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Abstract. In this paper we classify the phase portraits of a SIR epidemic
dynamics model. Depending on the values of the parameters this model can

exhibit seven different phase portraits. In particular, from a biological point

of view we prove that the unique attractors of this model are one or two
equilibrium points depending on the values of the parameters, and from the

phase portraits follow the basins of attraction of these equilibria.

1. Introduction and statement of the main results

The study of a widespread occurrence of an infectious disease in a community at
a particular time has great importance, through decades many models have emerged
to give explication for the spread and reason of epidemic outbreaks. The SIR [8]
is one of the very realistic models that gives a good explanation of the spread of
infectious disease which is used to study many epidemics like cholera [12], malaria
[1] and very recently the novel coronavirus (2019-nCoV or COVID-19) which has
been a great worry around the globe, thus scholars have focused their energies in
studying the behavior of such fatal disease [3, 5, 13, 14].

In the SIR infections disease model, the total population N is composed of three
groups of individuals which are: S(t) denote the number of members of a popu-
lation susceptible to the disease at time t; I(t) represents the number of infective
members, and R(t) denotes the number of members who have been removed from
the population (see [2, 4, 6]). The SIRS [4] model is a SIR model, which allows
recovered individuals to return to a susceptible state, in the case when this model
has birth rate and death rate can be written as

(1)

dS

dτ
= −IH(I, S)− r2S + r1R+B(N),

dI

dτ
= IH(I, S)− (r2 + ν)I,

dR

dτ
= νI − (r2 + r1)R,

where

• H(I, S) is th nonlinear incidence rate concerning S and I;
• r2 is the common natural death rate of the three groups (S, I and R);
• B(N) denotes the birth rate and is a function depending on N = S+I+R;
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• v is rate of the removal at which the infective individuals go into the re-
moved class; and
• r1 is the probability of which individuals in the removed class loss their

immunity and go into the susceptible class.

Here N is the total population, and it is assumed in this model that all the new
born infants are all susceptible (see [16]).

By doing same calculations and assumptions as in [16] we reduce system (1) to a
two dimensional system. So by collecting the two sides of the equations of system
(1) we get

dN

dt
= B(N)− r2N.

We suppose that this equation has an equilibrium point N0 satisfying B(N0) =
r2N0, and this equilibrium is asymptotically stable and unique when N0 > 0. This
assumption means that the total population will still in equilibrium while epidemic
is spreading, so we can consider (1) just in the case S + I + R = N0, and thus
system (1) can be transformed into

(2)
dI

dτ
= IH(I,N0 − I −R)− (r2 + ν)I,

dR

dτ
= νI − (r2 + r1)R.

Further a more special case has been brought forward [4, 10, 11, 15] by setting
H(I, S) = KIS and r = ν/(r2 + ν), h = ν/(r2 + r1), a = K/(r2 + ν), t = (r2 + ν)τ ,
with K > 0. Then the model (2) admits the following simpler form:

(3)
dI

dt
= aI2(N0 − I −R)− I, dR

dt
= r(I − R

h
).

We rescale the variables of system (3) in order to reduce the number of its param-
eters by doing the following change of variables I = αx, R = βy, T = γt. Then
system (3) becomes

(4) ẋ = aαγNx2 − aα2γx3 − aαβγx2y − γx, ẏ =
αγr

β
x− γr

h
y.

Taking α =
r

ahN
, β =

r

aN
, γ =

h

r
, system (4) writes

(5) ẋ = − r

ahN2
x3 − r

aN2
x2y + x2 − h

r
x, ẏ = x− y.

We rename the parameters b = h/r, c = r/(ahN2), and d = r/(aN2). So the
differential system (5) only depends now of three parameters and it becomes

(6) ẋ = −bx− cx3 − dx2y + x2, ẏ = x− y,

where b, c and d are positive parameters.

The objective of this paper is to study the phase portraits in the Poincaré disc of
system, and in particular determine its attractors, the important objects in biology.

