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Abstract. We develop a Darboux theory of integrability for polynomial vec-
tor fields on the n-dimensional torus Tn. Furthermore, we determine the
maximum number of invariant parallels for a polynomial vector field on Tn

depending on its degree.

1. Introduction

The Darboux theory of integrability [2] is one of the best tools to obtain
first integrals for polynomial vector fields. It essentially builds a link between
algebraic geometry and first integrals by showing that with a sufficient number
of invariant algebraic surfaces, exponential factors and the multiplicity of the
invariant algebraic surfaces, one can construct first integrals. The theory has
been extended by many authors, starting with R2 and regular surfaces in R3, [9]
and lately for Rn, or Sn, or either the Clifford torus [4, 5, 7, 6, 9, 8, 10, 11]. The
importance of these extensions comes from the theory of first integrals and its
applications. Their existence for differential systems is important in particular
for the reduction of the ambient space, which in many cases makes easier the
analysis of the dynamics. Our main aim is to obtain an extension of the Darboux
theory of integrability of real polynomial vector fields on the n-dimensional torus
Tn, and then, using the extactic polynomial, to obtain the maximum number of
parallels that such a vector field can have depending on its degree.

Before stating our results, we need some preliminary definitions (see [9] for
more details).

Let G : Rn+1 → R be a C1 map. A hypersurface Ω defined by G = 0 is regular
if ∇G ̸= 0 on Ω. We say that Ω is algebraic of degree d if G is an irreducible
polynomial of degree d. A polynomial vector field X on Ω is a polynomial vector
field X in Rn+1 with

X · ∇G = 0 at all points of Ω.
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Given f ∈ C[x1, ..., xn+1], the algebraic hypersurface {f = 0} ∩ Ω ⊂ Rn+1 is
said to be invariant under a polynomial vector field X on Ω if there exists
k ∈ C[x1, . . . , xn+1] (called the cofactor of f = 0 on Ω) such that Xf = kf on
Ω, and the two hypersurfaces f = 0 and Ω have transverse intersection.

Given f, g ∈ Cm[x1, . . . , xn+1] (the set of all polynomials in C[x1, . . . , xn+1] of
degree at most m) and let Ω = {G = 0} be a regular algebraic hypersurface in
Rn+1 of degree d. We write f ∼ g if f/g = constant or f − g = hG for some
polynomial h. One can verify that ∼ is an equivalence relation and we denote
the dimension of the quotient space Cm[x1, . . . , xn+1]/ ∼ by d(m). It is proved
in [9] that

(1) d(m) =

(
n+ 1 +m

n+ 1

)
−
(
n+ 1 +m− d

n+ 1

)
.

Let U ∈ Rn+1 be an open set. A real function H(x1, . . . , xn+1, t) : Rn+1 → R is
a first integral of the polynomial vector field X on Ω∩U if H(x1(t), . . . , xn+1(t))=
constant for all the values of t such that (x1(t), . . . , xn+1(t)) ∈ Ω ∩ U . If H is a
rational function, then it is called a rational first integral.

Now we present the extension of the Darboux theory of integrability to polyno-
mial vector fields on Tn. The next theorem gives the dimension of Cm[x1, . . . , xn+1].

Theorem 1. We have

d(m) =

(
n+ 1 +m

n+ 1

)
−
(
n+ 1 +m− 2n

n+ 1

)
.

Theorem 1 is proved in section 2. It follows from a general statement on the
dimension of the linear space Cm[x1, . . . , xn+1] on a regular algebraic hypersurface
proved in [9]. We note that m ≥ 2n.

The following theorem follows readily from [9, Theorem 5] and [5, Theorem
2].

