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Abstract. We classify the global dynamics of a one-parameter family of planar quadratic

polynomial differential systems which for some interval of values of its parameter describes

the evolution of an static star. The characterization of their distinct topological phase
portraits is done in the Poincaré disc. In this way we can describe the dynamics of these

systems near infinity and to provide their global phase portrait.

1. Introduction and statement of the main results

The structure equations using geometrical units for a static star in general relativity are

(1)
dM

dr
= 4πr2ρ

and

(2)
dP

dr
= − (ρ+ P )(M + 4πr3P )

r2(1− 2M/r)
,

where M(r) is the mass of the star inside a sphere of radius r from the center of mass satisfying
M(r) ≥ 0 for all r ≥ 0, and M(r)→ 0 as r → 0, r is the distance to the center of mass of this
star, ρ is the density and P (r) is the pressure inside the sphere of radius r such that P (r)→ 0
as r → 0.

Now we consider the equations (1) and (2) for a static star in general relativity in the case
of the existence of a homologous family of solutions which requires the existence of an state
equation given by P = (γ − 1)ρ with 1 < γ ≤ 2, see for details [4, 5]. For convenience we
express equations (1) and (2) in function of the variables x := M/r and y := 4πr2ρ, and setting
t = log r, the equations take the form

(3) ẋ = y − x, ẏ =
y

1− 2x

(
2− 5γ − 4

γ − 1
x− γy

)
,

where the dot means derivative with respect to the variable t. Note that this system is not
defined when γ = 1.

These equations where obtained from Collins in [5]. However the equations in [5] have a typo
because they appear as

ẋ = y − x, ẏ =
y

1− 2y

(
2− 5γ − 4

γ − 1
x− γy

)
.

But this typo does not affect the results of [5] which are excellent. Due to the importance
of equations (3) and their simplicity they have been studied by many authors from different
points of view, see for instance [3, 9]. We note that the mentioned typo in paper [5] was not
detected by all the readers, see for instance [2].

The objective of this paper is to study the global dynamics of the differential system (3)
for all values of its parameter γ ∈ R \ {1} in the whole plane R2. Of course for its physical
applications we are only interested in the values of γ ∈ (1, 2] and in the positive quadrant of
the plane R2.
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1



2 J. LLIBRE AND C. VALLS

We write the differential system (3) as the quadratic polynomial differential system

(4) ẋ = (y − x)(1− 2x), ẏ = y
(

2− 5γ − 4

γ − 1
x− γy

)
,

doing the change of the independent variable ds = (1 − 2x)dt, where now the dot denotes
derivative with respect the new independent variable s.

Note that the dynamics of system (3) is not defined on the straight line x = 1/2. However
for system (4) the dynamics are defined in the whole plane R2. Since the qualitative theory
of differential equaitons is very well developped for the polynomial differential systems we will
work with system (4), obtaining all the phase portraits of system (4) in the whole plane R2.
After removing from these phase portraits the straight line x = 1/2 we get the phase portraits
of system (3).

In fact we shall present the distinct global phase portraits of system (4) when its parameter
γ varies in R\{0} in the Poincaré disc. In this way we can describe the dynamics of their orbits
which come or go to the infinity of R2. For doing this we will use the Poincaré compactification.

Roughly speaking the Poincaré compactification of the polynomial differential system (4)
consists in extending this system to an analytic system on a closed disc D2 of radius one, whose
interior is identified with R2 and its boundary, the circle S1, plays the role of the infinity. This
closed disc is called the Poincaré disc, because the technique for doing such an extension is due
to Poincaré. For details on this compactification see [7, chapter 5] or the summary presented
in subsection 2.1.

The main result of the paper is the following.

Theorem 1. The phase portraits of system (4) for γ ∈ R \ {0, 1} in the Poincaré disc are
topologically equivalent to one of the 13 phase portraits of Figure 1.

The proof of Theorem 1 is given in section 3.

