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Abstract. In this paper we classify the phase portraits in the Poincaré disc of a class of cubic polynomial

differential systems having an invariant ellipse and an invariant straight line. We prove that such a class of

cubic polynomial differential systems have exactly 43 topologically different phase portraits in the Poincaré
disc. Also we obtain that the invariant ellipse in two of these phase portraits is a limit cycle.

1. Introduction and statements of the main results

The phase portrait of a differential system defined in the plane R2 consists in describing R2 as union of
all the orbits of the differential system. The phase portrait of a differential system provides the maximal
qualitative information about its dynamics. This is the best information which can be given for a differential
system whose orbits cannot be given explicitly in function of the time.

A polynomial differential system in the plane R2 is a differential system of the form

(1)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y),

where P and Q are real polynomials in the variables x and y, and the independent variable t usually is
called the time. The maximum degree of the polynomials P and Q is called the degree of the polynomial
differential system. The vector field X associated to system (1) is

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

or simply X = (P,Q).

The phase portrait of a polynomial differential system in the plane usually is presented in the Poincaré
disc because then we can control the orbits which go to or come from the infinity. Roughly speaking the
Poincaré disc is the closed unit disc centered at the origin of R2, its interior is identified with R2, and
its boundary the circle S1 is identified with the infinity of R2. Note that in the plane R2 we can go to
infinity in as many directions as points in the circle S1. See subsection 2.2 for more details on the Poincaré
compactification and the Poincaré disc.

The polynomial differential systems of degree one are the linear differential systems, and it is well known
that these differential systems can be solved explicitly and their phase portraits are known, see for instance
Example 1.8 of [10]. So the next polynomial differential systems are the ones of degree two usually called
quadratic systems. There are more than one thousand of papers about these systems, see for instance the
books of Artés et al. [3], Reyn [21] and Ye Yanquian [28], and the references cited in these books. Many
subclasses of quadratic systems have been studied, thus for instance the phase portraits of all quadratic
systems having centers (see [5, 6, 13, 14, 25, 26, 29]), or the phase portraits of all quadratic Hamiltonian
systems (see [2, 5, 12]), or the phase portraits of all quadratic systems having an invariant ellipse (see
[15, 16, 24]), or the phase portraits of all quadratic systems having an invariant ellipse and an invariant
straight line (see [17]), or the phase portraits of all quadratic systems with invariant conics (see [22, 23, 24].

After the quadratic systems come the cubic systems, i.e. the polynomial differential systems of degree
three. Very few things are known for the cubic systems with respect the things that we know for the
quadratic systems. A nice application of the cubic systems is to the Higgins–Selkov and Selkov systems
which allow to study the biological nonlinear glycolytic oscillations, see [5] and the references cited there.
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The phase portraits of all cubic systems are unknown, only we know the phase portrais of some subclasses
of cubic centers, or the cubic Hamiltonian systems, or of the cubic systems having an ellipse, ... Here we
start the classification of the phase portraits of the cubic systems having an invariant ellipse and an invariant
straight line.

Let f(x, y) be a real polynomial in the variables x and y. We recall that the algebraic curve f(x, y) = 0
in R2 is an invariant algebraic curve of system (1) if

Pfx +Qfy = Kf,

for some polynomial K(x, y), which is called the cofactor of f(x, y) = 0. As usual we denote by fx and fy
the partial derivatives of f with respect to x and y, respectively.

In the next result we characterize all the cubic systems having an invariant ellipse and an invariant straight
line.

Proposition 1. Every cubic system having an invariant ellipse and an invariant straight line after an affine
change of variables can be written into the form:

(2) ẋ = df − (ax+ by + c)fy, ẏ = ef + (ax+ by + c)fx,

where f = f(x, y) = (x2 + y2 − 1)(x− r) with r ≥ 0.

The cubic system (2) have six parameters a, b, c, d, e, r, too much parameters for doing all their phase
portraits. We restrict our study to the subclass of cubic system (2) of the form

(3) ẋ = −(by + c)fy, ẏ = ef + (by + c)fx,

where f = f(x, y) = (x2 + y2 − 1)(x− r) with r ≥ 0. The cubic system (3) have four parameters b, c, e and
r.

Doing a rescaling of the time if e ̸= 0 we can assume that e = 1. So the objective of this paper is to
characterize the phase portraits of the class of cubic system (3) in the Poincaré disc with e = 1 and with
e = 0. Also we observe that system (3) is invariant by the change (x, y, t, b, c, r) → (x,−y,−t,−b, c, r). That
is why it is enough to prove the main results only for b ≥ 0.

Our main results are the following two theorems.

Theorem 2. System (3) with e = 1 has 32 topologically different phase portraits which are given in Figures
6-26. Also we show that the invariant ellipse in two phase portraits is a limit cycle.

Theorem 3. System (3) with e = 0 has 11 topologically different phase portraits which are given in Figures
27-31.

This paper is organized as follows. In section 2 we introduce the definitions concerning the classification
of singularities of planar polynomial vector fields and we describe the Poincaré compactification. Finally, in
section 3 we prove Theorems 2 and 3.

2. Preliminary results

In this section we summarize some basic results that we shall need for proving our results.

2.1. Singular Points. A point p ∈ R2 is said to be a singular point of the vector field X = (P,Q) if
P (p) = Q(p) = 0. The Jacobian matrix of system (1) at the point p is

J(p) =


∂P

∂x
(p)

∂P

∂y
(p)

∂Q

∂x
(p)

∂Q

∂y
(p)

 .
The determinant and the trace of the Jacobian matrix are

det(p) = Px(p)Qy(p)− Py(p)Qx(p), tr(p) = Px(p) +Qy(p),

respectively. The singular point p is called hyperbolic if the two eigenvalues of J(p) have real part different
from 0. p is a linear center if the eigenvalues of J(p) are purely imaginary without being zero. In this
case and if the vector field X is analytic, p is either a center or a (weak) focus. Moreover p is a saddle if
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det(p) < 0; a node if det(p) > 0 and tr(p)2 ≥ 4 det(p) > 0, stable if tr(p) < 0, and unstable if tr(p) > 0; a
focus if det(p) > 0 and 4 det(p) > tr(p)2 > 0, stable if tr(p) < 0, and unstable if tr(p) > 0.

If det(p) = 0 but tr(p) ̸= 0, then the singular point p is semi-hyperbolic. Hyperbolic and semi-hyperbolic
singularities are also called elementary.

The singular point p is called nilpotent if both eigenvalues of J(p) are equal to 0 but J(p) ̸≡ 0, and the
singular point p is called linearly zero if J(p) ≡ 0; for more details see [10].

2.2. Poincaré compactification. Due to the fact that system (3) is polynomial we can compactify it in
the Poincaré disc D. This disc is the closed disc of radius one and center at the origin of coordinates of
R2. The plane R2 where is defined system (3) is diffeomorphic to the interior of D, and its boundary S1
corresponds to the infinity of R2. System (3) can be extended to the closed disc D in a unique analytic way in
such manner that S1, the boundary of D, is invariant by the extended flow, i.e. if an orbit of the extend flow
has a point in S1 the whole orbit is contained in S1. This extension is called the Poincaré compactification,
for more details on this compactification see Chapter 5 of [10].

Figure 1. The local charts Ui and Vi, for i = 1, 2 of the Poincaré disc D.

Figure 2. The coordinates (u, v) in the local charts U1 and U2.

In order to work with the Poincaré disc we need four local charts (Uk, ϕk) and (Vk, ψk) for i = 1, 2, where

U1 = {(x, y) ∈ R2 : x > 0}, U2 = {(x, y) ∈ R2 : y > 0},
V1 = {(x, y) ∈ R2 : x < 0}, V2 = {(x, y) ∈ R2 : y < 0},

and the diffeomorphisms ϕk : Uk → D and ψk : Vk → D for k = 1, 2 are defined as follows

ϕ1(x, y) =

(
y

x
,
1

x

)
= (u, v), ϕ2(x, y) =

(
1

y
,
x

y

)
= (u, v),

and ψk = −ϕk for k = 1, 2.

If ẋ = P (x, y), ẏ = Q(x, y) is a polynomial differential system and d is the maximum of the degrees of P
and Q, then the expression of the extended flow in the local chart (U1, ϕ1) is

u̇ =vd
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vd+1P

(
1

v
,
u

v

)
.