Theorem 2. Let X be a polynomial vector field on Tn of degreem = (m1, . . . ,mn+1)
having p invariant algebraic hypersurfaces {fi = 0} ∩ Tn with cofactors Ki for
i = 1, . . . , p and q exponential factors F1, . . . , Fq with Fj = exp(gj/hj) with co-
factors Lj for j = 1, . . . , q. Then the following statements hold:

(a) There exist λi, µj ∈ C not all zero such that
∑p

i=1 λiKi +
∑q

j=1 µjLj = 0

on Tn, if and only if the real (multi-valued) function of Darboux type

fλ1
1 · · · fλp

p F µ1

1 · · ·F µq
q substituting fλi

i by |fi|λi if λi ∈ R is a first integral
of the vector field X on Tn.

(b) If p + q ≥ d(m) + 1 then there exist λi, µj ∈ C not all zero such that∑p
i=1 λiKi +

∑q
j=1 µjLj = 0 on Tn.
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(c) There exist λi, µj ∈ C not all zero such that
∑p

i=1 λiKi+
∑q

j=1 µjLj = −σ

on Tn for some σ ∈ R\{0} if and only if the real (multi-valued) function of

Darboux type fλ1
1 · · · fλp

p F µ1

1 · · ·F µq
q eσt substituting fλi

i by |fi|λi if λi ∈ R
is an invariant of the vector field X on Tn.

(d) The vector field X on Tn has a rational first integral if and only if p +
q ≥ d(m) + n. Moreover, all the trajectories are contained in invariant
algebraic hypersurfaces.

The parallels of the n-dimensional torus Tn are the intersections of Tn with the
hyperplanes x1 = constant. Note that a parallel is a (n − 1)-dimensional torus
Tn−1. An interesting question is how many invariant parallels a polynomial
vector field in Tn can have depending on its degree m. The answer is given in
the next theorem.

Theorem 3. For n ≥ 2 assume that X is a polynomial vector field on Tn of
degree m = (m1, . . . ,mn+1) having finitely many invariant parallels. Then their
number is at most min{m1, degX − 2}.

Theorem 3 is proved in section 3. In particular, if m1 ≥ m2 ≥ · · · ≥ mn+1,
then degX = m1 and so the maximum number of invariant parallels is m1−2. In
general, this upper bound is not reached and in any event the computations are
very elaborate. But for the case of polynomial vector fields of degree four having
T2 as an invariant algebraic surface we can go much further. Indeed, while in
that case the upper bound on the maximum number of invariant parallels given
by Theorem 3 is 2, we prove in the following theorems that the upper bound is 1
and we provide examples. The statement of this result is split into two theorems.
In the first one we provide the most general form of all polynomial vector fields
of degree four having T2 as an invariant algebraic surface and in the second one
we prove that the maximum number of invariant parallels is 1.

Theorem 4. Any polynomial vector field of degree 4 on T2 can be written in
the form X = (P1, P2, P3) with P1, P2, P3 given below in (10), (11) and (12),
respectively.

The proof of Theorem 4 is given in section 4.

Theorem 5. There are no polynomial vector field of degree 4 on T2 having the
maximum number of 2 invariant parallels. A polynomial vector field of degree 4
on T2 having one invariant parallel is X = (P1, P2, P3) with

P1 = 4(b2c0 − a2d0)(x1 − κ)x3(r
2
1 − r22 − x2

1 − x2
2 − x2

3),

P2 = 4x3(b1b2c0κ− a1b2d0κ+ (a2b1d0 − b1b2c0 + a2b1d1κ− a1b2d1κ)x1

+ (a2b1d2κ− a1b2d2)κx2 + (a2b1d3κ− a1b2d3κ)x3)(x
2
1 + x2

2 + x2
3 − r21 + r22),
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and

P3 = b2(a2b1 − a1b2)κ(r
2
1 − r22)

