GENERALIZATION OF THE LAPLACE-RUNGE-LENZ CONSERVATION LAW

JAUME LLIBRE¹, AND RAFAEL RAMÍREZ²

ABSTRACT. Our main result is related with the solution of the following inverse problem of dynamics.

Let \mathbb{E}^N be the *N* dimensional Euclidean space with coordinates $\mathbf{x} = (x_1, \ldots, x_N)$. For a particle with configuration space \mathbb{E}^N which moves under the action of the potential field of force $U_{\mathbf{x}} = \left(\frac{\partial U}{\partial x_1}, \ldots, \frac{\partial U}{\partial x_N}\right)$, and for a given homogeneous function *f* we determine the potential *U* and the function Φ in such a way that $\Phi f_{\mathbf{x}} - \left(\langle \dot{\mathbf{x}}, \dot{\mathbf{x}} \rangle \mathbf{x} - \langle \dot{\mathbf{x}}, \mathbf{x} \rangle \dot{\mathbf{x}} \right) = \mathbf{0}$,

is a conservation law, where $\dot{\mathbf{x}} = \frac{d\mathbf{x}}{dt}$, t is the time and <, > is the inner product. In particular if N = 3, $f = \sqrt{x^2 + y^2 + z^2} + < \mathbf{b}, \mathbf{x} >$, $\Phi = 1$ and $U = 1/\sqrt{x^2 + y^2 + z^2}$, then we obtain the classical conservation law of the the Kepler problem where **b** is the Laplace-Runge-Lenz vector.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

We introduce the following notations. Let \mathbb{E}^N be the three dimensional Euclidean space with coordinates $\mathbf{x} = (x_1, x_2, \dots, x_N)$. By \langle , \rangle we denote the inner product in \mathbb{E}^N , and by $f_{\mathbf{x}} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_N}\right) := (f_{x_1}, f_{x_2}, \dots, f_{x_N}),$ $r = \sqrt{x_1^2 + \ldots + x_N^2}$, and

$$\{f_1, \dots, f_N\} = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \cdots & \vdots \\ \vdots & \cdots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \cdots & \frac{\partial f_N}{\partial x_N} \end{vmatrix}$$

²⁰¹⁰ Mathematics Subject Classification. Primary 34A34, 34C14, 70F05.

Key words and phrases. Kepler problem, inverse problem of dynamics, general first integral, homogeneous surface, hyperbolic partial differential equation, Hessian matrix, Nambu bracket.