We note that really there are only 12 different topological phase portraits because the phase
portraits (i) and (j) of Figure 1 are topologically equivalent, see a precise definition of topolog-
icall equivalence in subsection 2.2. The unique difference between them is that a node in the
first is a focus in the second. Note that the mentiooned node of (i) is very close to the infinity
and difficult to distinguish. In the phase portrait (m) a saddle appears mixed with an unstable
node and it is not possible to appreciate correctly all the separatrices and canonical regions in
this case. We note that all the phase portraits of Figure 1 are quantitative phase portraits for
some values of the parameter γ in the corresponding intervals given in Table 1.

Moreover the letters S and R which appear in each of the phase portraits of Figure 1 denote
the number of separatrices and the number of canonical regions that each phase portrait has.
For the definition of separatrix and canonical region see subsection 2.2.

We can think on the Poincaré disc D2 as the disc of radius one centered at the origin of
coordinates of the plane. The intersection of the x and y axes of the plane with such a disc are
identified with the x and y axes of R2, so the positive quadrant Q of R2 is identified with the
region D2 ∩Q on the Poincaré disc.

Going back to the physical problem of the static star we must look at the regions D2 ∩ Q
of the phase portraits (j) and (k) of Figure 1, and removing from them the corresponding
identification of the straight line x = 1/2 in D2. Doing so we obtain the phase portraits in the
positive quadrant Q of R2 for γ ∈ (1, 2) and γ = 2, respectively. These two phase portraits are
topologically equivalent in the positive quadrant Q of R2, and of course they coincide with the
phase portrait already studied in Q by Misner and Zapolsky [9] and Collins [5].

In the next section we summarize the basic results that we need for proving our Theorem 1.
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(a) S = 25, R = 6. (b) S = 23, R = 6. (c) S = 29, R = 8.

(d) S = 26, R = 7. (e) S = 22, R = 5. (f) S = 24, R = 5.

(g) S = 24, R = 5. (h) S = 19, R = 4. (i) S = 23, R = 4.

(j) S = 24, R = 5. (k) S = 20, R = 5. (l) S = 25, R = 6.

(m) S = 26, R = 8.

Figure 1. Phase portraits of system (4) on the Poincaré disc.
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2. Preliminary results

2.1. Poincaré compactification. In order to classify the global dynamics of a polynomial
differential system the first crucial step is to characterize their finite and infinite singular
points in the Poincaré compactification [12]. The second main step for determining the global
dynamics in the Poincaré disc of a polynomial differential system is the characterization of their
separatrices. For the polynomial differential systems in the Poincaré disc it is known that the
separatrices are the infinite orbits, the finite singular points, the separatrices of the hyperbolic
sectors of the finite and infinite singular points, and the limit cycles. If Σ denotes the set of
all separatrices in the Poincaré disc D2, Σ is a closed set and the components of D2 \ Σ are
called the canonical regions. We denote by S and R the number of separatrices and canonical
regions, respectively.

We consider the set of all polynomial vector fields in R2 of the form

(5) (ẋ1, ẋ2) = X(x1, x2) = (P (x1, x2), Q(x1, x2)),

where P and Q are real polynomials in the variables x1 and x2 of degrees d1 and d2, respectively.
Take d = max{d1, d2}.

Denote by TpS2 be the tangent space to the 2-dimensional sphere S2 = {s = (s1, s2, s3) ∈
R3 : s21 + s22 + s23 = 1} at the point p. Assume that X is defined in the plane T(0,0,1)S2 = R2.

Consider the central projection f : T(0,0,1)S2 → S2. This map defines two copies of X, one in
the open northern hemisphere and the other in the open southern hemisphere. Denote by X ′

the vector field Df ◦X defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}. Clearly S1
is identified to the infinity of R2. If X is a planar polynomial vector field of degree d, then p(X)

is the only analytic extension of yd−13 X ′ to S2. The vector field p(X) is called the Poincaré
compactification of the vector field X, for more details see [7, chapter 5].