2 − 4b2(b2c0 − a2d0)κ(r
2
1 + r22)x1 + 2b2(2b2c0 − 2a2d0 − a2b1κ

+ a1b2κ)(r
2
1 + r22)x

2
1 + 4b2(b2c0 − a2d0)κx

3
1 + b2(4a2d0 − 4b2c0 + a2b1κ− a1b2κ)x

4
1

+ 4b2(b1c0 − a1d0)κ(r
2
1 + r22)x2 − 4(a1b2d1κ+ b1(b2c0 − a2(d0 + d1κ)))(r

2
1 + r22)x1x2

+ 4b2(a1d0 − b1c0)κx
2
1x2 + 4(a1b2d1κ+ b1(b2c0 − a2(d0 + d1κ)))x

3
1x2 − 2(a2b1 − a1b2)(b2

− 2d2)κ(r
2
1 + r22)x

2
2 + 4b2(b2c0 − a2d0)κx1x

2
2 − 2(2a2b1d2κ+ b22(2c0 + a1κ)− b2(2a2d0

+ a2b1κ+ 2a1d2κ))x
2
1x

2
2 + 4b2(a1d0 − b1c0)κx

3
2 + 4(a1b2d1κ+ b1(b2c0 − a2(d0 + d1κ)))x1x

3
2

+ (a2b1 − a1b2)(b2 − 4d2)κx
4
2 + 4(a2b1 − a1b2)d3κ(r

2
1 + r22)x2x3 + 4(a1b2 − a2b1)d3κx

2
1x2x3

+ 4(a1b2 − a2b1)d3κx
3
2x3 + 2b2(a1b2 − a2b1)κ(r

2
1 − r22)x

2
3 + 4b2(b2c0 − a2d0)κx1x

2
3

+ 2b2(2a2d0 − 2b2c0 + a2b1κ− a1b2κ)x
2
1x

2
3 + 4b2(a1d0 − b1c0)κx2x

2
3 + 4(a1b2d1κ+ b1(b2c0

− a2(d0 + d1κ)))x1x2x
2
3 + 2(a2b1 − a1b2)(b2 − 2d2)κx

2
2x

2
3 + 4(a1b2 − a2b1)d3κx2x

3
3

+ b2(a2b1 − a1b2)κx
4
3.

for any κ, a1, a2, b1, b2, c0, d0, d1, d2, d3 ∈ R with κb2 ̸= 0.

The proof of Theorem 5 is given in section 5.

We remark that the proofs and consequently the statements of Theorems 3, 4
and 5 depend on the parametrization chosen for Tn, and consequently from the
embedding of n-dimensional torus Tn in Rn+1.

2. Proof of Theorem 1

We first introduce some preliminary results that will be used to prove Theorem
1.

Let Tn = (S1)n be the n-dimensional torus in Rn+1. We first define an embed-

ding from Tn to Rn+1. For this we consider the map Φ(n) = Φ
(n)
r1,...,rn : (S1)n →

Rn+1 given by Φ
(n)
r1,...,rn(α1, . . . , αn) = (x1, . . . , xn+1), where

x1 = r1 sinα1,

xj =
(
rj +

xj−1

sinαj−1

cosαj−1

)
sinαj, for j = 2, . . . , n,

xn+1 =
xn

sinαn

cosαn

with

r1 > 1 and rj >

j−1∑
i=1

ri for j = 2, . . . , n.

Lemma 6. The map Φ = Φ
(n)
r1,...,rn is injective.
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Proof. Let Φ
(n−1)
r1,...,rn−1(α1, . . . , αn−1) = (x̄1, . . . , x̄n) be the former map of the torus

Tn−1 into Rn. Note that we can write Φ
(n)
r1,...,rn(α1, . . . , αn) = (x1, . . . , xn+1) as

follows:

xj = x̄j for j = 1, . . . , n− 1,

xn =
(
rn +

x̄n

sinαn−1

cosαn−1

)
sinαn,

xn+1 =
(
rn +

x̄n

sinαn−1

cosαn−1

)
cosαn.

Now we shall prove the injectivity of Φ
(n)
r1,...,rn . We proceed by induction.

