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Abstract. We study the realtionships between the rational trigonometric Abel differential equa-

tions and the polynomial differential systems of the form ẋ = −ym +Pn(x, y), ẏ = xm +Qn(x, y)

with Pn and Qn homogeneous polynomials of degree n > m ≥ 1 with m odd.

For these differential systems we provide sufficient conditions which control how many limit

cycles can be born in a Hopf bifurcation at the singular point localized at the origin of coordinates.

We also provide sufficient conditions for the integrability of such polynomial differential sys-

tems.

1. Introduction and statement of the results

Two of the main problems in the qualitative theory of real planar differential systems is to

determine the existence or non–existence of limit cycles and of first integrals for a given class of

polynomial differential systems.

We recall that a limit cycle of a differential system is a periodic orbit of the system isolated in

the set of all periodic orbits of the system.

Poincaré [15] started to study seriously the limit cycles of the planar differential systems, and

the first works showing their importance in applied problems appeared at the end of the 1920s by

van der Pol [16], Liénard [10], Andronov [1], and continue up to nowdays.

The first objective of this paper is to obtain information on the limit cycles which can exhibit

the Hopf bifurcation at the origin of coordinates for the polynomial differential systems

(1) ẋ = −ym + Pn(x, y), ẏ = xm +Qn(x, y),

with Pn and Qn homogeneous polynomials of degree n > m ≥ 1 with m odd. As usual the dot in

(1) denotes derivative with respect the independent variable t.

We write the polynomial differential systems (1) in polar coordinates (r, θ), defined by

(2) x = r cos θ and y = r sin θ,

and we obtain

(3)
ṙ = rm (sin θ cosm θ − cos θ sinm θ) + rnf(θ),

θ̇ = rm−1
(
sinm+1 θ + cosm+1 θ

)
+ rn−1g(θ),

where
f(θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),

g(θ) = cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ).

We note that f and g are homogeenous trigonometric polynomials in the variables cos θ and sin θ

of degree n+ 1. Rescaling the independent variable t and taking as new independent the variable s
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