The expression in the local chart (U2, ϕ2) is

u̇ =vd
[
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
, v̇ = −vd+1Q

(
u

v
,
1

v

)
.
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The expressions in the local charts (Vk, ψk), for k = 1, 2 are the same than in the chart (Uk, ϕk) multiplied
by (−1)d−1. We note that v = 0 corresponds to the infinity S1 in all the local charts. In the Poincaré disc
the singular points which are in its interior are called finite singular points, while the singular points which
are in its boundary are called infinite singular points.

Note that for studying the infinite singular points it is sufficient to study the infinite singular points which
are in the local chart U1, and to see if the origin of the local chart U2 is or not an infinite singular point.

If X = (P,Q) is the vector field associated to the polynomial differential system (1), then p(X ) denotes
the vector field associated to the analytic system defined in the Poincaré disc which comes from the extension
of the vector field X to the boundary of the Poincaré disc. Usually we call the vector field p(X ) the Poincaré
compactification of X .

2.3. Phase portraits in the Poincaré disc. In this subsection we shall see how to characterize the global
phase portraits in the Poincaré disc of the cubic system (3).

A separatrix of p(X ) is an orbit which is either a singular point, or a limit cycle, or a trajectory which
lies in the boundary of a hyperbolic sector at a finite or infinite singular point. Neumann [19] proved that
the set formed by all separatrices of p(X ); denoted by S(p(X )) is closed. We denote by S the number of
separatrices of the phase portrait of p(X ).

The open connected components of D \ S(p(X )) are called canonical regions of p(X ). We denote by R
the number of canonical regions of the phase portrait of p(X ).

We define a separatrix configuration of a polynomial vector field X as a union of S(p(X )) plus one
solution chosen from each canonical region. Two separatrix configurations S(p(X )) and S(p(Y)) are said to
be topologically equivalent if there is an orientation preserving or reversing homeomorphism which maps the
trajectories of S(p(X )) into the trajectories of S(p(Y)). The following result is due to Markus [18], Neumann
[19] and Peixoto [20].

Theorem 4. The phase portraits in the Poincaré disc of the two compactified polynomial differential systems
p(X ) and p(Y) are topologically equivalent if and only if their separatrix configurations S(p(X )) and S(p(Y))
are topologically equivalent.

To determine the local phase portraits at the singular points of a system, we shall use the following result.

Theorem 5. (Poincaré-Hopf Theorem). For every continuous vector field on the sphere S2 with a finite
number of singular points, the sum of the (topological) indices of their singular points is 2.

2.4. The directional blow-up technique. For studying the local phase portraits at the finite and infinite
singularities the blow-up technique is necessary, so we present a summary of the directional blow-up technique,
for more details see [1].

Consider a real planar polynomial differential system of the form

(4)
ẋ =P (x, y) = Pm(x, y) + ...,

ẏ =Q(x, y) = Qm(x, y) + ...,

where P and Q are coprime polynomials, Pm and Qm are homogeneous polynomials of degree m ∈ N. We
note that we are assuming that the origin is a singular point, since m > 0.

The directional blow-up in the vertical direction (respectively, horizontal) is the mapping (x, z) 7→
(x, xz) = (x, y) (respectively, (z, y) 7→ (yz, y) = (x, y)), where z is a new variable. This map transforms the
origin of (4) into the straight line y = 0 (respectively, x = 0). The expression of system (4) after a vertical
blow-up is

ẋ = P (x, xz), ẏ =
Q(x, xz)− zP (x, xz)

x
,

that is always well-defined since we are assuming that the origin is a singularity. After the blow-up, we
cancel an appearing common factor xm−1 (xm if xQm(x, y)− yPm(x, y) ≡ 0).

Moreover, the mapping swaps the second and the third quadrants in the vertical blow-up and the third
and the fourth quadrants in the horitzontal blow-up, which writes as

ż =
P (yz, y)− zQ(yz, y)

y
, ẋ = P (yz, y).
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The key point is that doing a finite number of blow ups we can determine the local phase portrait of any
singular point of an analytic differential system in the plane, see for details [9].

3. Proof of the results

We shall start proving Proposition 1 and for this we shall need the following two results, the first is proved
in [8], and the second in [11].

Lemma 6. Assume that the polynomial system (1) of degree m has an invariant algebraic curve f(x, y) = 0,
and that there are no points at which f(x, y) = 0 and their first derivatives are all vanish. If fx and fy are
coprime, then system (1) has the following normal form

(5) ẋ = Af −Dfy, ẏ = Bf +Dfx,

where A,B and D are suitable polynomials.

Lemma 7. Suppose that a polynomial system (1)) admits q algebraic solutions fi = 0 for i = 1, . . . , q. We

denote by F =
q∏

i=1

fi, Fx = ∂F/∂x, Fy = ∂F/∂y, d = gcd(Fx, Fy), H1, H2, H3,K, PK , QK ∈ F[x, y] satisfying

FxPK + FyQK = KF. Then the differential system can be written in the form

ẋ =
1

H3

(
H1PK −H2

Fy

d

)
, ẏ =

1

H3

(
H1QK +H2

Fx

d

)
,

with suitable H1, H2, H3,K, PK and QK , such that H1PK−H2
Fy

d and H1QK+H2
Fx

d are polynomials divisible
by H3.

Proof of Proposition 1. Assume that we have a cubic system having an invariant ellipse and an invariant
straight line. Then doing a convenient affine transformation this ellipse can be written as the circle x2 +
y2− 1 = 0. After doing a rotation with respect to the origin of coordinates the invariant straight line can be
written as x− r = 0 with r ≥ 0. Then we apply Lemma 6 to the polynomial f(x, y) = (x2 + y2 − 1)(x− r)
when r > 1 choosing the polynomials A, B and D in order that the polynomial differential system (5) has
degree three, and we obtain the cubic system (2) for r > 1. Finally using Lemma 7 we again obtain the
cubic system (2) for r ∈ [0, 1]. □

3.1. Infinite singular points. We will study of the local phase portraits at the infinite singular points of
the local chart U1 and at the origin of U2 of system (3) with e = 1 and e = 0.

3.1.1. Infinite singular points of system (3) with e = 1. Let X be the vector field associated to system (3)
with e = 1. Then the expression for p(X ) in the local chart U1 is

u̇ =1 + 3 bu+ (3 c− r) v + u2 − 2 brvu− (2 cr + 1) v2 + 3 bu3 + (3 c− r) vu2 − bv2u

+ (r − c) v3 − 2 brvu3 − 2 crv2u2,

v̇ =− 2 v (bu+ cv)u (rv − 1) .

Then in order to study the infinite singular points of system (3) with e = 1 in the local chart U1 we must
study the singular points of the form (u, 0). Therefore on U1 there is a unique infinite singular point at
q = (−1/(3b), 0) if b > 0, and there is no singular points if b = 0. The eigenvalues of the Jacobian of the
system in the local chart U1 at the point q are (9 b2 + 1)/(3b) and 2/(9b). Hence the singular point q is an
unstable node if b > 0. Since the degree of X is odd, the diametrically opposite point p in V1 is also another
unstable node.

In the local chart U2 the Poincaré compactification of system (3) is

(6)

u̇ =− 3 bu+ 2 brv − u2 + (r − 3 c) vu+ 2 crv2 − 3 bu3 + 2 brvu2 + bv2u− u4 + (r − 3 c) vu3

+ (2 cr + 1) v2u2 + (c− r) v3u,

v̇ =− bv − vu+ (r − c)v2 − 3 bvu2 + 2 brv2u+ bv3 − vu3 + (r − 3 c) v2u2 + (2 cr + 1) v3u+ (c− r) v4.

In order to complete the study of the infinite singular points of system (3) with e = 1 we only need to study
if the origin of local chart U2 is or not a singular point. The eigenvalues of the Jacobian of system (6) at the
origin are −3b and −b, so the singular point is a stable node if b > 0. Similarly the diametrically opposite
point of V2 is also an unstable node.
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If b = 0, then the origin of U2 is linearly zero. We need to do blow-ups to understand the local behavior
at this point. We perform the directional blow-up (u, v) 7→ (u,w) with w = v/u and we obtain

u̇ = u2
(
2 cru2w2 + cu2w3 − ru2w3 + 2 crw2 − 3 cu2w + ru2w + u2w2 − 3 cw + rw − u2 − 1

)
,

ẇ = −2 cw2u (rw − 1) .

Using a reparametrization of time we eliminate the common factor u between u̇ and ẇ, and we get

(7)
u̇ = u

(
2 cru2w2 + cu2w3 − ru2w3 + 2 crw2 − 3 cu2w + ru2w + u2w2 − 3 cw + rw − u2 − 1

)
,

ẇ = −2 cw2 (rw − 1) .