System (6) is defined in the plane R2, but in order to control its orbits which
escape or come from infinity we extend it to the Poincaré disc. Roughly speaking
the Poincaré disc D is the closed unit disc centered at the origin of coordinates
of R2, the interior of D is identified with R2 and its boundary, the circle S1 is
identified with the infinity of R2. Note that in the plane R2 we can go to infinity in
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as many directions as points has the circle. For more details on the Poincaré disc
see Chapter 5 of [7].

(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. All topologically different phase portraits in the
Poincaré disc of system (6).

Our main result is the following.

Theorem 1. The phase portraits in the Poincaré disc of systems (6) are topologi-
cally equivalent to one of the phase portraits given in Figure 1.

Theorem 1 is proved in section 4 assuming that the following conjecture holds.
At this moment we only have numerical evidence that it must hold. It is well
known that in general to prove the existence and uniqueness of a limit cycle is a
very difficult problem.

Conjecture. The differential system (6) has at most one limit cycle.
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A limit cycle of system (6) is a periodic orbit of this system isolated in the set
of all periodic orbits of the system.

A key point in the proof of Theorem 1 is the study of the Hopf bifurcations
of system (6). We recall that system (6) exhibits a Hopf bifurcation if it has an
equilibrium point where the stability switches and a limit cycle arises.

Theorem 2. System (6) when 1− 4b(c+ d) > 0 exhibits a Hopf bifurcation at the
equilibrium point

p+ =

(
1 +

√
1− 4b(c+ d)

2(c+ d)
,

1 +
√

1− 4b(c+ d)

2(c+ d)

)
.

if and only if

b > 1, 0 < c <
b− 1

4b2
and d = d0 =

c(1− 2b)

b− 1
+

√
c

b− 1
.

Moreover an unstable limit cycle bifurcates from this equilibrium point for values of
d < d0 but sufficiently close to d0.

Theorem 2 is proved in section 3.

2. Equilibrium points and the Hopf bifurcation

The equilibrium points of system (6) and their local phase portraits are charac-
terized in the next result.

Proposition 3. The polynomial differential system (6) has

(a) only one finite equilibrium point at the origin of coordinates if 1−4b(c+d) <
0, which is a stable node;

(b) two finite equilibrium points if 1− 4b(c+ d) = 0, a stable node at the origin
and a saddle-node at the point

p0 =

(
1

2(c+ d)
,

1

2(c+ d)

)
;

(c) three finite equilibrium points if 1−4b(c+d) > 0 a stable node at the origin,
and two additional equilibria at

p± =

(
1±

√
1− 4b(c+ d)

2(c+ d)
,

1±
√

1− 4b(c+ d)

2(c+ d)

)
.

Moreover, p− is a saddle, and p+ is either a node, or a focus, or a center.

Proof. The origin of coordinates always is a finite equilibrium point of system (6)
and since the eigenvalues of the linear part of the system at the origin are −1 and
−b, the origin is a stable node.

Since it is easy to check that when 1 − 4b(c + d) < 0 system (6) has only one
equilibrium, the origin of coordinates, statement (a) follows.

When 1 − 4b(c + d) = 0 system (6) has two finite equilibrium points the origin
and the point p0 which is semi-hyperbolic, because the eigenvalues of the linear
part of the system at this point are 0 and (d − 4(c + d)2)/(4(c + d)2) < 0. Using
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Theorem 2.19 of the book [7] we obtain that p0 is a saddle-node. Statement (b) is
proved.

If 1 − 4b(c + d) > 0 system (6) have three finite equilibrium points, the origin
and p±. The determinant of the matrix of the linear part of system (6) at p± is

D± =
1− 4b(c+ d)±

√
1− 4b(c+ d)

2(c+ d)
.

Since the parameters b, c and d are positive, it follows that 0 < 1− 4b(c+ d) < 1,
and consequently p− is a saddle because D− < 0, and p+ is either a node, or a
focus, or a center because D+ > 0, for more details see Chapter 2 of [7]. Hence
statement (c) follows. �

We remark that from the proof of Theorem 2 it will follow that the equilibrium
point p+ never will be a center.

