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ABSTRACT
We study the dynamics of the piecewise planar rotations Fλ(z) =
λ(z − H(z)), with z ∈ C, H(z) = 1 if Im(z) ≥ 0, H(z) = −1 if Im(z) <
0, and λ = eiα ∈ C, being α a rational multiple of π . Our main results
establish the dynamics in the so called regular set, which is the
complementary of the closure of the set formed by the preimages
of the discontinuity line. We prove that any connected component
of this set is open, bounded and periodic under the action of Fλ,
with a period �, that depends on the connected component. Fur-
thermore, F�

λ restricted to each component acts as a rotation with
a period which also depends on the connected component. As a
consequence, any point in the regular set is periodic. Among other
results, we also prove that for any connected component of the reg-
ular set, its boundary is a convex polygon with certain maximum
number of sides.
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1. Introduction andmain results

We consider the family of planar piecewise linear maps which, in complex notation, writes
as:

Fλ(z) = λ(z − H(z)),

where z ∈ C, α ∈ R, λ = eiα ∈ C (thus |λ| = 1), and

H(z) =
{

1, if z ∈ C+
0 ,

−1, if z ∈ C−,

being C+ = {z ∈ C; Im(z) > 0}, C− = {z ∈ C; Im(z) < 0} and C+
0 = {z ∈ C; Im(z) ≥

0}. Observe that these maps are invertible. Indeed, some easy computations show that
F−1

λ (z) = z/λ + H(z/λ).
Thesemaps have been studied in [2, 7, 8, 10].Whenα is a rationalmultiple ofπ , they are

closely related to polygonal dual billiardsmaps on regular polygons, [9, 11, 14]. The special
cases α ∈ R := {π/3,π/2, 2π/3, 4π/3, 3π/2, 5π/3} have been studied in [3, 4, 6, 8]. We
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found these examples to be especially interesting because they are easy explicit examples
of pointwise periodic bijective maps which are not globally periodic, hence their sets of
periods are unbounded. Furthermore, for each of these cases, in [8], we gave an explicit
first integral whose energy levels are discrete and they are bounded sets whose interior is
a necklace formed by a finite number of open tiles of a certain regular tessellation. The
boundary of each of these open regular tessellations is formed by the so-called critical set
F = {z ∈ C such that Im(Fi(z)) = 0 for some i ∈ N ∪ {0}}, formed by all the preimages
of the discontinuity line R. In general, it is well known that this discontinuity line, which
is also called critical line, together with its preimages play a crucial role to understand the
dynamics of the corresponding map, see [1, 12].

The general properties of the maps F with α ∈ [0, 2π) \ R, being a rational multiple
of π , are still not completely known. For instance, in [10] it is proved that for each of such
cases there exists a sequence of open invariant nested necklaces that tend to infinity, whose
beads are polygons, and where the dynamics of F is given by a product of two rotations,
see also Section 2.1. Remarkably, although the adherence of the union of all these invariant
necklaces does not fill the full plane, it allows to prove that all orbits of F are bounded.
As in the regular cases, the boundary of these necklaces is given by some segments of the
critical setF . Our simulations indicate that, in the non-regular cases, the critical set seems
to fractalize.

We consider the regular set U = C \ F , whereF is the closure of the critical set. Among
the results in this work, we prove that when α is a rational multiple of π , any connected
component of U is open, bounded and periodic. Moreover, any element of U is periodic.
We also prove that if F \ F �= ∅, then the elements of F \ F are aperiodic.

In next two theorems the map Fλ and the set U are defined as above. Our first result
characterizes the dynamics on the regular set when α is a rational multiple of π .

Theorem A: If α = 2πp/q where p, q ∈ N with (p, q) = 1, then any connected component
of U is open, bounded and periodic under the action of Fλ. Furthermore, Fλ permutes � con-
nected components of U , that are invariant by F�

λ, which is a rotation of order k around the
centre of each connected component. As a consequence, on each connected component there
is an �-periodic point (the centre) and the rest of the points are k�-periodic. Moreover, both
values k and � depend on the connected component and � is unbounded.