For r > 0 the singular points of system (7) on u = 0 are (0, 0) and (0, 1/r). The eigenvalues of the linear
part of system (7) at the points (0, 0) are −1 and 0, and at the point (0, 1/r) are −c/r and −2c/r. So the
point (0, 0) is a semi-hyperbolic point. Using Theorem 2.19 of [10] it is a saddle-node point. If c > 0 then
the point (0, 1/r) is a stable node and an unstable node if c < 0. Going back through the blow-ups we obtain
the local phase portrait at the origin of U2, it is formed by two elliptic sectors, a repelling parabolic sector,
and an attracting parabolic sector as it is shown in Figure 3.

Figure 3. The local phase portraits at the origin of U2 when b = 0 and r > 0.

When r = 0 system (7) on u = 0 has the unique singular point (0, 0) and the eigenvalues of the Jacobian
matrix at the origin are −1 and 0. The origin is a semi-hyperbolic point. Using Theorem 2.19 of [10] it is
a saddle-node point. Going back through the change of variables until the coordinates (u, v), the origin of
the local chart U2 in the variables (u, v) has the local phase portrait of Figure 4.

Figure 4. The local phase portraits at the origin of U2 when b = 0 and r = 0.

3.1.2. Infinite singular points of system (3) with e = 0. Now suppose that X is the vector field associated
to (3) with e = 0.

Case (I) If b > 0, then the degree of X is three and the expression for p(X ) in the local chart U1 is

u̇ = − (bu+ cv)
(
2 ru2v + 2 rv − 3u2 + v2 − 3

)
, v̇ = −2 v (bu+ cv)u (rv − 1) .

Therefore on U1 there is a unique infinite singular point at the origin. Note that the origin is a non-isolated
singular point because the straight line bu+ cv = 0 is filled of singularities.

On the local chart U2 system (3) with e = 0 becomes

u̇ = (cv + b)
(
2 ru2v − 3u3 + uv2 + 2 rv − 3u

)
, v̇ = v (cv + b)

(
2 ruv − 3u2 + v2 − 1

)
.

The origin of U2 is a singular point, and the eigenvalues of the Jacobian matrix at the origin are −3b and
−b. So the origin of U2 is a stable node. In this case the degree of X is odd and the diametrically opposite
point of V2 is also a stable node.
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Cases Conditions Singular points

(I) r ∈ [0, 1), b > 0, |b| > |c| (r,− c
b ), (r,

√
1− r2), (r,−

√
1− r2), (

√
b2−c2

b ,− c
b ), (−

√
b2−c2

b ,− c
b ),

(x∗1, 0), (x
∗
2, 0), (x

∗
3, 0)

(II) r ∈ [0, 1), b > 0, |b| < |c| (r,− c
b ), (r,

√
1− r2), (r,−

√
1− r2), (x∗1, 0), (x

∗
2, 0), (x

∗
3, 0)

(III) r ∈ [0, 1), b > 0, |b| = |c| (r,− c
b ), (r,

√
1− r2), (r,−

√
1− r2), (0,− c

b ), (x
∗
1, 0), (x

∗
2, 0), (x

∗
3, 0)

(IV) r ∈ [0, 1), b = 0 (r,
√
1− r2), (r,−

√
1− r2), (x∗1, 0), (x

∗
2, 0), (x

∗
3, 0)

(V) r = 1, b > 0, |b| > |c| (1,− c
b ), (

√
b2−c2

b ,− c
b ), (−

√
b2−c2

b ,− c
b ), (1, 0), (x

∗
2, 0), (x

∗
3, 0)

(VI) r = 1, b > 0, |b| < |c| (1,− c
b ), (1, 0), (x

∗
2, 0), (x

∗
3, 0)

(VII) r = 1, b > 0, |b| = |c| (1,− c
b ), (0,−

c
b ), (1, 0), (x

∗
2, 0), (x

∗
3, 0)

(VIII) r = 1, b = 0 (1, 0), (x∗2, 0), (x
∗
3, 0)

(IX) r > 1, b > 0, |b| > |c| (r,− c
b ), (

√
b2−c2

b ,− c
b ), (−

√
b2−c2

b ,− c
b ), (x

∗
1, 0), (x

∗
2, 0), (x

∗
3, 0)

(X) r > 1, b > 0, |b| < |c| (r,− c
b ), (x

∗
1, 0), (x

∗
2, 0), (x

∗
3, 0)

(XI) r > 1, b > 0, |b| = |c| (r,− c
b ), (0,−

c
b ), (x

∗
1, 0), (x

∗
2, 0), (x

∗
3, 0)

(XII) r > 1, b = 0 (x∗1, 0), (x
∗
2, 0), (x

∗
3, 0)

Table 1. Finite singular points of system (3) with e = 1 and c ̸= 0.

Case (II) If b = 0, then the degree of X is two and the expression for p(X ) in the local chart U1 is

u̇ = −c
(
2 ru2v + 2 rv − 3u2 + v2 − 3

)
, v̇ = −2 vcu (rv − 1) .

Therefore there are no infinite singular point in the local chart U1.

The expression for p(X ) in the local chart U2 is

u̇ = c
(
2 ru2v − 3u3 + uv2 + 2 rv − 3u

)
, v̇ = vc

(
2 ruv − 3u2 + v2 − 1

)
.

So the origin of U2 is an infinite singular point. Since this point has eigenvalues −c and −3c, then it is a
stable node if c > 0, and an unstable node if c < 0. Since the degree of X is even the diametrically opposite
point of V2 is an unstable node and a stable node, respectively.

3.2. Finite singular points. Here we will study the finite singular points of system (3) with e = 1, and
e = 0.

3.2.1. Finite singular points of system (3) with e = 1 and c ̸= 0. In this case the finite singular points are
given in Table 1, where x∗i , i = 1, 2, 3 are the three real roots of the equation

x3 + (3 c− r)x2 − (2 cr + 1)x− c+ r = 0.(8)

We claim that equation (8) always has three distinct real roots if c ̸= 0. In fact if we compute its discriminant
with respect to x we get

p(r) = b0r
4 + b1r

3 + b2r
2 + b3r + b4,

where

b0 = 4 c2 + 4, b1 = 8 c3, b2 = 36 c4 + 24 c2 − 8, b3 = −72 c3, b4 = 108 c4 + 36 c2 + 4,

with b0 ̸= 0, and define

D3 = 16b20b2b4 − 18b20b
2
3 − 4b0b

3
2 + 14b0b1b2b3 − 6b0b

2
1b4 + b21b

2
2 − 3b31b3,

D4 = 256b30b
3
4 − 27b20b

4
3 − 192b20b1b3b

2
4 − 27b41b

2
4 − 6b0b

2
1b

2
3b4 + b21b

2
2b

2
3 − 4b0b

3
2b

2
3 + 18b31b2b3b4 + 144b0b

2
1b2b

2
4

−80b0b1b
2
2b3b4 + 18b0b1b2b

3
3 − 4b21b

3
2b4 − 4b31b

3
3 + 16b0b

4
2b4 − 128b20b

2
2b

2
4 + 144b20b2b

2
3b4.

Since D4 > 0 and D3 ≤ 0 the four roots of the polynomial p(r) are non-real, for more details see [27]. It
follows that the discriminant of equation (8) is always positive, and consequently equation (8) has three
distinct real roots.
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Now we classify the local phase portrait of the finite singular points according with the twelve cases of
Table 1, and after knowing all the local phase portraits at the finite and infinite singular points together
with the fact that the circle x2 + y2 = 1 and the straight line x = r are invariant, we shall determine the
phase portraits in the Poincaré disc of these cases.

Case (I). If r ∈ [0, 1) and

(I1) r ̸= ±
√
b2 − c2/b then system (3) with e = 1 has eight distinct finite singular points, namely

p1 =
(
r,−c

b

)
, p2,3 =

(
r,±

√
1− r2

)
, p4,5 =

(
±
√
b2 − c2

b
,−c

b

)
, pi+5 = (x∗i , 0), i = 1, 2, 3.

The Jacobian of system (3) is

J =

[
−(by + c)fyx −(b fy + (by + c)fyy)

fx + (by + c)fxx fy + bfx + (by + c)fxy

]
.