For n = 2 assume that Φ
(2)
r1,r2(α1, α2) = Φ

(2)
r1,r2(α

′
1, α

′
2) with α1, α2, α

′
1, α

′
2 ∈

[0, 2π). Taking into account that

Φ(2)
r1,r2

(α1, α2) = (r1 sinα1, (r2 + r1 cosα1) sinα2, (r2 + r1 cosα1) cosα2),

we get

r1 sinα1 = r1 sinα
′
1,

(r2 + r1 cosα1) sinα2 = (r2 + r1 cosα
′
1) sinα

′
2,

(r2 + r1 cosα1) cosα2 = (r2 + r1 cosα
′
1) cosα

′
2.

(2)

From the first equation we get sinα1 = sinα′
1. From the second and third

equations in (2) we get

(r2 + r1 cosα1)
2 = (r2 + r1 cosα

′
1)

2.

Since r2 > r1, we have cosα′
1 = cosα1, and so α′

1 = α1, because sinα1 = sinα′
1.

Therefore, from the second and third equations in (2) we get sinα2 = sinα′
2 and

cosα′
2 = cosα2, respectively. Consequently α2 = α′

2 which proves the claim for
n = 2.

Now we assume that it holds until n − 1 and we will prove it for n. Assume
that

Φ(n)
r1,...,rn

(α1, . . . , αn) = Φ(n)
r1,...,rn

(α′
1, . . . , α

′
n)

with α1, . . . , αn, α
′
1, . . . , α

′
n ∈ [0, 2π). By the induction process and the con-

struction of Φ
(n)
r1,...,rn(α1, . . . , αn) in terms of Φ

(n−1)
r1,...,rn−1(α1, . . . , αn−1) we get α′

1 =
α1, . . . , α

′
n−2 = αn−2 and

x̄n

sinαn−1

sinαn−1 =
x̄n

sinα′
n−1

sinα′
n−1,(

rn +
x̄n

sinαn−1

cosαn−1

)
sinαn =

(
rn +

x̄n

sinα′
n−1

cosα′
n−1

)
sinα′

n,(
rn +

x̄n

sinαn−1

cosαn−1

)
cosαn =

(
rn +

x̄n

sinα′
n−1

cosα′
n−1

)
cosα′

n.

(3)



6 J. LLIBRE AND C. VALLS

Note that since αj = α′
j for j = 1, . . . , n − 2 and x̄n/ sinαn−1 only depends on

α1, . . . , αn−2 we have that

(4)
x̄n

sinαn−1

=
x̄n

sinα′
n−1

.

From the second and third relations in (3) we get(
rn +

x̄n

sinαn−1

cosαn−1

)2

=
(
rn +

x̄n

sinα′
n−1

cosα′
n−1

)2

,

and since rn >
∑n−1

j=1 rj we readily obtain that

x̄n

sinαn−1

cosαn−1 =
x̄n

sinα′
n−1

cosα′
n−1.

Together with the first relation in (3) and using (4) we obtain

cosα′
n−1 = cosαn−1 and sinα′

n−1 = sinαn−1,

which yields αn−1 = α′
n−1. Now from the last two identities in (3) we obtain that

αn = α′
n as we wanted to prove. This completes the proof of the lemma. □

Now we continue with the proof of the theorem.

Using the parameterization Φ
(n)
r1,...,rn(α1, . . . , αn) = (x1, . . . , xn+1) we obtain

that the n-dimensional torus in cartesian coordinates can be expressed as follows:

(5) y2n+1 + φ2
n = R2

n+1, yj = xn+2−j, Rj = rn+2−j, j = 1, . . . , n+ 1,

and

(6) φj =
√

y2j + φ2
j−1 −Rj, j = 2, . . . , n+ 1 and φ1 = y1.

We have the following lemma.