For studying the infinite singular points in the Poincaré disc, we use the defini-
tions and notations given in Chapter 5 of [7], then we have the following result.

Proposition 4. The polynomial differential system (6) has

(a) in the local chart U1 two equilibrium points, an unstable node at the origin
and a semi-hyperbolic saddle at (−c/d, 0), and

(b) the local phase portrait at the origin of U2 inside the Poincaré disc and on
the right of the invariant straight line x = 0 has a hyperbolic sector, and on
the left of x = 0 has an unstable parabolic sector. Moreover, in the origen
of V2 inside the Poincaré disc and on the left of the invariant straight line
x = 0 has a hyperbolic sector, and on the right x = 0 has an unstable
parabolic sector.

Proof. The polynomial differential system (6) in the local chart U1 becomes

(7) u̇ = cu+ du2 − uv + v2 − uv2 + buv2, v̇ = v(c+ du− v + bv2).

On the straight line v = 0 system (7) have two equilibrium points the origin and
the point (−c/d, 0). Since the eigenvalues of the linear part of system (7) at the
origin are c of multiplicity 2, then the origin is an unstable node. The eigenvalues
of the linear part of system (7) at the point (−c/d, 0) are 0 and −c, then is a
semi-hyperbolic equilibrium point. So we shall apply Theorem 2.19 of [7]. First, we
translate the equilibrium point (−c/d, 0) at the origin of coordinates of the chart
U1 therefore system (7) becomes

(8)
u̇ = −cu+

c

d
v + du2 − uv +

(
c− bc
d

+ 1

)
v2 + (b− 1)uv2,

v̇ = duv − v2 + bv3.

Moreover, by doing the change of variables Y = (c/d)v − cu, X = v in system (8),
and change the sign of time in order to apply Theorem 2.19 system (8) becomes
(9)

Ẋ =
d

c
XY − bX3 = A(X,Y ),

Ẏ = cY −
(
bc2 − c2

d
− c
)
X2 +

d

c
Y 2 + (1− b)X2Y − c

d
X3 = cY +B(X,Y ).
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So

Y = f(X) =
bc− c− d

d
X2 +

1

d
X3 + h.o.t.

is the solution of the equation cY + B(X,Y ) = 0 in a neighborhood of the point
(0, 0) for system (9), as usual h.o.t. denotes higher order terms. By substituting
Y = f(X) in the first equation of system (9) we get

g(X) = −c+ d

c
X3 +

1

c
X4 + h.o.t.

Therefore m = 3 is odd and −(c + d)/c < 0 by applying Theorem 2.19 of [7]
we conclude that the equilibrium point (−c/d, 0) is always a saddle point. This
completes the proof of statement (a).

The polynomial differential system (6) in the local chart U2 becomes

(10) u̇ = −u(du+ cu2 − uv − v2 + bv2 + uv2), v̇ = (1− u)v3.

The origin of the local chart U2 is a linearly zero singular point, we must study
it doing blow ups. For that we do the change of variables (u, v) = (u,w = v/u).
Therefore, system (10) becomes

u̇ = −u2(d+ cu− uw − uw2 + buw2 + u2w2), ẇ = uw(d+ cu− uw + buw2).

We eliminate the common factor u doing a scaling of the time and we get

(11) u̇ = −u(d+ cu−uw−uw2 + buw2 +u2w2), ẇ = w(d+ cu−uw+ buw2).

On the straight line u = 0 there is a unique equilibrium point, the origin. Since the
eigenvalues of the linear part of system (11) are d and −d the origin of this system
is a saddle. Going back through the changes of variables and taking into account
that the axes are invariant in the local chart U2, we get the local phase portrait at
the origin of U2 inside the Poincaré disc and on the right of the invariant straight
line x = 0 has a hyperbolic sector, and on the left of this invariant straight line
has an unstable parabolic sector. Moreover, in the origen of V2 inside the Poincaré
disc and on the left of the invariant straight line x = 0 has a hyperbolic sector,
and on the right of this invariant straight line has an unstable parabolic sector. So
statement (b) is proved. �

3. Proof of theorem 2

In this section we shall study the existence of Hopf bifurcations for system (6).