The eigenvalues of the Jacobian matrix at p1 are 0 and (
(
r2 − 1

)
b2 + c2)/b, so it is semi-hyperbolic. Using

Theorem 2.19 in [10], it is a saddle-node point. The determinants of the Jacobian matrices at the points p2
and p3 are

det J(p2) =4
(
r2 − 1

) (
−b2r2 + 2 bc

√
1− r2 + b2 + c2

)
,

det J(p3) =4
(
r2 − 1

) (
−b2r2 − 2 bc

√
1− r2 + b2 + c2

)
.

Since these determinants are negative, these two points are hyperbolic saddles. Computing the determinant
and the trace of the Jacobian matrix at the point p4 we have

det J(p4) = −4cf1(r)

b3
, trJ(p4) = −2g1(r)

b2
,

where

f1(r) =b
2
√
b2 − c2r2 − 2b

(
b2 − c2

)
r +

√
b2 − c2

(
b2 − c2

)
,

g1(r) =b
(
b
√
b2 − c2 − c

)
r − b(b2 − c2) + c

√
b2 − c2.

The expression f1(r) is positive, therefore the point p4 is a hyperbolic saddle if c > 0, and a hyperbolic node
or focus if c < 0, because the trace of Jacobian matrix at this point is non-zero. In a similar way we obtain
that the point p5 is a hyperbolic saddle if c < 0, and a hyperbolic node or focus if c > 0. The determinant
and trace of the Jacobian matrix at the point p6 are

det J(p6) =− 2

3

Kc

M
2
3

, trJ(p6) =
1

3

bL

M
2
3

,

where

K =
(
27 c3 + 6 rc2 + cr2 + 3 c+ 8 r

)
M2/3

+
(
−81 c4 − 18 c3r − 12 c2r2 + cr3 − 36 c2 − 9 r + (3 c+ 2 r)

√
−Ti

)
M1/3

+
(
9 c2 + r2 + 3

) (
27 c3 + 6 rc2 + cr2 + 3 c+ 8 r

)
− 2

(
9 c2 + r2 + 3

)√
−Ti,

L =
(
27 c2 + r2 + 3

)
M2/3 +

(
−81 c3 − 6 cr2 + r3 − 18 c− 9 r + 3

√
−Ti

)
M1/3

+ 243 c4 + 18 c2r2 − 6 cr3 + r4 + 54 c2 + 54 cr + 6 r2 + 9− 18 c
√
−Ti,

M =− 27 c3 + r3 − 9 r + 3
√
−Ti,

T =
(
−3 c2 − 3

)
r4 − 6 c3r3 +

(
−27 c4 − 18 c2 + 6

)
r2 + 54 c3r − 81 c4 − 27 c2 − 3.

First we show that T < 0 if c ̸= 0. Indeed, we consider T as a function of r, then

D3 = −324 c2
(
648 c12 + 2295 c10 + 2592 c8 + 606 c6 − 328 c4 + 32 c2 + 128

)
< 0,

D4 = 11664 c4
(
54 c6 + 81 c4 + 72 c2 + 16

)3
> 0.
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Therefore from [27] we get that the four roots of the polynomial T are non-real, and consequently T < 0.
The resultant with respect to c between the polynomials −27 c3 + r3 − 9r and −T is

k(r) =5832 r18 − 78732 r16 + 1299078 r14 − 8798301 r12 + 68024448 r10 − 199290375 r8 + 806727438 r6

+ 674398629 r4 + 172186884 r2 + 14348907.

By applying the Sturm’s Theorem we get that k(r) > 0 for all r ∈ [0,∞). Thus −27 c3 + r3 − 9 r and −T
have no common roots, and this fact implies that M is different from zero.

Now we will prove that the expressions K and L are non-zero. Taking M1/3 = Y the expressions K and
L change to the form

K =
(
27 c3 + 6 rc2 + cr2 + 3 c+ 8 r

)
Y 2

+
(
−81 c4 − 18 c3r − 12 c2r2 + cr3 − 36 c2 − 9 r + (3 c+ 2 r)

√
−Ti

)
Y

+
(
9 c2 + r2 + 3

) (
27 c3 + 6 rc2 + cr2 + 3 c+ 8 r

)
− 2

(
9 c2 + r2 + 3

)√
−Ti,

L =
(
27 c2 + r2 + 3

)
Y 2 +

(
−81 c3 − 6 cr2 + r3 − 18 c− 9 r + 3

√
−Ti

)
Y

+ 243 c4 + 18 c2r2 − 6 cr3 + r4 + 54 c2 + 54 cr + 6 r2 + 9− 18 c
√
−Ti.

After finding the two roots Y1 and Y2 of K = 0 and the two roots Ȳ1 and Ȳ2 of L = 0 we have

M − Y 3
j = ±216(R(r, c) + iI(r, c)

√
−T ) = 0, j = 1, 2,

M − Ȳ 3
j = ±72(R̄(r, c) + iĪ(r, c)

√
−T ) = 0, j = 1, 2,

respectively, where

R(r, c) = c
(
r2 − 1

)
W (r)R1(r, c), I(r, c) = −6 c

(
r2 − 1

)
W (r)I1(r, c),

R̄(r, c) = (r2 − 1)2R1(r, c), Ī(r, c) = −6(r2 − 1)2I1(r, c),

where

W (r) =
(
c2 + 1

)
r4 + 2 c3r3 +

(
9 c4 + 6 c2 − 2

)
r2 − 18 c3r + 27 c4 + 9 c2 + 1,

R1(r, c) = 729 c6 − 243 c4r2 − 108 c3r3 − 27 c2r4 + r6 − 729 c4 + 972 c3r − 162 c2r2 − 45 r4 − 243 c2

+ 135 r2 − 27,

I1(r, c) = 27 c3 − r3 + 9 r.

The function W (r) is always positive because

D3 = −4 c2
(
648 c12 + 2295 c10 + 2592 c8 + 606 c6 − 328 c4 + 32 c2 + 128

)
< 0,

D4 = 16 c4
(
54 c6 + 81 c4 + 72 c2 + 16

)3
> 0.

On the other hand the resultant between R1(r, c) and I1(r, c) with respect to c is

l(r) =− 3099363912 r18 + 41841412812 r16 − 690383311398 r14 + 4675777881741 r12 − 36150980669568 r10

+ 105911076180375 r8 − 428728036378158 r6 − 358403081794389 r4 − 91507169819844 r2

− 7625597484987,

and using the Sturm’s theorem we see that there is no root for all r ∈ [0,∞). Thus, R1(r, c) and I1(r, c)
have no common roots. These facts imply that K and L are different from zero, therefore the singular point
p6 is hyperbolic. Then the determinant and the trace verify

det J(p6)|{r= 1
2 ,c=1} = 2.310040050− 0.000000003667457936 i,

det J(p6)|{r= 1
2 ,c=−1} = −59.94103202− 0.000000005049604033 i,

trJ(p6)|{r= 1
2 ,c=1} = (0.1083508522 + 0.0000000008913180476 i) b,

and since these functions are continuous it follows that the singular point p6 is a saddle if c < 0 and an
unstable node or focus if c > 0.

Similarly we can obtain that the singular points p7 and p8 are hyperbolic and they are saddles, or nodes
or foci.

Using the information about the infinite singular points and the Poincaré-Hopf Theorem we get that the
sum of the indices of the singular points at p6, p7 and p8 is one. Therefore two points of these points must
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be nodes or foci and the other is a saddle. The local phase portraits of the finite singular points are given
in Tables 2 and 3.

Now we want to know if the focus or node points, inside the circle x2 + y2 − 1 = 0, are surrounded by
limit cycles or not? For this we shall use the Dulac-Bendixson criterion (for a proof see for instance [10]):

Theorem 8. If there exists a C1 function B(x, y) in a simply connected region R such that ∂(BP )/∂x +
∂(BP )/∂y has constant sign and is not zero in R, then the C1 differential system

ẋ = P (x, y), ẏ = Q(x, y),

does not have periodic orbits in R.

1
p

4
p5

p

2
p

3
p

7
p

8
p

6
p

Figure 5. Local phase portrait in the Poincaré disc for case (I1) when b2(r2 − 1) + c2 < 0 and
b, c > 0.

Consider the two regions R1 = {(x, y) : x2+ y2 < 1, x− r > 0} and R2 = {(x, y) : x2+ y2 < 1, x− r < 0},
and the Dulac function

B(x, y) =
1

(by + c) (x− r) (x2 + y2 − 1)
.