Our second result describes the geometry of the connected component ofU , againwhen
α is a rational multiple of π .

Theorem B: If α = 2πp/q where p, q ∈ N with (p, q) = 1, then:

(a) Let V be a connected component of U . Then ∂V is a convex polygon with at most q sides
if q is even and at most 2q sides when q is odd.

(b) If � is the period of V and (�, q) = 1, then ∂V has either q sides and ∂V is a regular
polygon or q is odd and ∂V has 2q sides.

(c) For some values of α there are connected components that are not regular polygons.

Although in this work, we only deal with the case that α = 2πθ with θ rational, we
remark that when θ is irrational similar arguments that the ones used in the proof of
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Theorem B can be applied to prove than then ∂V is a true circle. We do not include this
study in this work.

TheoremB characterizes the connected components in the regular setU as open convex
polygons. For this reason sometimes we will refer them as tiles of the tessellation in U
defined by F .

TheoremA is proved in Section 2.3 and TheoremB is proved in Section 3.2. In Section 3
it is also proved that any point in F \ F is not periodic, see Proposition 3.2.

In Section 4we also present some evidences of the fractalization ofF , and the unbound-
edness of periods in compact sets both in U and F , as well as for the existence of
non-periodic points in F .

2. Dynamics on the regular set

The object of this section is to prove Theorem A, see Section 2.3. The essential ingredients
of the proof are the facts that the connected components of the regular set U = C \ F are
the sets of points sharing the same itinerary (see the definition below) which are convex
and bounded as well as the union of all its iterates.

2.1. Boundedness of orbits and connected subsets of the regular set

We are interested in the dynamical study of Fλ in the case when λ = e2π
p
q i with p, q ∈ N

and (p, q) = 1. That is, when themaps F+
λ := Fλ|C+

0
and F−

λ : Fλ|C− are (rational) periodic
rotations. This situation was studied in [10], where the authors proved several facts which
are essential for our purposes. We list three consequences of their results. The first one, is
that for any bounded subsetA ofC the (forward or backward) orbit ofA by Fλ is bounded.
The second one, is that any connected unbounded set must intersect F and the third one
is that there is a sequence of invariant necklaces formed by periodic points and these neck-
laces have increasing periods when they tend towards infinity. We state these results for
future references in the next result, which is a consequence of Theorem 1 in [10]:

Theorem 2.1 (Goetz & Quas, [10]): Set α = 2πp/q where p, q ∈ N with (p, q) = 1. The
following assertions hold:

(a) For any bounded subset A ⊂ C the orbit of A is bounded. That is, the set
⋃∞

i=−∞ Fiλ(A)

is bounded
(b) If B is a connected and unbounded subset of C, then it must intersect F .
(c) There is a sequence of necklaces, like the ones in the right picture of Figure 1, which tend

to infinity, filled with periodic points of Fλ and with certain computable periods that tend
to infinity.

2.2. Properties of the sets of points with the same itinerary

For z ∈ C, we define the address of z, denoted A(z), by

A(z) =
{ +, if z ∈ C+,

−, if z ∈ C−.
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Figure 1. Necklaces for α = 8π/5. The critical set, formed by the union of a numerable sets of lines, in
grey, in the left picture. In the right picture two invariant necklaces.

We also define the itinerary of length n as the finite sequence of symbols

In(z) = A(z)A(F(z)) . . .A(Fn−1(z)),

and the itinerary as the infinite sequence of symbols

I(z) = A(z)A(F(z)) . . .A(Fi(z)) . . .

Notice that if In(z) = s1 . . . sn then Fnλ(z) = Fsnλ ◦ . . . ◦ Fs1λ (z).
Let J be the set of infinite sequences of two symbols + and −, and let S be the shift

operator defined inJ . That is S(s1s2 . . . si . . .) = s2s3 . . . si . . . . An element I ∈ J is called
n-periodic if Sn(I) = I and n is the smallest natural with this property. In this case we
will write I = (s1s2 . . . sn)∞. Since I(Fnλ(z)) = Sn(I(z)) if z is n-periodic for Fλ then I(z) is
k-periodic with k divisor of n.