On the Poincaré sphere S2 we use the following six local charts to do the calculations, which
are given by Ui = {s ∈ S2 : si > 0} and Vi = {s ∈ S2 : si < 0}, for i = 1, 2, 3, with the
corresponding diffeomorphisms

(6) ϕi : Ui → R2, ψi : Vi → R2,

defined by ϕi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m,n 6= i. Thus (u, v) will
play different roles in the distinct local charts. The expressions of the vector field p(X) are

(u̇, v̇) =

(
vd
(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
,−vd+1P

(
1

v
,
u

v

))
in U1,

(u̇, v̇) =

(
vd
(
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

))
,−vd+1Q

(
u

v
,

1

v

))
in U2,

(u̇, v̇) = (P (u, v), Q(u, v)) in U3.

We note that the expressions of the vector field p(X) in the local chart (Vi, ψi) is equal to the
expression in the local chart (Ui, φi) multiplied by (−1)d−1 for i = 1, 2, 3.

The orthogonal projection under π(y1, y2, y3) = (y1, y2) of the closed northern hemisphere of
S2 onto the plane s3 = 0 is a closed disc D2 of radius one centered at the origin of coordinates
called the Poincaré disc. Since a copy of the vector field X on the plane R2 is in the open
northern hemisphere of S2, the interior of the Poincaré disc D2 is identified with R2 and the
boundary of D2, the equator S1 of S2, is identified with the infinity of R2. Consequently the
phase portrait of the vector field X extended to the infinity corresponds to the projection of
the phase portrait of the vector field p(X) on the Poincaré disc D2.

The singular points of p(X) in the Poincaré disc lying on S1 are the infinite singular points
of the corresponding vector field X. The singular points of p(X) in the interior of the Poincaré
disc, i.e. on S2 \ S1, are the finite singular points. We note that in the local charts U1, U2, V1
and V2 the infinite singular points have their coordinate v = 0.
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For a polynomial vector field (5) if s ∈ S1 is an infinite singular point, then −s ∈ S1 is
another infinite singular point. Thus the number of infinite singular points is even and the
local phase portrait of one is that of the other multiplied by (−1)d+1.

2.2. Separatrix skeleton. Given a flow (D2, φ) by the separatrix skeleton we mean the union
of all the separatries of the flow together with one orbit from each one of the canonical regions.
Let C1 and C2 be the separatrix skeletons of the flows (D2, φ1) and (D2, φ2) respectively. We
say that C1 and C2 are topologically equivalent if there exists a homeomorphism h : D2 → D2

which sends orbits to orbits preserving or reversing the direction of all orbits. From Markus
[8], Neumann [10] and Peixoto [11] it follows the next theorem which shows that is enough
to describe the separatrix skeleton in order to determine the topological equivalence class of a
differential system in the Poincaré disc D2.

Theorem 2 (Markus–Neumann–Peixoto Theorem). Assume that (D2, φ1) and (D2, φ2) are
two continuous flows with only isolated singular points. Then these flows are topologically
equivalent if and only if their separatrix skeletons are equivalent.

3. Proof of Theorem 1

We separate the proof in three subsections.

3.1. Finite singular points. We note that the two components of the quadratic polynomial
differential system (4) for γ = 0 has the common factor 1−2x, so for this value of the parameter
γ the system has the straight line x = 1/2 filled of singular points. So doing the change of
the independent variable dτ = (1 − 2x)ds the differential system becomes a linear differential
system and we do consider this easy case.

An easy computation shows that the finite singular points of the polynomial differential
system (4) are

p1 = (0, 0), p2 =

(
1

2
,

1

2− 2γ

)
, p3 =

(
2γ − 2

γ2 + 4γ − 4
,

2γ − 2

γ2 + 4γ − 4

)
, p4 =

(
1

2
, 0

)
.

The singular point p1, p2 and p3 exist for all γ ∈ R \{0, 1}, but the singular point p3 only exist

if γ ∈ R \ {2(
√

2− 1), 0, 1, 2(
√

2 + 1)}.

We can determine all the local phase portraits of these finite singular points using the Hart-
man–Grobman theorem (see for instance [7, Theorem 2.15]) because as we shall see all these
singular points are hyperbolic when γ ∈ R \ {0, 1}. Recall that a singular point p is hyperbolic
if the real part of the eigenvalues of the linear part of the differential system evaluated at p are
not zero.