By applying the Dulac-Bandixson criterion to the differential system (3) with e = 1 in the regions R1 and
R2 with the function B(x, y), we get

∂(BP )

∂x
+
∂(BQ)

∂y
= − b

(by + c)
2 .

Since the straight line y = −c/b is transversal with respect to the flow of the differential system (3) with
e = 1, from Theorem 8 there is no periodic orbits in the regions R1 and R2.

Now we shall describe how we obtain the left phase portrait in the Poincaré disc of Figure 6, in a similar
way are obtained all the other global phase portraits which appear in the paper.

Points c > 0 c < 0
p1 semi-hyperbolic saddle-node semi-hyperbolic saddle-node
p2 hyperbolic saddle hyperbolic saddle
p3 hyperbolic saddle hyperbolic saddle
p4 hyperbolic saddle hyperbolic unstable node
p5 hyperbolic unstable node hyperbolic saddle
p6 hyperbolic unstable node or focus hyperbolic saddle
p7 hyperbolic saddle hyperbolic unstable node or focus
p8 hyperbolic stable node or focus hyperbolic stable node or focus

Table 2. The local phase portraits of the finite singular points for case (I1) when b2(r2−1)+c2 < 0.

We consider the local phase portrait corresponding to c > 0 and b2(r2 − 1) + c2 < 0. In this case system
(3) has eight distinct finite singular points which are described in Table 2. Since r ∈ [0, 1), the invariant
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straight line x = r intersect the invariant circle x2 + y2 = 1 in two points p2 and p3. The point p1 is on the
invariant straight line x = r and inside the circle. It is clear that the points p4 and p5 are on the invariant
circle and on the line y = −c/b. We do not have any explicit solution for the remain points p6, p7 and p8 but
we can compute numerically where they are located. Also the local phase portraits at the infinite singular
points of the local chart U1 and at the origin of U2 of system (3) are presented in section 3.1.1 (see Figure
5).

Now we describe how we find the global phase portrait. We start describing the two global phase portraits
coming from the two local phase portraits described in Table 2. Since the infinite singular point p sends
orbits to the origins of U2 and V2 one of the stable separatrices of the finite singular point p7 must start at
p. The two unstable separatrices of p7 only can go to either to the origin of U2, or to the origin of V2, but
both cannot go simultaneously to one of these origins. So one unstable separatrix of p7 goes to the origin
of U2 and the other to the origin of V2. Hence the remaining stable separatrix of p7 only can come from
the unstable node p5. Clearly the unstable separatrix of p1 must go to the stable singular point p8. On the
other hand one of the stable separatrices of p4 must come from the unstable singular point p6, and the other
stable only can come from the infinite singular point q. This completes the description of the left global
phase portrait of Figure 6. The right global phase portrait of Figure 6 can be obtained in the same way.
Also we note that every different class of phase portrait is denoted by a different number in the above of
the global phase portrait, and we will use the same number for the topologically equivalent classes. Thus in
Figure 6 both phase portraits have the number (1).

1
p

4
p

5
p

2
p

3
p

7
p

8
p

6
p

1
p

2
p

3
p

4
p

5
p

6
p8

p
7

p

Figure 6. Global phase portraits in the Poincaré disc for case (I1) when b2(r2 − 1) + c2 < 0.

Points c > 0 c < 0
p1 semi-hyperbolic saddle-node semi-hyperbolic saddle-node
p2 hyperbolic saddle hyperbolic saddle
p3 hyperbolic saddle hyperbolic saddle
p4 hyperbolic saddle hyperbolic stable node
p5 hyperbolic unstable node hyperbolic saddle
p6 hyperbolic unstable node or focus hyperbolic saddle
p7 hyperbolic saddle hyperbolic unstable node or focus
p8 hyperbolic stable node or focus hyperbolic stable node or focus

Table 3. The local phase portraits of the finite singular points for case (I1) when b2(r2−1)+c2 > 0.

(I2) r =
√
b2 − c2/b, then system (3) with e = 1 has six distinct finite singular points, namely

p1 =

(√
b2 − c2

b
,
c

b

)
, p2,3 =

(
±
√
b2 − c2

b
,−c

b

)
, pi+3 = (x∗i , 0), i = 1, 2, 3,

where x∗i are the roots of the cubic polynomial

x3 +

(
3bc−

√
b2 − c2

)
b

x2 −
(
2c
√
b2 − c2 + b

)
b

x− bc−
√
b2 − c2

b
.

The singular points pj for j = 4, 5, 6 only exits when x∗j is real.



12 ALI BAKHSHALIZADEH AND JAUME LLIBRE
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Figure 7. Global phase portraits in the Poincaré disc for case (I1) when b2(r2 − 1) + c2 > 0.

The points pi, i = 1, 3, 4, 5, 6 are hyperbolic, because the eigenvalues of the Jacobian matrix are real and
non-zero. The Jacobian matrix at p2 is linearly zero and then we need blow-ups to understand its local
phase portrait.

We move p2 =
(√
b2 − c2/b,−c/b

)
to the origin, then the differential system becomes

(9)
ẋ = −2 bxy2 + 2 cxy,

ẏ = −2 cxy
b + x3 + 4

√
b2 − c2xy + 3 bx2y + 2

√
b2−c2x2

b + xy2 + by3 − 2 cy2.

Now we do the blow-up (x, y) 7→ (x,w) with w = y/x and eliminating the common factor x, we have

(10)
ẋ = −2wx (bwx− c) ,

ẇ = 1
b

(
3 b2w3x+ 3 b2xw + xw2b− 4 cw2b+ 4

√
b2 − c2wb+ bx− 2wc+ 2

√
b2 − c2

)
.

When x = 0 in system (10), we have that ẇ = 0 if and only if

w = − 1

2b
, w =

√
b2 − c2

c
.

So on the w-axis system (10) has two singular points. The eigenvalues of the Jacobian matrix at the

point (0,−1/(2b)) are −c/b and (4 b
√
b2 − c2 + 2c)/b, and at the point (0, (

√
b2 − c2)/c) are 2

√
b2 − c2 and

−(4 b
√
b2 − c2+2c)/b. Therefore when c > 0 the points (0, 1/(−2b)) and (0,

√
b2 − c2/c) are saddles. If c < 0

and c + 2b
√
b2 − c2 > 0, then the point (0, 1/(−2b)) is an unstable node and the point (0,

√
b2 − c2/c) is a

saddle. If c < 0 and c+2b
√
b2 − c2 < 0, then the point (0, 1/(−2b)) is a saddle and the point (0,

√
b2 − c2/c)

is an unstable node. Going back through the change of variables until the coordinates (x, y), the origin of
system (9) in the variables (x, y) has the local phase portraits of Figure 8. The local phase portraits of the
finite singular points are given in Table 4. We classify all the global phase portraits of this case in Figure 9.

Figure 8. The local phase portraits at p2 in the case (I2).

Case (II). There are six distinct finite singular points, namely

p1 =
(
r,−c

b

)
, p2,3 =

(
r,±

√
1− r2

)
, pi+3 = (x∗i , 0), i = 1, 2, 3.

The points pi, i = 2, ..., 6 are hyperbolic and p1 is a semi-hyperbolic point. Using Theorem 2.19 of [10] we
find that p1 is a saddle-node. The local phase portraits of the finite singular points in this case are shown
in Table 5. For the global phase portraits of this case see Figure 10.
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Points c > 0 c < 0
p1 hyperbolic saddle hyperbolic saddle
p2 linearly zero linearly zero
p3 hyperbolic unstable node hyperbolic saddle
p4 hyperbolic unstable node or focus hyperbolic saddle
p5 hyperbolic saddle hyperbolic unstable node or focus
p6 hyperbolic stable node or focus hyperbolic stable node or focus

Table 4. The local phase portraits of the finite singular points for case (I2).
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Figure 9. Global phase portraits in the Poincaré disc for case (I2).

Points
p1 semi-hyperbolic saddle-node
p2 hyperbolic saddle
p3 hyperbolic saddle
p4 hyperbolic saddle if c < 0, a hyperbolic focus or node if c > 0
p5 hyperbolic saddle if c > 0, a hyperbolic focus or node if c < 0
p6 hyperbolic focus or node

Table 5. The local phase portraits of the finite singular points for case (II).
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Figure 10. Global phase portraits in the Poincaré disc for case (II).

Case (III). If r ∈ [0, 1) and

(III1) r ∈ (0, 1) then system (3) with e = 1 has seven distinct finite singular points, namely

p1 =
(
r,−c

b

)
, p2,3 =

(
r,±

√
1− r2

)
, p4 =

(
0,−c

b

)
, pi+4 = (x∗i , 0), i = 1, 2, 3.