Let Jn be the set of finite sequences of two symbols + and −, with length n. For J ∈ J
and Jn ∈ Jn we define the corresponding subsets of C of points in the regular set with the
same itinerary, given by

B(J) = {z ∈ U : I(z) = J} and B(Jn) = {z ∈ U : In(z) = Jn}.

The next result can be found in [8, Lemma 3], we include its proof for completeness.

Lemma 2.2: (i) Let Jn ∈ Jn. Then B(Jn) is either empty or convex. Moreover Fnλ|B(Jn) is an
affine map.

(ii) Let J ∈ J . Then B(J) is either empty or convex and bounded.

Proof: The proof of the convexity follows easily by induction. If n = 1, B(Jn) is either C+
or C− both convex sets. Assume that the result holds for sequences of length n−1 and set
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Jn−1 = (s1, . . . , sn−1). Therefore we have

B(Jn) = {(x, y) ∈ B(Jn−1) : F
n−1
λ (x, y) ∈ Csn}.

Moreover, Fn−1
λ restricted to B(Jn−1) is the affine map G = Fsn−1 ◦ . . . ◦ Fs1 . So we have

B(Jn) = B(Jn−1) ∩ G−1(Csn).

This fact proves that B(Jn) is convex because it is the intersection of two convex sets. This
ends the inductive proof of convexity. Furthermore, Fnλ(x, y) = Fsnλ ◦ Fsn−1

λ ◦ · · · ◦ Fs1λ (x, y),
for all (x, y) ∈ B(Jn), showing that F

n
λ restricted to B(Jn) is an affine map.

(ii) Write J = s1s2 . . . si . . . Then B(J) = ⋂∞
n=1 B((s1 . . . sn)) and the lemma follows

because the infinite intersection of convex sets is either empty or convex. Since it is convex
it is also connected. Then, it is bounded from Theorem 2.1(b) (recall that, by definition,
B(J) ⊂ U). �

The next result is one of the key steps in the proof of Theorem A. It establishes that for
α being a rational multiple of π , the points with periodic itinerary are periodic:

Proposition 2.3: Assume that λ = e
p
q 2π i with p, q ∈ Nwith (p, q) = 1. Let z ∈ U , then I(z)

is periodic if and only if z is periodic for Fλ.Moreover B(I(z)) is bounded and convex.

Proof: Trivially, if z is a periodic point then I(z) is periodic. Assume now, that z ∈ U ,
is a point such that I(z) = (s1 . . . s�)∞. In this case B(I(z)) is non empty and positively
invariant by F�

λ. By Lemma 2.2(i), the map F�
λ|B(I(z)) is affine. Direct computations show

that F�
λ|B(I(z))(z) = λ�z + b for some b ∈ C. Thus when � is not amultiple of qwe have that

F�
λ|B(I(z)) is a rotation of angle �2πp/q �= 0 centred at some point of the plane. This shows

that all points belonging to B(I(z)) are periodic. Note that, in fact, if w ∈ B(I(z)), then the
orbit by the rotation of angle �2πp/q is also contained in B(I(z)). Since, by Lemma 2.2(ii),
B(I(z)) is convex it follows that the centre of the rotation is contained in B(I(z)). On the
other hand if B(I(z)) is unbounded, from Lemma 2.1 it must intersectsF : a contradiction.

When � is a multiple of q we get F�
λ|B(I(z))(z) = z + b. If b �= 0 it follows that B(I(z))

must be unbounded: in contradiction with Lemma 2.2(ii). So b = 0 and F�
λ|B(I(z)) = Id.

�

2.3. Proof of TheoremA

To end the proof of Theorem A we need the following last result.

Lemma 2.4: If V ⊂ C is connected and V ∩ F = ∅, then all points in V have the same
itinerary.