The eigenvalues of the singular point p1 are −1 and 2, so p1 is a saddle.

The eigenvalues of the singular point p2 are γ/(γ − 1) and γ/(2γ − 2), so p2 is an unstable
node if γ < 0, a stable node if γ ∈ (0, 1), and an unstable node if γ > 1.

The eigenvalues of the singular point p3 are

γ
(

2− 3γ ±
√
γ2 − 44γ + 36

)
2 (γ2 + 4γ − 4)

.

Therefore p3 is a stable node if γ < −2(
√

2+1), a saddle if γ ∈ (−2(
√

2+1), 2(
√

2−1))\{0}, a

stable node if γ ∈ (2(
√

2−1), 2(11−4
√

7], a stable focus if γ ∈ (2(11−4
√

7), 2(11+4
√

7))\{1},
and a stable node if γ >= 2(11 + 4

√
7).

The eigenvalues of the singular point p4 are 1 and γ/(2− 2γ). Hence p4 is a saddle if γ < 0,
an unstable node if γ ∈ (0, 1), and a saddle if γ > 1.
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3.2. Infinite singular points. From subsection 2.1 the polynomial differential system (4) in
the local chart U1 writes

u̇ =
u(7γ − 6 + (2− 3γ + γ2)u− 3(γ − 1)v + (γ − 1)uv)

1− γ
, v̇ = (1− u)(v − 2)v.

In this local chart the system has the infinite singular points

S1 = (0, 0), S2 =

(
7γ − 6

(γ − 1)(γ − 2)
, 0

)
.

The eigenvalues of the singular point S1 are −2 and (6 − 7γ)/(γ − 1). So S1 is hyperbolic
except when γ = 6/7 which has one eigenvalue zero and consequently is semi-hyperbolic, thus
being its local phase portrait determined by [7, Theorem 2.19]. Therefore we obtain that S1 is
a stable node if γ < 6/7 and γ is not zero, a semi-hyperbolic saddle-node if γ = 6/7, a saddle
if γ ∈ (6/7, 1), and a stable node if γ > 1.

The eigenvalues of the singular point S2 are (6 − 7γ)/(γ − 1) and −2
(
γ2 + 4γ − 4

)
/((γ −

2)(γ − 1)). Therefore S2 is a saddle if γ < −2(
√

2 + 1), a semi-hyperbolic saddle-node if

γ = −2(
√

2 + 1), an unstable node if γ ∈ (−2(
√

21), 2(
√

2 + 1)) \ {0}, a semi-hyperbolic saddle-

node if γ = 2(
√

2− 1), a saddle if γ ∈ (2(
√

2− 1), 6/7), a stable node if γ ∈ (6/7, 1), a unstable
node if γ ∈ (1, 2), and a saddle if γ > 2.

In order to complete the study of the infinite singular points we must study if the origin of
the local chart U2 is an infinite singular point, because it is the unique point at infinity together
with the origin of the local chart V2, which is not covered by the local charts U1 and V1.

Again from subsection 2.1 the polynomial differential system (4) in the local chart U2 writes

u̇ =
((γ − 2)(γ − 1)u+ (γ − 1)v + (7γ − 6)u2 − 3(γ − 1)uv

γ − 1
,

v̇ =
v(γ2 − γ + (5γ − 4)u− 2(γ − 1)v)

γ − 1
.

The eigenvalues of the origin O of U2 are γ and γ − 2. Hence O is a stable node if γ < 0,
a saddle if γ ∈ (0, 1), a saddle if γ ∈ (1, 2), a semi-hyperbolic saddle-node if γ = 2, and an
unstable node if γ > 2.

Of course we also have the diametrally opposite infinite singular points in the local charts
V1 and V2, and since the degree of system (4) is two, their orientation of the orbits at those
infinite singular points is the contrary to the ones of the local charts U1 and U2.

3.3. Separatrices and phase portraits in the Poincaré disc. According with Theorem 2
in order to obtain the global phase portraits of the polynomial differential system (4) we must
draw their separatrix skeleton depending on the parameter γ.