The points p1 and p4 are semi-hyperbolic, and using Theorem 2.19 in [10] we obtain that both are saddle-
node. The rest of singular points are hyperbolic, see Table 6. The global phase portraits of this case are
given in Figure 11.



14 ALI BAKHSHALIZADEH AND JAUME LLIBRE

Points c > 0 c < 0
p1 semi-hyperbolic saddle-node semi-hyperbolic saddle-node
p2 hyperbolic saddle hyperbolic saddle
p3 hyperbolic saddle hyperbolic saddle
p4 semi-hyperbolic saddle-node semi-hyperbolic saddle-node
p5 hyperbolic unstable node or focus hyperbolic saddle
p6 hyperbolic saddle hyperbolic unstable node or focus
p7 hyperbolic stable node or focus hyperbolic stable node or focus

Table 6. The local phase portraits of the finite singular points for case (III1).
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Figure 11. Global phase portraits in the Poincaré disc for case (III1).

(III2) r = 0 then it has five distinct finite singular points, namely

p1 = (0, 1) , p2 = (0,−1) , pi+2 = (x∗i , 0), i = 1, 2, 3.

The points pi, i = 3, 4, 5 are hyperbolic, the point p1 is hyperbolic if c > 0, and it is linearly zero if c < 0,
and the point p2 is hyperbolic if c < 0, and it is a linearly zero if c > 0. So we need to do the blow-up
techniques to study these linearly zero points.

At first we move p1 = (0, 1) to the origin and assume that b = −c, then we get

(11)
ẋ = 2 cxy (y + 1) ,
ẏ = −3 cx2y − cy3 − 2 cy2 + x3 + xy2 + 2xy.

Doing the blow-up (x, y) 7→ (x,w) with w = y/x and eliminating the common factor x, we have

(12)
ẋ = 2 cxw (wx+ 1) ,
ẇ = −3 cw3x− 4 cw2 − 3 cxw + w2x+ 2w + x.

When x = 0, system (12) has the singular points (0, 0) and (0, 1/(2c)). The linear part of system (12) at a
point (0, w) is [

2 cw 0

−3 cw3 − 3 cw + w2 + 1 −8 cw + 2

]
.

Therefore the origin of system (12) is a semi-hyperbolic. Using Theorem 2.19 in [10] it is a saddle-node and
the point (0, 1/(2c)) is a hyperbolic saddle. Going back through the change of variables until system (11),
the local phase portrait at the point p1 is given in Figure 12.

In a similar way we can study the local phase portrait at the point p2, see Figure 13. The local phase
portraits of the finite singular points of this case are shown in Table 7. The global phase portraits of this
case are shown in Figure 14.

Case (IV). System (3) with e = 1 and b = 0 becomes

(13)
ẋ = 2 cy (−x+ r) ,
ẏ = −2 crx+ 3 cx2 + cy2 − rx2 − ry2 + x3 + xy2 − c+ r − x.
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Figure 12. The local phase portrait at p1 in the case (III2).

Figure 13. The local phase portrait at p2 in the case (III2).

Points c > 0 c < 0
p1 hyperbolic saddle linearly zero
p2 linearly zero hyperbolic saddle
p3 hyperbolic unstable node or focus hyperbolic saddle
p4 hyperbolic saddle hyperbolic unstable node or focus
p5 hyperbolic stable node or focus hyperbolic stable node or focus

Table 7. The local phase portraits of the finite singular points for case (III2).
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Figure 14. Global phase portraits in the Poincaré disc for case (III2).

We know that the cubic system (13) has an invariant ellipse x2 + y2 − 1 = 0 and an invariant straight line
x− r = 0. Using the Darboux theory (see Theorem 8.7 of [10]), it is easy to obtain that

H(x, y) = ex(r − x)c
(
x2 + y2 − 1

)c
,

is a first integral of system (13) in the open and dense subset of R2 where it is defined.

System (13) has five distinct finite singular points, namely

p1,2 =
(
r,±

√
1− r2

)
, pi+2 = (x∗i , 0), i = 1, 2, 3.

The eigenvalues of the Jacobian matrix of system (13) evaluated at pi, i = 1, 2 are equal to 2 c
√
1− r2 and

−2 c
√
1− r2. Therefore these points are hyperbolic saddles. Since the trace of the Jacobian matrix at the

points pi, i = 3, 4, 5 is equal to zero and their determinant is non-zero, these points can be either saddle or
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center or focus. But since the first integral H is not zero on them these points must be a center or a saddle.
The local phase portraits of the finite singular points in this case are given in Table 8. The global phase
portraits are shown in Figure 15.

Points
p1 hyperbolic saddle
p2 hyperbolic saddle
p3 hyperbolic saddle if c < 0, center if c > 0
p4 hyperbolic saddle if c > 0, center if c < 0
p5 center

Table 8. The local phase portraits of the finite singular points for case (IV).
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Figure 15. Global phase portraits in the Poincaré disc for case (IV).

Case (V). System (3) with e = 1 has six distinct finite singular points, namely

p1 =
(
1,−c

b

)
, p2,3 =

(
±
√
b2 − c2

b
,−c

b

)
, p4 = (x∗1, 0) = (1, 0), pi+3 = (x∗i , 0), i = 2, 3.

The points p2, p3 and p6 are hyperbolic. The point p1 is semi-hyperbolic and the point p4 is nilpotent, using
Theorem 2.19 and Theorem 3.5 in [10], respectively, we know that p1 is a saddle-node and p4 is a saddle.
The local phase portrait of the finite singular points in this case are shown in Table 9. We show the global
phase portraits in this case in Figure 16.

Case (VI). System (3) with e = 1 has four distinct finite singular points, namely

p1 =
(
1,−c

b

)
, p2 = (x∗1, 0) = (1, 0), pi+1 = (x∗i , 0), i = 2, 3.

The points p3 and p4 are hyperbolic. The point p1 is semi-hyperbolic and the point p2 is nilpotent, using
Theorem 2.19 and Theorem 3.5 in [10], respectively, we know that p1 is a saddle-node and p2 is a saddle.
The local phase portraits of the finite singular points in this case are shown in Table 10. The global phase
portraits in this case are classified in Figure 17.
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Points c > 0 c < 0
p1 semi-hyperbolic saddle-node semi-hyperbolic saddle-node
p2 hyperbolic saddle hyperbolic stable node
p3 hyperbolic unstable node hyperbolic saddle
p4 nilpotent saddle nilpotent saddle
p5 hyperbolic stable node or focus hyperbolic saddle
p6 hyperbolic saddle hyperbolic unstable node or focus

Table 9. The local phase portraits of the finite singular points for case (V).
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Figure 16. Global phase portraits in the Poincaré disc for case (V).

Points
p1 semi-hyperbolic saddle-node
p2 nilpotent saddle
p3 hyperbolic saddle if c < 0, hyperbolic focus or node if c > 0
p4 hyperbolic saddle if c > 0, hyperbolic focus or node if c < 0

Table 10. The local phase portraits of the finite singular points for case (VI).
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Figure 17. Global phase portraits in the Poincaré disc for case (VI).

Case (VII). System (3) with e = 1 has five distinct finite singular points, namely

p1 =
(
1,−c

b

)
, p2 =

(
0,−c

b

)
, p3 = (x∗1, 0) = (1, 0), pi+2 = (x∗i , 0), i = 2, 3.

The points p4 and p5 are hyperbolic. The points p1 and p2 are semi-hyperbolic and the point p3 is nilpotent,
using Theorem 2.19 and Theorem 3.5 in [10], respectively, we know that p1 and p2 are saddle-nodes and p3
is a saddle. The local phase portrait of the finite singular points in this case are shown in Table 11. The
global phase portraits in this case are classified in Figure 18.
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Points
p1 semi-hyperbolic saddle-node
p2 semi-hyperbolic saddle-node
p3 nilpotent saddle
p4 hyperbolic saddle if c < 0, hyperbolic focus or node if c > 0
p5 hyperbolic saddle if c > 0, hyperbolic focus or node if c < 0

Table 11. The local phase portraits of the finite singular points for case (VII).
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Figure 18. Global phase portraits in the Poincaré disc for case (VII).

Case (VIII). System (3) with e = 1 has three distinct finite singular points, namely

p1 = (x∗1, 0) = (1, 0), pi+1 = (x∗i , 0), i = 1, 2.

