjfl((q—kl)oz—p—j,x;u) —|—xi°+1]\7((q—|—l)a—p—i0—l,a:;a,y).
—~ 41(j — «
7=0

Thus multiplying by (ig — a)* on both sides of the above equality we get

. “ LNy V{€) 0;v) (10 — «
(in = @) B((a + Do~ prasa,r) =3 H 0 0 =0)
j=0

+ (o —a)kxiOHN((q—i-l)a—p—io - Lza,v). (51)

k ~ .
A((q +Da—p-— j,x;y)xj

In order to prove (a) we set k = 2 above, so that

N M (o) (- . )
(io — )*B((¢ + D)o — p, x50, ) = #(io —)A((g+ Do — p — i, 3 v) 2"
0-
do—1 1 (i ,
M@ (0: —a)? . .
+ ( ) (ZO. @) A((g+ Vo —p—j,z;v)a’
= Jj—a

+ (ig — a)Qxi°+1N((q +Da—p—ip— 1,250, V).

By Corollary B.4 this expressions shows that (o, z,v) — (ig — a)QB((q + Do — p,z;a,v) extends € at
(10, o, v0) for any (xg,v9) € I x U. Furthermore, since all the summands except the first one tend to zero
as (o, x,v) = (ig, o, ) by Corollary B.4 again,
im (io — )2 B((q + 1) — p, ;v) (52)
(o, @,v) = (i0,%0,v0)
M) (0; 1) ) ) . _
= #x%" lim (io — ) A((q + Vov — p — i, ;)

20+ (a,z,v)—(i0,0,v0)

provided that the limit on the right hand side exists. In order to compute it we apply Corollary B.4 once
again, with k1 = ¢+ 1 and ko = —p — i, to conclude that
xf)l AU (0; 1)

lim fl((q—f—l)a—p—io,x;u) =

; )
(e;z,v) = (40,%0,v0)

where we also take the assumption i1 = qig — p = K1lp + k2 € Z>( into account. Consequently, from (52),

) ploti M(io)(o.yo) A(il)(o. o)
lim io —a)’B((g+ 1)a —p,z;v) = =9 — ~
((XJ,V)—’(ioJoﬂfo)( 0 ) (((] ) P ) qg+1 ip! iq!
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and this proves (a). Let us turn next to the assertion in (b). In this case we set k =1 in (51) to obtain

. M) (0; ) . ) )
(io — )B((¢+ 1)a —p,a;a,v) = #A((q + Do — p — i, 3 v) 2™
0-
io—1 1 ( ,
M) (0: —a .
+ O 0= (g4 1a—p—joaiv)e?
= I J-a

+ (ip — a)xiOHZ\Af((q +a—p—iog— 1,250, 1/).

Note that the last summand on the right hand side is €% at (ig, o, o) by applying Theorem B.1 because
(g+ 1) —p—ip — 1a=i, =41 — 1 < 0 due to the hypothesis i; := gig — p < 0. It shows furthermore that
it tends to zero as (a,z,v) — (ig,Z0,). Exactly the same reason shows that the first summand is €%
at (ig, zo, Vo) and that it tends to %A(qio — P, To; 1/0) as (a, x,v) = (ig, o, Vo). Then, by applying
Corollary B.4 with k; = ¢+ 1 and ko = —p — j, the remaining summands on the right hand side also
extend €% at (ig, zo, vp) and

(i — @)B((q + o — p,z5v)

(ev,z,v)— (i0,w0,v0)

1 & 22 MOD0;00) A=) (0;00) i MU0 (0;1)
= l ) (] ) Alain — 7 ; )
g+1 Jz::o j—io  J! ) 0T ) (@io = p, 03 0)

Here we also use that x1ig + 2 = (¢+ 1)ip —p—j > 0 if and only if j < (¢+ 1)ig — p =:43. This proves (b)
and concludes the proof of the result. [ |
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