Since all the finite and infinite singular points are separatrices of the polynomial differential
system (4) we have unified them in Table 1, where we denote by S, Nu, Ns, F s and SN a
saddle, an unstable node, a stable node, a stable focus and a saddle-node, respectively.

Additionally to the singular points the other separatrices are the limit cycles and the sepa-
ratrices of the hyperbolic sectors of the finite and infinite singular points.

Bautin in [1] (see also [6]) proved that the quadratic polynomial differential system having
two invariant straight lines has no limit cycles. Since our quadratic polynomial differential
system (4) has the two invariant straight lines x = 1/2 and y = 0, it has no limit cycles.

In summary, we only need to determine the behaviour of the separatrices of the hyperbolic
sectors of the finite and infinite singular points, i.e. where they born and where they die.
Doing so we will have all the separatrix skeleton adding one orbit in each canonical region, and
consequently we will have the global phase portraits of system (4). But taking into account the
two invariant straight lines and the local phase portraits at all the finite and infinite singular
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γ p1 p2 p3 p4 S1 S2 O

γ < −2(
√
2 + 1) S Nu Ns S Ns S Ns

γ = −2(
√
2 + 1) S Nu S Ns SN Ns

γ ∈ (−2(
√
2 + 1), 0) S Nu S S Ns Nu Ns

γ ∈ (0, 2(
√
2− 1)) S Ns S Nu Ns Nu S

γ = 2(
√
2− 1) S Ns Nu Ns SN S

γ ∈ (2(
√
2− 1), 2(11− 4

√
7)) S Ns Ns Nu Ns S S

γ ∈ (2(11− 4
√
7), 6/7) S Ns F s Nu Ns S S

γ = 6/7 S Ns F s Nu SN S

γ ∈ (6/7, 1) S Ns F s Nu S Ns S

γ ∈ (1, 2) S Nu F s S Ns Nu S

γ = 2 S Nu F s S Ns SN

γ ∈ (2, 2(11 + 4
√
7)) S Nu F s S Ns S Nu

γ ≥ 2(11 + 4
√
7) S Nu Ns S Ns S Nu

Table 1. The finite and infinite singular points of system (4).

points, the place where born and die all the separatrices of the hyperbolic sectors is determined
in a unique way for every one of the 13 cases in function of the parameter γ described in Table
1. In this way we obtain the 13 phase portraits in the Poincaré disc of Figure 1. As we
have mentioned in the introduction section the phase portraits (i) and (j) of Figure 1 are
topologically equivalent because the unique difference between them is that a node in the first
one is a focus in the second. This completes the proof of Theorem 1.
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[2] C.G. Böhmer, T. Harko and S.V. Sabau, Jacobi stability analysis of dynamical systems—applications

in gravitation and cosmology, Adv. Theor. Math. Phys. 16 (2012), 1145–1196.

[3] P.H. Chavanis, Gravitational instability of finite isothermal spheres in general relativity. Analogy with
neutron stars, Astron. & Astrph. 381 (2002), 709–730.

[4] S. Chandrasekhar, An introduction to the study of stellar structure, Dover, New York, 1939.

[5] C.B. Collins, Static stars: Some mathematical curiosities, Journal of Mathematical Physics 18 (1977),
1374.

[6] W.A. Coppel, Some quadratic systems with at most one limit cycle, Dynamics reported 2 (1989), 61–88.
[7] F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differential Systems, Springer

Verlag, New York, 2006.

[8] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc. 76
(1954), 127–148.

[9] C.W. Misner and H.S. Zapolsky, High-Density Behavior and Dynamical Stability of Neutron Star Mod-

els, Phys. Rev. Lett. 13 (1964), 122.
[10] D.A. Neumann, Classification of continuous flows on 2–manifolds, Proc. Amer. Math. Soc. 48 (1975),

73–81.

[11] M. Peixoto, Dynamical Systems, Proceedings of a Symposium held at the University of Bahia, Acad.
Press, New York, 1973, pp.389–420.
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