When c > 0 the point p3 is a hyperbolic saddle and the point p2 is a center or focus, but the first integral in
this case is non-zero (see Case (IV)), hence this point is a center. When c < 0 the point p2 is a hyperbolic
saddle and the point p3 is a center for the same reason. The point p1 is nilpotent, again using Theorem 3.5
of [10] it is a saddle. The local phase portraits of the finite singular points in this case are shown in Table
12. The global phase portraits in this case are shown in Figure 19.

Points
p1 nilpotent saddle
p2 hyperbolic saddle if c < 0, center if c > 0
p3 hyperbolic saddle if c > 0, center if c < 0

Table 12. The local phase portraits of the finite singular points for case (VIII).
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Figure 19. Global phase portraits in the Poincaré disc for case (VIII).
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Case (IX). System (3) with e = 1 has six distinct finite singular points, namely

p1 =
(
r,−c

b

)
, p2,3 =

(
±
√
b2 − c2

b
,−c

b

)
, pi+3 = (x∗i , 0), i = 1, 2, 3.

The points pi, i = 2, ..., 6 are hyperbolic and the point p1 is semi-hyperbolic, using Theorem 2.19 of [10], it
is a saddle-node. The local phase portraits of the finite singular points in this case are shown in Table 13.
The global phase portraits in this case are given in Figure 20.

Points c > 0 c < 0
p1 semi-hyperbolic saddle-node semi-hyperbolic saddle-node
p2 hyperbolic saddle hyperbolic stable node or focus
p3 hyperbolic unstable node or focus hyperbolic saddle
p4 hyperbolic saddle hyperbolic saddle
p5 hyperbolic saddle hyperbolic unstable node or focus
p6 hyperbolic stable node or focus hyperbolic saddle

Table 13. The local phase portraits of the finite singular points for case (IX).

1
p

4
p

5
p

2
p3

p

6
p

1
p

4
p

5
p

2
p

3
p

6
p

Figure 20. Global phase portraits in the Poincaré disc for case (IX)

Case (X). System (3) with e = 1 has four distinct finite singular points, namely

p1 =
(
r,−c

b

)
, pi = (x∗i , 0), i = 2, 3, 4.

The points pi, i = 2, 3, 4 are hyperbolic and the point p1 is semi-hyperbolic, using Theorem 2.19 in [10], it
is a saddle-node.

By Theorem 1 of [7] in this case there is only one hyperbolic limit cycle x2 + y2 = 1. The local phase
portrait of the finite singular points in this case are shown in Table 14. The global phase portraits in this
case are classified in Figure 21.

Points
p1 semi-hyperbolic saddle-node
p2 hyperbolic saddle
p3 hyperbolic saddle if c > 0, hyperbolic focus or node if c < 0
p4 hyperbolic saddle if c < 0, hyperbolic focus or node if c > 0

Table 14. The local phase portraits of the finite singular points for case (X).

Case (XI). System (3) with e = 1 has five distinct finite singular points, namely

p1 =
(
r,−c

b

)
, p2 =

(
0,−c

b

)
, pi = (x∗i , 0), i = 2, 3, 4.

The points pi, i = 3, 4, 5 are hyperbolic, and the points p1 and p2 are semi-hyperbolic, using Theorem 2.19
of [10], they are saddle-nodes. The local phase portrait of the finite singular points in this case are shown
in Table 15. The global phase portraits in Poincaré disc in this case are given in Figure 22.
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Figure 21. Global phase portraits in the Poincaré disc for case (X)

Points
p1 semi-hyperbolic saddle-node
p2 semi-hyperbolic saddle-node
p3 hyperbolic saddle
p4 hyperbolic saddle if c > 0, hyperbolic focus or node if c < 0
p5 hyperbolic saddle if c < 0, hyperbolic focus or node if c > 0

Table 15. The local phase portraits of the finite singular points for case (XI).
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Figure 22. Global phase portraits in the Poincaré disc for case (XI)

Case (XII). System (3) with e = 1 has three distinct finite singular points, namely

pi = (x∗i , 0), i = 1, 2, 3.

The point p1 is a hyperbolic saddle. If c > 0 the point p2 is a hyperbolic saddle and the point p3 can be
either a center or a focus, but the first integral at this point is non-zero (see Case (IV)), hence this point
is a center. If c < 0 the point p3 is a hyperbolic saddle and the point p2 is a center for the same reason.
The local phase portraits of the finite singular points in this case are shown in Table 16. These local phase
portraits provide three global phase portraits shown in Figure 23, the first (respectively, the third) phase
portrait presented in Figure 23 is verified by c = 3, r = 2 (respectively, c = 1, r = 2). Therefore by continuity
it exists the phase portrait (27) of Figure 23.

Points
p1 hyperbolic saddle
p2 hyperbolic saddle if c > 0, center if c < 0
p3 hyperbolic saddle if c < 0, center if c > 0

Table 16. The local phase portraits of the finite singular points for case (XII).
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Figure 23. Global phase portraits in the Poincaré disc for case (XII)

In the next sections we shall see that the phase portraits can be obtained directly by the analysis of the
corresponding system of polynomial differential equations. So we decided to omit the corresponding tables
of description of local phase portraits.

3.2.2. Finite singular points of system (3) with e = 1, c = 0 and b > 0. Under these assumptions system
(3) becomes

(14)
ẋ = −2 by2 (x− r) ,
ẏ = −2 brxy + 3 bx2y + by3 − rx2 − ry2 + x3 + xy2 − by + r − x.

Now we consider three cases as follows:

Case (i). If r ∈ [0, 1) then system (14) has five distinct finite singular points, namely

p1 = (r, 0) , p2,3 =
(
r,±

√
1− r2

)
, p4,5 = (±1, 0) .

The eigenvalues of the Jacobian matrix at the point p1 are 0 and b(r2 − 1), therefore it is a semi-hyperbolic
point. Using Theorem 2.19 in [10], it is a stable node. The eigenvalues of the Jacobian matrix at the points
p2 and p3 are −2b(r2 − 1) and 2b(r2 − 1), so these points are saddles. The eigenvalues of the Jacobian
matrix at the points p4 and p5 are 0, −2b(r − 1) and 0, 2b(r + 1), respectively, therefore these points are
semi-hyperbolic, after using Theorem 2.19 of [10] we obtain that these points are saddle-nodes. The global
phase portraits in this case are shown in Figure 24 (i).

Case (ii). If r = 1 then system (14) has two distinct finite singular points, namely

p1 = (1, 0) , p2 = (−1, 0) .

The eigenvalues of the Jacobian matrix at the point p2 are 0 and 4b, therefore it is a semi-hyperbolic point.
Using Theorem 2.19 of [10], it is saddle-node. The point p1 is linearly zero, so we need to apply the blow-up
technique to determine the local phase portrait at this point. First we move p1 = (0, 1) to the origin, then
we get

(15)
ẋ = −2 by2x,
ẏ = 3 bx2y + by3 + 4 bxy + x3 + xy2 + 2x2.
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Figure 24. Global phase portraits in the Poincaré disc for case e = 1, c = 0.

Doing the blow-up (x, y) 7→ (x,w) with w = y/x and eliminating the common factor x, we have

(16)
ẋ = −2 bw2x2,
ẇ = 3 bw3x+ 3 bwx+ w2x+ 4 bw + x+ 2.

On x = 0 system (16) has the singular point (0,−1/(2b)). The eigenvalues of the Jacobian matrix of system
(16) are 0 and 4b. Therefore the singular point (0,−1/(2b)) is semi-hyperbolic. Using Theorem 2.19 of [10]
it is a saddle-node. Going back through the change of variables until system (15), the local phase portraits
of the point p1 are given in Figure 25.

Figure 25. The local phase portrait at p1 in the case (ii).

In summary the global phase portraits in this case in Figure 24 (ii).

Case (iii). If r > 1 then system (14) has three distinct singular points, namely

p1 = (r, 0) , p2,3 = (±1, 0) .

The points p1, p2 and p3 are semi-hyperbolic, using Theorem 2.19 of [10], these points are a saddle, a saddle-
node and a saddle-node, respectively. Then the global phase portraits in the Poincaré disc in this case are
given in Figure 24 (iii).

3.2.3. Finite singular points of system (3) with e = 1, c = 0 and b = 0. Under these assumptions system
(3) becomes

ẋ =0,

ẏ =
(
x2 + y2 − 1

)
(x− r) .