Proof: Since V ∩ F = ∅, then Fiλ(V) ∩ R = ∅ for all i ∈ N. Therefore Fiλ|V is continuous
and since V is connected Fiλ(V) is contained in one of the two connected components of
C \ R. This ends the proof of the lemma. �
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Proof of Theorem A.: The fact that any component component of U is open follows from
the fact that U is open. Moreover, since any connected component does not intersectsF it
follows, by Theorem 2.1(b), that they are bounded. Also since any connected component
V does not intersectF , it follows that Fiλ|V is continuous and preserves area for any i ∈ N.
So we obtain that for all i ∈ N the sets Fiλ(V) are connected and with the same area that V.
Since, by Theorem 2.1(a),

⋃∞
i=0(V) is bounded, then there must be an overlapping of the

images of V, that is, there exists n, � ∈ N such that

Fnλ(V) ∩ Fn+�
λ (V) �= ∅. (1)

By Lemma 2.4, the points in Fnλ(V) have all the same itinerary, namely J. As a consequence
of (1), necessarily S�(J) = J, that is, the itinerary J is �-periodic. Therefore, from Proposi-
tion 2.3, the points in Fnλ(V) are periodic and, since Fλ is invertible, the same holds for the
points in V.

Notice that Fλ permutes the � tiles Fiλ(V)with i = 0, . . . , � − 1. Moreover, each of these
sets Fiλ(V) is invariant by F�

λ(z) = λ�z + b, with b ∈ C, which is a rotation of order k
around a centre point, which is contained in this set because of the convexity of Fiλ(V); see
Lemma 2.2(ii) and the proof of Proposition 2.3. As a consequence, on each tile there is a
�-periodic point (the centre) and the rest of the points are k�-periodic. Of course Fk�λ = Id.

Finally, the periods on U are unbounded as a direct consequence of the results of [10],
see item (c) in Theorem 2.1. �

3. Geometrical aspects

The objective of this section is to prove Theorem B, which describes the geometry of the
boundary of the connected components ofU . This is done in Section 3.2. To do this, several
results characterizing the closure of the critical set must be established.

3.1. Geometry of the critical set and regular set

For any z ∈ C, we denote the distance of z to the abscissa axis, which is the critical line R,
by d(z,R).

Lemma 3.1: Let F be the closure of the critical set, then

F =
{
z ∈ C : inf

n∈N∪{0}
d(Fnλ(z),R) = 0

}
.

Proof: Let us denote by S = {z ∈ C : infn∈N∪{0} d(Fnλ(z),R) = 0}. First, we will show
that F ⊂ S . To do this we take z /∈ S and we will show that z /∈ F . If z /∈ S it follows
that infn∈N∪{0} d(Fnλ(z),R) = a > 0. Now consider D the open disc centred at z with
radius b < a. We will show that D ∩ F = ∅ which implies that z /∈ F . To do this we will
prove inductively thatD ∩ F−n

λ (R) = ∅ for all n ∈ N ∪ {0}. This is clear for n = 0 because
d(z,R) ≥ a > b. Now assume that D ∩ F−i

λ (R) = ∅ for all i ∈ {0, . . . , n}. Then it follows
that Fiλ(D) ∩ R = ∅ for all i ∈ {0, . . . , n}. Observe that F|Fn(D) = Fn+1|D is a rotation that
in particular preserves the distance, so if Fn+1(D) ∩ R �= ∅ then d(Fn+1

λ (z),R) < b < a,
which is a contradiction. Then Fn+1(D) ∩ R = ∅, and this ends the inductive proof.
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Now we show that S ⊂ F . Assume that z /∈ F and z ∈ S . Then from Theorem A, z is
periodic. Therefore its orbit is finite and infn∈N∪{0} d(Fnλ(z),R) = minn∈N∪{0} d(Fnλ(z)R) =
a. If a = 0 then z ∈ F : a contradiction. So a>0 and the disc D centred at z with radius
b<a does not intersects F , a contradiction, again. �

We denote by G the critical set for F−1
λ . That is

G =
∞⋃
i=1

Fiλ(R).