The matrix of the linear part of system (6) at p+ is 4bc2 + 2bd2 − c
(√

1− 4b(c+ d)− 6bd+ 1
)

2(c+ d)2
−
d
(√

1− 4b(c+ d) + 1
)2

4(c+ d)2

1 −1

 .
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The eigenvalues of this matrix are

λ± =
1

4(c+ d)2

(
2(2b− 1)c2 + c((6b− 4)d− 1) + 2(b− 1)d2 − c

√
1− 4b(c+ d)

±1

2

(
32(c+ d)3

(
4b(c+ d)− 1−

√
1− 4b(c+ d)

)
+4
(

(2− 4b)c2 + c
(√

1− 4b(c+ d) + (4− 6b)d+ 1
)
− 2(b− 1)d2

)2) 1
2

)
.

A Hopf bifurcation needs that these eigenvalues be purely imaginary numbers, and
after tedious computations this occurs if and only if

(12) b > 1, 0 < c <
b− 1

4b2
, d = d0 =

c(1− 2b)

b− 1
+

√
c

b− 1
,

if for these values of the parameters we do not have a center, there exists a Hopf
bifurcation for system (6) because a change in the stability of the focus p+ takes
place, and in such a case when d = d0 system (6) will exhibit a Hopf bifurcation.
For more details on a Hopf bifurcation see for instance [9].

In order to check that for the values of the parameters (12) system (6) has not
a center at the equilibrium point p+ we shall see that there is a nonzero Liapunov
constant at p+, and if it is nonzero this will prove that a limit cycle bifurcates from
the equilibrium point p+ when the parameters (b, c, d) are on the Hopf bifurcation
surface (12).

In order to simplify the computations for obtaining the Liapunov constants we
eliminate the square roots in the equilibrium point and in their eigenvalues changing
the parameters (b, c) by the new parameters (k, ω) doing the following steps.

We eliminate the square root
√

1− 4b(c+ d) changing the parameter b by the
new parameter k doing the change b = (1 − k2)/(4(c + d)). Thus the equilibrium
point p+ becomes (

k + 1

2(c+ d)
,

k + 1

2(c+ d)

)
.

We translate the equilibrium point p+ at the origin of coordinates by doing the
change of variables

x = u+
k + 1

2(c+ d)
, y = v +

k + 1

2(c+ d)
.

Then systems (6) becomes

(13)

u̇ = − (k + 1)(2ck + d(k − 1))

4(c+ d)2
u− d(k + 1)2

4(c+ d)2
v − 3ck + c+ d(k − 1)

2(c+ d)
u2

−d(k + 1)

c+ d
uv − cu3 − dvu2,

v̇ = u− v.
The matrix of the linear part of this system at the origin is

(14)

 − (k + 1)(2ck + d(k − 1))

4(c+ d)2
−d(k + 1)2

4(c+ d)2

1 −1

 .
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Now we change the parameter c by a new parameter L > 0 taking c = (1−2k2 +
k4 − L2)/(16(1 + k)2). Then the matrix (14) becomes

M =

 1
3k2 + 4k − L+ 1

k2 + L− 1

1 −1

 ,

and the eigenvalues of this matrix are

λ± = ±
2
√
k(k + 1)√

1− k2 − L
i = ±ωi,

with ω > 0, i.e. we change the parameter L by the new parameter ω taking

L =
ω2(1− k2)− k2 − k

ω2
.

With the new parameter ω the computations of the Liapunov constants becomes
shorter and clearer.

We shall write the matrix M in its real Jordan normal form

J =

(
0 ω
−ω 0

)
.

For that we will do the change of variables

(
U

V

)
=

 1 0

1

ω
−4ω2 + 1

2ω

( u

v

)
,

and the differential system (13) in the new variables (U, V ) writes

(15)
U̇ =

(
kU + 4ω2

) (
(k − 1)U2ω + kUV + 4V ω2

)
16ω3

,

V̇ =
U
(
k2UV + (k − 1)kU2ω + 4(k − 1)Uω3 + 8kV ω2 − 32ω5

)
32ω4

.