Lemma 7. For each n ≥ 2 there exists a polynomial Q2n ∈ C2n [x1, . . . , xn+1] of
degree 2n such that (5) can be written as

Q2n(x1, . . . , xn+1) = 0.

Proof. We proceed by induction. If n = 2 then

y23 + (
√
y22 + y21 −R2)

2 = R2
3,

which can be written as

2R2

√
y22 + y21 = R2

3 − y23 − y22 − y21 −R2
2.

This yields
4R2

2(y
2
1 + y22) = (R2

3 − y23 − y22 − y21 −R2
2)

2

or in other words
Q4(y1, y2, y3) = Q4(x1, x2, x3) = 0,
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as we wanted to prove.

Now we assume that the statement holds until n−1 and we prove it for n. By
the induction hypothesis we have that

y2n + φ2
n−1 −R2

n = Q2n−1(y1, . . . , yn).

It follows from (5) and (6) that

y2n+1 + y2n + φ2
n−1 +R2

n − 2Rn

√
y2n + φ2

n−1 = R2
n+1,

and so

y2n+1 +Q2n−1(y1, . . . , yn) + 2R2
n −R2

n+1 = 2Rn

√
y2n + φ2

n−1.

Taking squares we get

(y2n+1 +Q2n−1(y1, . . . , yn) + 2R2
n −R2

n+1)
2 = 4R2

n(y
2
n + φ2

n−1)

= 4R2
n(Q2n−1(y1, . . . , yn) +R2

n),

or in other words

Q2n(y1, . . . , yn+1) = 0 that is Q2n(x1, . . . , xn+1) = 0,

because Q2n−1(y1, . . . , yn)
2 is a polynomial of degree 2n. This completes the proof

of the lemma. □

It follows from Lemma 7 that Tn is regular and that we can rewrite it as

Q2n(x1, . . . , xn+1) = 0, for some polynomial Q2n of degree 2n.

So we have that d = 2n. Hence from (1) it follows that Cm[x1, . . . , xn+1] on the
n-dimensional torus Tn is a C-linear space of dimension

d(m) =

(
m+ n+ 1

n+ 1

)
−
(
m+ n+ 1− 2n

n+ 1

)
.

This completes the proof of the theorem.

3. Proof of Theorem 3

A convenient tool to look for invariant algebraic hypersurfaces is the extactic
polynomial of X associated to a finitely generated vector subspace W of the
vector space C[x1, . . . , xd] with basis {v1, . . . , vl} (see for instance [4, 3, 12]). It
is defined by

EW (X) = E{v1,...,vl}(X) = det


v1 v2 · · · vl

X(v1) X(v2) · · · X(vl)
...

...
...

X l−1(v1) X l−1(v2) · · · X l−1(vl)

 .
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In view of the properties of determinants, EW (X) does not depend on the chosen
basis of W . The next proposition is proved in [1].

Proposition 8. Let X be a polynomial vector field in Cd and let W be a finitely
generated vector subspace of C[x1, . . . , xd] with dimW > 1. Then every algebraic
invariant hypersurface f = 0 for X, with f ∈ W , is a factor of EW (X).

It follows from Proposition 8 that f = 0 is an invariant hyperplane of X if
the polynomial f is a factor of the polynomial EW (X), where W is generated by
{1, x1, . . . , xd}.

Proof of Theorem 3. By definition an invariant parallel is the intersection of an
invariant hyperplane of the form x1 = κ, where κ ∈ R, with the n-dimensional
torus Tn. Thus this intersection is a Tn−1 (n − 1)-dimensional torus. From
Proposition 8 we know that if x1 − κ = 0 is an invariant hyperplane of the
polynomial vector field X, then x1 − κ is a factor of the extactic polynomial. So
the maximum number of factors of the form x1 − κ of the extactic polynomial
E{1,xn+1}(X) gives an upper bound for the number of invariant planes {x1−κ = 0}
of X, and this allows us to obtain an upper bound for the number of its invariant
parallels.