Proposition 3.2: The following assertions hold

(a) If F \ F �= ∅ then the elements of F \ F are aperiodic.
(b) G ⊂ F .

Proof: (a) Assume, to get a contradiction, that z ∈ F \ F is periodic. Therefore its orbit
is finite and

inf
n∈N∪{0}

d(Fnλ(z),R) = min
n∈N∪{0}

d(Fnλ(z),R) = a.

From Lemma 3.1, a = 0. But this implies that z ∈ F , a contradiction.
(b) Assume, to get a contradiction, that there exists z ∈ G ∩ U . By Theorem A, z is

periodic, but due to the bijectivity of F, this also implies that z ∈ F , a contradiction. �

Corollary 3.3: The regular set U and the closure of the critical setF are invariant sets (both
positively and negatively) for Fλ. Moreover Fλ|U is a pointwise periodic homeomorphism,
which permutes the connected components of U.

Proof: By definition Fλ(U) ∩ F = ∅. On the other hand, as a consequence of Theorem A
and Proposition 3.2(a), Fλ(U) ∩ (F \ F) = ∅. Then Fλ(U) ⊂ U . The same considerations
holds for F−1

λ and therefore U is positively and negatively invariant. Since F is the com-
plement of U , the same holds for it. Lastly, since U is disjoint from the critical set of Fλ and
F−1

λ it follows that Fλ|U and F−1
λ |U are both continuous maps. �

The next result, characterizes each connected component of the regular set by its
(periodic) itinerary:

Corollary 3.4: Let V be a connected component of U . Let I be a finite-length itinerary
such that for all z ∈ V we get I(z) = I∞. Then V = B(I∞). In particular the connected
components of U are convex.

Proof: Clearly V ⊂ B(I∞). On the other hand B(I∞) ∩ F = ∅, because by definition it
does not contains points inF , and the points inF \ F are not periodic (Proposition 3.2).
Therefore B(I∞) ⊂ U . By Lemma 2.2(ii), the set B(I∞) is convex, so it is also connected
and, in consequence, it is contained only in one connected component ofU . ThenB(I∞) ⊂
V . �
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The following Proposition summarizes some known results about convex planar sets
that we are going to use, see for instance [13, Part I, Chapter 1].

Proposition 3.5: Let A be a convex open planar set and ∂A its boundary. Then the following
assertions hold:

(a) For any point z ∈ A and any point w ∈ ∂A, the segment joining both points is entirely
contained in A, except for the point w.

(b) ∂A is the union of a countable set of C1-open arcs and their endpoints.
(c) If z belongs to one of the arcs in statement (b), then the tangent line to ∂A at z does not

cut A.
(d) If ∂A is a polygon, then it contains at most two segments with the same slope.

Lemma 3.6: The boundary of a connected component of U is contained in F .

Proof: Let V be a connected component of U and denote its boundary by ∂V . Since V
is open ∂V ⊂ F . Let z ∈ ∂V and assume, to obtain a contradiction, that z ∈ F \ F . Pick
a point z′ ∈ V and consider L be the segment that joints z′ and z. By the convexity of V
it follows that all points in L, except z, belong to V (Proposition 3.5(a)). Since z /∈ F , by
Lemma 2.4 all points in L, including z, have the same itinerary. FromTheoremA, it follows
that z′ is periodic and hence its itinerary is also periodic. So the itinerary of z is periodic
as well, and as a consequence, z is periodic. This fact contradicts Proposition 3.2(a). �

3.2. Proof of TheoremB

Proof of Theorem B.: (a) Let z ∈ ∂V . From Lemma 3.6, z belongs to F . Therefore there
exists a first iterate i such that z belongs to F−i

λ (R). At this point note that F−i
λ (R) is a finite

union of segments all of them with the same slope. The argument of this slope belongs to
the set� = {0, 2πq , . . . , (q−1)2π

q }. So there are q possible slopes in the case q odd and only q
2

in the even case. Note also that for each iterate i the number of endpoints of this segments
is finite and then the set of points inF that are not contained in the interior of one segment
in F is countable.