We pass the differential system (15) to polar coordinates (r, θ) through U =
r cos θ and V = r sin θ, and we get

(16)

ṙ =
r2 cos θ(2ω cos θ + sin θ)((k − 1)ω cos θ + 2k sin θ)

8ω2

kr3 cos2 θ(2ω cos θ + sin θ)((k − 1)ω cos θ + k sin θ)

32ω4
,

θ̇ = −ω +
r cos θ(cos θ − 2ω sin θ)((k − 1)ω cos θ + 2k sin θ)

8ω2

kr2 cos2 θ(cos θ − 2ω sin θ)((k − 1)ω cos θ + k sin θ)

32ω4
.
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Now we take as new independent variable in the defferential system (16) the

angle θ and we expand
dr

dθ
in power series of r at r = 0 and we obtain that

(17)

dr

dθ
= −r

2 cos θ(2ω cos θ + sin θ)((k − 1)ω cos θ + 2k sin θ)

8ω3

−r3
(
k cos2 θ(2ω cos θ + sin θ)((k − 1)ω cos θ + k sin θ)

32ω5
+

cos2 θ(2ω cos θ + sin θ)(cos θ − 2ω sin θ)((k − 1)ω cos θ + 2k sin θ)2

64ω6

)
+O(r4).

In order to compute the first return map in a neighborhood of the origin of
coordinates from the half-axis x > 0 into itself we shall compute the first terms of
the solution

(18) r(θ) = v1(θ)r0 + v2(θ)r20 + v3(θ)r30 +O(r40), such that r(0) = r0.

This solution starts at the point (r0, 0) of the half-axis x > 0 with r0 > 0 sufficiently
small.

As usual we denote by r′(θ) the derivative of r(θ) with respect to θ. Then
substituing r(θ) from (18) into (17) we obtain

v′1(θ)r0 +

(
cos θ(2ω cos θ + sin θ)((k − 1)ω cos θ + 2k sin θ)v1(θ)2

8ω3
+ v′2(θ)

)
r20

+

((
k cos2 θ(2ω cos θ + sin θ)((k − 1)ω cos θ + k sin θ)

32ω5
+

cos2 θ(2ω cos θ + sin θ)(cos θ − 2ω sin θ)((k − 1)ω cos θ + 2k sin θ)2

64ω6

)
v1(θ)3+

cos θ(2ω cos θ + sin θ)((k − 1)ω cos θ + 2k sin θ)v1(θ)v2(θ)

4ω3
+ v′3(θ)

)
r30 +O(r40) = 0.

Thus we must have v′1(θ) = 0, and since r(0) = r0, i.e. v1(0) = 1, v2(0) = 0,
v3(0) = 0, . . . So we must take v1(θ) = 1. We determine the functions v2(θ) and
v3(θ) in such a way that the coefficients of r20 and r30 vanish. Thus solving the linear
differential equation

cos θ(2ω cos θ + sin θ)((k − 1)ω cos θ + 2k sin θ)

8ω3
+ v′2(θ) = 0,

with the initial condition v2(0) = 0, we obtain the function v2(θ) that satisfies that
v2(2π) = 0, so the second Liapunov constant is zero. We do not provide the explicit
long expression of the function v2(θ).
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Now we compute the function v3(θ) solving the linear differential equation

k cos2 θ(2ω cos θ + sin θ)((k − 1)ω cos θ + k sin θ)

32ω5
+

cos2 θ(2ω cos θ + sin θ)(cos θ − 2ω sin θ)((k − 1)ω cos θ + 2k sin θ)2

64ω6
+

cos θ(2ω cos θ + sin θ)((k − 1)ω cos θ + 2k sin θ)v2(θ)

4ω3
+ v′3(θ) = 0,

with the initial condition v3(0) = 0. Again the expression of v3(θ) is huge and we
do not provide it. Finally the third Liapunov constant

V3 = v3(2π) = −
π(2k − 1)

(
2(k − 1)ω2 + k

)
128ω5

.