We see that the circle x2 + y2 = 1 and the straight line x = r are filled of singular points, and that there
are no more singularities. Consequently the global phase portraits in this case are shown in the Figure 26.

3.2.4. Finite singular points of system (3) with e = 0. Here system (3) becomes

(17)
ẋ = −2 (by + c) y (x− r) ,
ẏ = − (by + c)

(
2xr − 3x2 − y2 + 1

)
.

At first we see that the line by + c = 0 is filled with singular points. By reparametrization of time we
eliminate this common factor, then system (17) changes to the form

(18)
ẋ = 2 y (x− r) ,
ẏ = 2xr − 3x2 − y2 + 1.
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Figure 26. Global phase portraits in the Poincaré disc for case e = 1, c = 0 and b = 0.
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Figure 27. Global phase portraits in the Poincaré disc for case e = 0 and b = 0.

Note that we cannot consider the case b = c = 0, otherwise system (17) would become the null system.
Using the Darboux theory of integrability (see for instance Chapter 8 of [10]) we obtain that

H(x, y) = (r − x)
(
x2 + y2 − 1

)
,

is a first integral of system (18).

Now we assume 0 ≤ r < 1 then there are four distinct finite singular points of system (17), namely

p1,2 =
(
r,±

√
1− r2

)
, p3,4 =

(
r ±

√
r2 + 3

3
, 0

)
.

The Jacobian matrix of system (18) at a generic point (x∗, y∗) is given by[
−2 y∗ −2x∗ + 2 r

−2 r + 6x∗ 2 y∗

]
.

The eigenvalues of the Jacobian matrix in p1 and p2 are equal to 2
√
−r2 + 1 and−2

√
−r2 + 1. Consequently,

these points are saddles. Computing the determinant and the trace of the Jacobian matrix in the points p3
and p4 we obtain that these points are either a center, or a focus. Since the first integral H is defined on
these point they are centers.

Next we assume r = 1 then there are two distinct finite singular points for system (18), namely

p1 = (1, 0), p2 =

(
−1

3
, 0

)
.

Then both eigenvalues of the Jacobian matrix at the point p1 are zero, but J(p1) ̸≡ 0, so this point is
nilpotent. Using Theorem 3.5 in [10], we find that it is a saddle. The determinant of the Jacobian matrix
at the point p2 is 32/3 and the trace is equal to zero, therefore it can be either a center or focus. Using the
first integral of system (18) we get that this point is a center.
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Figure 28. Global phase portraits in the Poincaré disc for case e = 0 and c = 0.
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Figure 29. Global phase portraits in the Poincaré disc for case e = 0, |b| > |c| and c > 0.
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Figure 30. Global phase portraits in the Poincaré disc for case e = 0, b = c > 0.

Finally we assume r > 1 then there are two finite distinct singular points for system (18), namely

p1,2 =

(
r ±

√
r2 + 3

3
, 0

)
.

Computing the determinant and the trace of the Jacobian matrix in these points we see that p1 is a hyperbolic
saddle and p2 can be either a center, or focus, and for the same reason as in the two previous cases it must
be a center.

Using the above information, the global phase portraits of system (17) with b = 0 are given in Figure 27
and the global phase portraits of system (17) and the line by + c = 0 filled of singular points are shown in
Figure 28-31.

4. Topological equivalent phase portraits

In Table 17 we summarize the number of canonical regions R and the number of separatrices S of all the
phase portraits of system (3) with the parameter e = 1. Of course the phase portraits which do not share
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Figure 31. Global phase portraits in the Poincaré disc for case e = 0, |b| < |c| and c > 0.

their pair (R,S) with any other phase portraits of the table, clearly are not topological equivalent with any
other phase portrait of the table. Now we shall analyze the phase portraits of the table which share their
pair (R,S) with some other phase portraits of the table.

R S Phase portraits
5 13 27
5 16 30
6 14 18, 19, 26, 28
6 19 31
7 18 11
7 21 14, 15
8 24 10
8 25 7, 16, 17, 29
8 26 4, 5
8 27 12, 13
8 29 8, 9
8 31 1
9 24 22, 23
9 28 6
9 31 2, 3
10 25 24
10 27 25
10 29 20, 21

Table 17. R and S denotes the number of canonical regions and the number of separatrices of the
corresponding phase portraits in the Poincaré disc only of systems (1) with e = 1.

For the systems with (R,S) = (6, 14) we analyze all the configurations of separatrices of systems (18)
and (26) we see that they are topologically equivalent, so by Theorem 4 these two phase portraits are
topologically equivalent. The same occurs with the configurations of separatrices of systems (19) and (28)
hence their phase portraits are topologically equivalent. But the configuration of separatrices of (18) and
(19) are not topologically equivalent.

Consider the phase portraits (14) and (15) sharing (R,S) = (7, 21). They are not topologically equivalent
because the phase portrait (14) has a canonical region having in its boundary the invariant circle and a point
of the infinity, while the phase portrait (15) has a canonical region having in its boundary the invariant circle
and an arc of the infinity.

Now we anayze the systems with (R,S) = (8, 25). System (7) has two saddles on the invariant circle
which are connected by a separatrix contained in the interior of the unit disc, this does not occur for the
systems (16), (17) and (29), so the phase portrait of system (7) is not topologically equivalent to the phase
portraits of systems (16), (17) and (29). System (29) has no finite singular points outside the unit disc,
since systems (16) and (17) have finite singular points outside the unit disc (recall that the boundary of the
unit disc is the invariant circle formed by separatrices), therefore the phase portrait of system (29) is not
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topologically equivalent to the phase portraits of systems (16) and (17). In the phase portraits of system
(17) there is an orbit connecting the saddle and the saddle-node which are outside the unit disc, and this
is not the case for the phase portrait of system (17). In summary the phase portraits of systems (7), (16),
(17) and (29) are not topologically equivalent.

Consider the systems (4) and (5) having (R,S) = (8, 26). The same argument used for proving that the
phase portraits (14) and (15) are not topologically equivalent works here.

Again the same argument used for proving that the phase portraits (14) and (15) are not topologically
equivalent shows that the phase portraits of the systems (12) and (13), of the systems (8) and (9), of the
systems (22) and (23), and of the systems (2) and (3) are not topologically equivalent.

The saddle on the invariant circle of system (21) has a separatrix going to infinity, this is not the case
for the saddle of system (20) on the invariant circle. Hence the phase portraits of these two systems are not
topologically equivalent.

In summary, from the 31 phase portraits of system (3) with e = 1 and b2+c2 ̸= 0 only 29 are topologically
non-equivalent.

Clearly the phase portraits (32), (33) and (34) of system (3) with e = 1 and b2 + c2 = 0 are not
topologically equivalent between them, and with all the other phase portraits because are the unique phase
portraits having the invariant circle filled up with singular points.

The phase portraits from (35) to (49) are the ones of system (3) with e = 0. Then using the separatrix
configurations and Theorem 4 is easy to verify that the phase portraits of (36) and (37), of (39) and (40), of
(42) and (43), and finally of (48) and (49) are topologically equivalent. That is from the 15 phase portraits
of system (3) with e = 0 only 11 are topologically non-equivalent.

5. Bifurcation diagrams

(a) r = 0 (b) 0 < r < 1

(c) r = 1 (d) r > 1

Figure 32. The bifurcation diagrams for the system (3) with e = 1 and b2 + c2 ̸= 0. Here

k = c/
√
1− r2. The number x denotes the phase portrait (x) for the values of the parameters b

and c in the region or in the straight line where this number appears.

In Figure 32 we provide the bifurcations diagrams of the differential system (3) with e = 1 and b2+c2 ̸= 0
in the half-plane of parameters {(c, b) : b ≥ 0} for the different values of the parameter r ≥ 0.
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(a) r = 0 (b) 0 < r < 1

(c) r = 1 (d) r > 1

Figure 33. The bifurcation diagrams for the system (3) with e = 0 and b2 + c2 ̸= 0. The number
x denotes the phase portrait (x) for the values of the parameters b and c in the region or in the
straight line where this number appears.

While in Figure 33 we provide the bifurcations diagrams of the differential system (3) with e = 0 and
b2 + c2 ̸= 0 in the half-plane of parameters {(c, b) : b ≥ 0} for the different values of the parameter r ≥ 0.

The bifurcation diagram of the differential system (3) with e = 1 and b = c = 0 on the half straight line
r ≥ 0 is given by the phase portrait (32) when 0 ≤ r < 1, for the phase portrait (33) when r = 1, and for
the phase portrait (34) if r > 1.
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