From Proposition 3.5(b), ∂V is a countable union of C1-open arcs and their endpoints.
We will show that each of these arcs is a segment with slope in �. Pick a point z in the
interior of one of these arcs not belonging to the countable set of extremal points in F .
In this point, the tangent line to ∂V is well defined and it (locally) belongs to the interior
of a segment in F . It is clear that this segment must coincide with the tangent. If not, this
segment crosses ∂V : a contradiction. So almost all points (all except a countable set) have
a tangent with slope in �. Since the slope varies continuously in each arc, it follows that it
is constant and each arc is a segment with slope in �. So ∂V is a polygon. Now the result
about the number of sides follows from Proposition 3.5(d).

(b) If (�, q) = 1 we get that F�
λ is a rotation with order q that leaves V invariant. So the

only possibility is that either q is even and ∂V has q sides, or q is odd and ∂V has 2q sides.
In the first case it follows that each side has the same length and also each angle of the
polygon must be equal.
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(c) In order to prove the existence of connected components ofU which are non-regular
polygons, we consider α = 11π/6 (that is, α = 2πp/q with p = 11 and q = 12), and we
consider the non-regular hexagon

H :=
〈
(2, 0) ,

(√
3 + 3
2

, 0

)
,

(√
3 + 3
2

,
√
3 − 1
2

)
,

(√
3 + 7
4

,
√
3 + 1
4

)
,

(√
3 + 2
2

,
1
2

)
,

(√
3 + 5
4

,
√
3 − 1
4

)〉
,

where 〈〉 stands for the convex hull. The centre of H is the point C = (
√
3
3 + 3

2 ,
√
3
6 ) ∈ U ,

which is a 20-periodic point.
Carefully keeping track the iterates of the segment joining the points (2, 0) and (

√
3+3
2 , 0)

which belong to F , we obtain that all the segments of the boundary of H, belong to F .
By inspection, we have that the interior of this hexagon,Ho, does not cuts the disconti-

nuity line. The maps F+ and F−, respectively, are rotations of angle α = 11π/6 around the
centres of the upper and lower big dodecagons depicted in Figure 2, respectively. Hence,
the images by F of the interior of the hexagon, Ho

n = Fn(Ho), evolve describing a rota-
tion around the dodecagon which corresponds with the address of the centre of Ho

n . As
a consequence, one can check that Ho

20 = Ho and that for n = 0, . . . , 19, Ho
n ∩ R = ∅. As

a consequence, these 20 open irregular hexagons are an invariant subset of U under the
action of F.

�

Figure 2. The 20-periodic irregular hexagons associate to the hexagon H, for α = 11π/6.
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4. Some further evidences

One of the main differences between the special cases studied in [2, 7, 8, 10], in which
α ∈ R = {π/3,π/2, 2π/3, 4π/3, 3π/2, 5π/3}, and the cases α = 2π p

q /∈ R, is the appar-
ent fractalization of both F and U (see Figure 3, for instance), and the unboundedness of
the periods of the periodic orbits that can be found in compact sets. In this final section,
we present some particular evidences in this direction.

As an example, for α = 8π/5, by using geometrical arguments we found a scale factor
of 1/ϕ3, where ϕ = (1 + √

5)/2 is the golden ratio, between the triangle contained in F ,
defined by the points

Q = (−ϕ, 0), R =
(
1
2
,
(1 + 2ϕ)ϕ

√
ϕ + 2

2

)
and S = (1 + ϕ, 0)

and, seemingly, two infinite sequence of nested triangles in both left and right direc-
tions. More precisely, the left sequence of nested triangles are obtained using the rescal-
ing r(x, y) = ((2ϕ − 3)x + 2 − 2ϕ, (2ϕ − 3)y) (notice that 1/ϕ3 = 2ϕ − 3). Starting by
�QRS and obtaining the sequence �QRiSi where Ri = ri(R) and Si = ri(S). See Figure 4.