From the definition of extactic polynomial we get

det

(
1 x1

X(1) X(x1)

)
= det

(
1 x1

0 P1(x1, . . . , xn+1)

)
= P1 = P1(x1, . . . , xn+1).

Since the degree of P1 is m1, this polynomial can have at most m1 linear factors
of the form x1−κ and so the number of invariant parallels of X on Tn is at most
m1.

However this bound can be improved after imposing that the n-dimensional
torus Tn is an invariant algebraic hypersurface of the vector fieldX = (P1, . . . , Pn+1).
First we recall that in view of Theorem 1 and its proof, we can write Tn as F = 0
being

F (x1, . . . , xn+1) = F̃ (x2
1, . . . , x

2
n+1) = F̃ (z1, . . . , zn+1),

and it has degree 2n. Moreover it follows also from that theorem and its proof
that

F (x1, 0, . . . , 0, 0) = x2
1 + (rn+1 −

n∑
i=2

ri)
2 − r1

and rn+1 >
∑n

i=2 ri + r1 with r1 > 1. Note that this implies that

F̃ (x2
1, 0, . . . , 0, 0) = F̃ (z1, 0, . . . , 0, 0) = z1 + (rn+1 −

n∑
i=2

ri)
2 − r1.
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Then

(7) 2x1
∂F̃

∂z1
P1 + . . .+ 2xn+1

∂F̃

∂zn+1

Pn+1 = KF̃

for all (x1, . . . , xn+1) ∈ Rn+1 where K = K(x1, . . . , xn−1) is a polynomial of
degree m− 1 with m = degX.

We write

P1 = h(x1, . . . , xn+1)
l∏

i=1

(x1 − κi),

in such a way that x1 − κi for all κi ∈ R is not a factor of the polynomial h.
Eventually some of the κi’s can be the same. Then

E{1,x1} = h(x1, . . . , xn+1)
l∏

i=1

(x1 − κi).

Since (7) holds for all x1, . . . , xn+1 ∈ R, in particular it must hold for x2 = · · · =
xn+1 = 0 and so,

2x1h(x1, 0, . . . , 0)
l∏

i=1

(x1 − κi) =

(m−1∑
i=0

kix
i
1

)(
x2
1 + (rn+1 −

n∑
i=2

ri)
2 − r1

)
,

where ki = ki(x2, . . . , xn+1) is a polynomial for i = 0, . . . ,m − 1. From this
equation we have that k0 = 0 and consequently

2x1h(x1, 0, . . . , 0)
l∏

i=1

(x1 − κi) = x1

(m−2∑
i=0

kix
i
1

)(
x2
1 + (rn+1 −

n∑
i=2

ri)
2 − r1

)
.

Taking into account that rn+1 >
∑n

i=2 ri + r1 and r1 > 1, we see that

x2
1 +

(
rn+1 −

n∑
i=2

ri

)2

− r1 > x2
1 + r21 − r1 > 0,

and consequently it does not factorize in R[x1]. This assertion together with the
fact that h(x1, . . . , xn+1) has no factor of the form x1 − κ shows that l ≤ m− 2.
So E{1,x1}(X) has at most m − 2 factors of the form x1 = κ with κ ∈ R. Hence
X has at most m− 2 invariant hyperplanes of the form x1 = κ with κ ∈ R, and
consequently X has at most m− 2 invariant parallels.

Therefore, the maximum number of invariant parallels that X can have is

min{m1,m− 2} = min{m1, degX − 2}.

This completes the proof of the theorem. □
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4. Proof of Theorem 4

In view of Theorem 1 the n-dimensional torus T2 can be written in cartesian
coordinates as the surface

(8) g1 = (x2
1 + x2

2 + x2
3 + r21 − r22)

2 − 4r22(x
2
1 + x2

2) = 0,

which is the surface Q4(x1, x2, x3) = 0 of Lemma 7.

