ON THE DISTRIBUTION OF THE ZEROS OF SOME POLYNOMIAL MAPS

$(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

JAUME LLIBRE ${ }^{1}$ AND CLAUDIA VALLS ${ }^{2}$

Abstract

Consider a map $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of degree (n, m) with $m \geq n$ and assume that it has $n m$ different real zeros. We study the distribution of these $n m$ zeros in the plane \mathbb{R}^{2} for $n=1,2,3$ and $m \leq 4$.

1. Introduction and statement of the main results

Consider two polynomials $P(x, y)$ and $Q(x, y)$ with real coefficients of degrees n and m respectively with $m \geq n$. Then we say that the polynomial $\operatorname{map}(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has degree (n, m). We assume that the map (P, Q) has exactly $n m$ different real zeros. The objective of the paper is to study the distribution of the $n m$ zeros of the map (P, Q) in the plane \mathbb{R}^{2} when $n=1,2,3$ and $m \leq 4$.

All the papers in the literature concerning the distribution of the zeroes of a polynomial map are for polynomial maps of one variable, see for instance $[1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19]$. As far as the authors are concerned this is the first time in the literature where the distribution of the zeros of a class of polynomial maps $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ in two variables is studied.

We introduce some definitions. Given a finite subset B of points of \mathbb{R}^{2}, we denote by $\hat{B}, \partial \hat{B}$ and $\# B$ its convex hull, the boundary of the convex hull, and its cardinal, respectively.

We denote by A the set of $n m$ zeros of the map (P, Q). Set $A_{0}=A$ and $A_{i+1}=A_{i} \cap \partial \widehat{A_{i}}$ for $i \geq 0$. Note that there exists a positive integer q such that $A_{q} \neq \emptyset$ and $A_{q+1}=\emptyset$.

We say that A has the distribution of zeros $\left(K_{0} ; K_{1} ; K_{2} ; \ldots ; K_{q}\right)$ if $K_{i}=\#\left(A_{i} \cap \partial \hat{A}_{i}\right)$. We say that A has the distribution of zeros $\left(K_{0} ; K_{1} ; K_{2} ; \ldots ; K_{r} ; *\right)$ if we do not specify the values of K_{i} for i between $r+1$ and q. We also say that the zeros of (P, Q) belonging to $A_{i} \cap \partial \hat{A}_{i}$ are on the i-th level.

The main result of this paper is the following.
Theorem 1. Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly nm different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.
(c) $(6),(4 ; 2)$ and $(3 ; 3)$ if $(n, m)=(2,3)$.
(d) $(8),(5 ; 3),(4 ; 4),(4 ; 3 ; 1)$ and $(3 ; 5)$ if $(n, m)=(2,4)$.
(e) $(9),(8 ; 1),(7 ; 2),(6 ; 3),(5 ; 4),(5 ; 3 ; 1),(4 ; 5) ;(4 ; 4 ; 1),(4 ; 3 ; 2),(3 ; 6),(3 ; 5 ; 1),(3 ; 4 ; 2)$ and $(3 ; 3 ; 3)$ if $(n, m)=(3,3)$.
(f) $(12),(11 ; 1),(10 ; 2),(9 ; 3),(8 ; 4),(8 ; 3 ; 1),(7 ; 5),(7 ; 4 ; 1),(7 ; 3 ; 2),(6 ; 6),(6 ; 5 ; 1),(6 ; 4 ; 2),(6 ; 3 ; 3)$, $(5 ; 7),(5 ; 6 ; 1),(5 ; 5 ; 2),(5 ; 4 ; 3),(5 ; 3 ; 4),(5 ; 3 ; 3 ; 1),(4 ; 8),(4 ; 7 ; 1),(4 ; 6 ; 2),(4 ; 5 ; 3),(4 ; 4 ; 4),(4 ; 4 ; 3 ; 1)$, $(4 ; 3 ; 5),(4 ; 3 ; 4 ; 1),(4 ; 3 ; 3 ; 2),(3 ; 9),(3 ; 8 ; 1),(3 ; 7 ; 2),(3 ; 6 ; 3),(3 ; 5 ; 4),(3 ; 5 ; 3 ; 1),(3 ; 4 ; 5),(3 ; 4 ; 4 ; 1)$, $(3 ; 4 ; 3 ; 2),(3 ; 3 ; 6),(3 ; 3 ; 5 ; 1),(3 ; 3 ; 4 ; 2),(3 ; 3 ; 3 ; 3)$ if $(n, m)=(3,4)$.

Moreover there exist examples of such maps whose zeros have these distributions.

[^0]
[^0]: 2010 Mathematics Subject Classification. Primary 26C10, 26D0, 530C10, 30C15, 42 A 05.
 Key words and phrases. zeros, distribution of zeros, planar polynomial maps.