The rescaling r allows to obtain a seemingly infinite sequence of periodic points with
unbounded periods in a compact set of U . Indeed, if we consider the fixed point P0 =
( 12 ,

1
10

√
(2 + ϕ)3), which is the centre of the pentagon in Figure 4, and we consider the

recurrence Pn+1 = r(Pn), we obtain a sequence of centres of nested pentagons whose
periods seems to monotonically increase, see also Figure 4.

For instance, P1 = r(P0) is the centre of a second pentagon and it is 7-periodic, which
induces a 7-periodic inter-tile dynamics. Its itinerarymap is a 5-order rotation, hence there
exists 7 pentagons filled by 35-periodic orbits. See Figure 5. The first periods we encounter
are given in Table 1

Also, it seems that period(Pn+1)/period(Pn) → 6. The existence of this sequence of
points implies the existence of nested connected components of U in bounded regions,
filled by periodic points whose periods seem to increase indefinitely. This allows to find

Figure 3. Apparent fractalization ofF andU whenα = 2π p
q /∈ R, for the casesα = 11π

6 andα = 8π
5 ,

respectively.
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Figure 4. Sequenceof nested triangles definedby the critical curves forα = 8π
5 . In blue,�QRS,�QR1S1

and�QR2S2. In magenta, the periodic points P0, P1 and P2.

Figure 5. The 7-periodic orbit associatewith P1 = r(P0) inMagenta. All the points in the corresponding
pentagons are 35-periodic. In blue a 35-periodic orbit.

Table 1. First periods of the centres of the pentagons in Figure 4.

Pn = rn(P0) P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Period 1 7 38 232 1338 8332 49988 299932 1799588 10797532

segments inF belonging to the boundaries of these connected components of U , filled by
periodic points whose periods also seem to increase indefinitely.

It is also still open the possibility of the existence of aperiodic points inF . In this sense,
observe that the sequence of points {Pn}n converges to the point Q = (−ϕ, 0) ∈ F . This
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Figure 6. Some iterates of the orbit of the point Q = (−ϕ, 0) ∈ F in blue.

point has been identified as a possible aperiodic point in [5]. In Figure 6, the orbit of Q is
displayed.

We notice that we could compute, analytically, a very large number of iterates ofQwith-
out finding a period. This is because, for this case λ = exp(i8π/5) = exp(−i2π/5) = (ϕ −
1)/2 − i

√
ϕ + 2/2. Hence, by using the relation ϕ2 = ϕ + 1, and settingQ = −ϕ ∈ C, we

obtain that:

Qn = Fnλ(Q) = an + bnϕ + i (cn + dnϕ)
√
2 + ϕ,

with an, bn, cn, dn ∈ Q, hencewe couldworkwith rational arithmetic. For instance, the first
10 iterates are:

Q0 = −ϕ, Q1 = −ϕ

2
+ i

(
1
2

+ ϕ

2

)√
2 + ϕ, Q2 = 1 + ϕ

2
+ i

(
1
2

+ ϕ

2

)√
2 + ϕ,

Q3 = 1 + ϕ,

Q4 = 1
2

− i
ϕ

2
√
2 + ϕ, Q5 = −1 − i

√
2 + ϕ, Q6 = −1 − ϕ

2
+ i

(
1
2

− ϕ

2

)√
2 + ϕ,

Q7 = −ϕ

2
+ i

(
ϕ

2
− 1

2

)√
2 + ϕ, Q8 = i

√
2 + ϕ, Q9 = 3

2
+ i

ϕ

2
√
2 + ϕ, Q10 = ϕ.

Interestingly, the points of the sequence that return to the critical line seem to have the form
an + bnϕ where an, bn ∈ Z. For instance the returns in the first 220 iterates are:Q0 = −ϕ,
Q3 = 1 + ϕ, Q10 = ϕ, Q15 = −2 + ϕ, Q38 = −3 + ϕ, Q48 = −3 + 3ϕ, Q53 = −5 + 3ϕ,
Q78 = −7 + 5ϕ, Q83 = −9 + 5ϕ, Q93 = −9 + 7ϕ,Q220 = −10 + 7ϕ.
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