This Liapunov constant written in the orignal parameters b and c is

V3 =
πc5/2

(
b
(
−4(b− 1)3/2

√
c+ b− 2

)
+ 1
) (
b2 − 2b

(
(b− 1)3/2

√
c+ 1

)
+ 1
)

4
(
(b− 1)3/2

√
c− 2(b− 1)bc

)5/2 .

Moreover, using (12) we obtain that V3 < 0. Therefore a stable limit cycle bifurcates
from the equilibrium point p+ for values of d < d0 but sufficiently close to d0. This
completes the proof of Theorem 2.

4. Phase portraits in the Poincaré disc

We note that from Proposition 4 the local phase portraits at the infinite equilibria
are independent of the values of the parameters of the differential system (6).

4.1. Phase portrait for 1−4b(c+d) < 0. Taking into account the following three
things: first from Proposition 3 system (6) has only one finite equilibrium point
which is a stable node, second the local phase portraits at the infinite equilibria
from Proposition 4, and third that the straight line x = 0 is invariant for the
system (6), it follows that there is a unique possible global phase portrait in the
Poincaré disc given in Figure 1(a). This phase portrait is realized for the values of
the parameters b = c = d = 1.

4.2. Phase portrait for 1 − 4b(c + d) = 0. As in the previous case taking into
account the same three things, but now from Proposition 3 system (6) has two
finite equilibrium points a stable node and a saddle-node, there is a unique possible
global phase portrait in the Poincaré disc given in Figure 1(b). We recall that in
this case the system cannot have limit cycles because a limit cycle must surround
some equilibrium point, and it cannot surround the origin which is on the invariant
straight line x = 0 and cannot surround the saddle-node which has topological
index zero, because the sum of the indices of the equilibria surrounded by a limit
cycle must be one, see for more details Chapter 6 of [7]. This phase portrait is
realized for the values of the parameters b = 1/4 and c = d = 1/2.
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4.3. Phase portraits for 1 − 4b(c + d) > 0. In this case system (6) has three
finite equilibrium points, a stable node, a saddle and the third equilibrium point
has, using Theorem 2 and Proposition 3, three possibilities either a node, or a focus
surrounded or not by a unique limit cycle assuming that the conjecture holds.

Case 1: When the third finite equilibrium point is a stable node or a stable focus
non-sourrounded by limit cycles a unique phase global phase portrait in the Poincaré
disc can be obtained as in the subcase 4.1, see Figure 1(c). For instance this phase
portrait is realized for the values of the parameters b = c = d = 1/4.

Case 2: When the third finite equilibrium point is an unstable node or focus with
d > d0 and a stable separatrix of the saddle comes from that third equilibrium,
the unique possible global phase portrait in the Poincaré disc is the one described
in Figure 1(d). This phase portrait is realized for the values of the parameters
b = 1/13, c = 1/100 and d = 129245/1000000 > d0.

Case 3: When the third finite equilibrium point is a stable focus surrounded by an
unstable limit cycle which has born in a Hopf bifurcation, see Theorem 2, the unique
possible global phase portrait in the Poincaré disc is the one described in Figure
1(e). This phase portrait is realized for the values of the parameters b = 1/13,
c = 1/100 and d = 1292/10000 < d0.

Case 4: When the third finite equilibrium point is a stable focus and the unstable
limit cycle which had born in a Hopf bifurcation disappears in a loop of the saddle,
the unique possible global phase portrait in the Poincaré disc is the one described
in Figure 1(f). This phase portrait is realized for the values of the parameters
b = 1/13, c = 1/100 and d = d∗ for some d∗ ∈ (1/10, d0). A such d∗ exists by
continuity moving the parameter d between the Cases 3 and 5.

Case 5: When the third finite equilibrium point is a stable focus and an unstable
separatrix of the saddle goes to the stable focus, the unique possible global phase
portrait in the Poincaré disc is the one described in Figure 1(g). This phase portrait
is realized for the values of the parameters b = 1/13, c = 1/100 and d = 1/10.

This completes the proof of Theorem 1.
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