It follows from [7, Theorem 1.3.1] that any polynomial differential system in
R3 having g1 = 0 as an invariant algebraic surface must be written in the form
X = (P1, P2, P3) where

P1 = ϕ{x1, g2, g3}+ λ1{g1, x1, g3}+ λ2{g1, g2, x1},
P2 = ϕ{x2, g2, g3}+ λ1{g1, x2, g3}+ λ2{g1, g2, x2},
P3 = ϕ{x3, g2, g3}+ λ1{g1, x3, g3}+ λ2{g1, g2, x3},

(9)

where ϕ is a polynomial in the variables x1, x2, x3 satisfying ϕ|g1=0 = 0, and
gk for k = 2, 3 and λi for i = 1, 2 are arbitrary polynomials in the variables
(x1, x2, x3). Moreover {f, g, h} denotes the Nambu bracket of the polynomials
f = f(x1, x2, x3), g = g(x1, x2, x3), h = h(x1, x2, x3) which is defined as

{f, g, h} = det

fx1 fx2 fx3

gx1 gx2 gx3

hx1 hx2 hx3

 .

Since we are looking for polynomial vector fields of degree four and g1 is a poly-
nomial of degree four, without loss of generality we can take ϕ = ϕ(x1, x2, x3) =
g1(x1, x2, x3) (because rescaling the time if necessary any constant can be passed
to one). Moreover since deg g1 = 4 we have that the degrees of g2, g3, λ1, λ2 must
be one. So we take them as follows

g2(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x3,

g3(x1, x2, x3) = b0 + b1x1 + b2x2 + b3x3,

λ1(x1, x2, x3) = c0 + c1x1 + c2x2 + c3x3,

λ2(x1, x2, x3) = d0 + d1x1 + d2x2 + d3x3,

for any ai, bi, ci, di ∈ R for i = 0, . . . , 3.
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It follows from (9) that P1 is equal to

− (a3b2 − a2b3)(r
2
1 − r22)

2 + 4(b3c0 − a3d0)(r
2
1 + r22)x2 − 4(b2c0 − a2d0)(r

2
1 − r22)x3

+ 2(a3b2 − a2b3)(r
2
1 + r22)x

2
1 + 4(b3c1 − a3d1)(r

2
1 + r22)x1x2 − 4(b2c1 − a2d1)(r

2
1 − r22)x1x3

+ 2(a3b2 − a2b3 + 2b3c2 − 2a3d2)(r
2
1 + r22)x

2
2 + 4(a2d2r

2
1 − a3d3r

2
1 − a2d2r

2
2 − a3d3r

2
2

+ b2c2(r
2
2 − r21) + b3c3(r

2
1 + r22))x2x3 + 2(a3b2 − a2b3 − 2b2c3 + 2a2d3)(r

2
1 − r22)x

2
3

+ 4(a3d0 − b3c0)x
2
1x2 + 4(b2c0 − a2d0)x

2
1x3 + 4(a3d0 − b3c0)x

3
2 + 4(b2c0 − a2d0)x

2
2x3

+ 4(a3d0 − b3c0)x2x
2
3 + 4(b2c0 − a2d0)x

3
3 + (a2b3 − a3b2)x

4
1 + 4(a3d1 − b3c1)x

3
1x2

+ 4(b2c1 − a2d1)x
3
1x3 − 2(a3b2 − a2b3 + 2b3c2 − 2a3d2)x

2
1x

2
2 + 4(b2c2 − b3c3 − a2d2

+ a3d3)x
2
1x2x3 + 2(−a3b2 + 2b2c3 + a2(b3 − 2d3))x

2
1x

2
3 + 4(a3d1 − b3c1)x1x

3
2

+ 4(b2c1 − a2d1)x1x
2
2x3 + 4(a3d1 − b3c1)x1x2x

2
3 + 4(b2c1 − a2d1)x1x

3
3 − (a3b2 − a2b3

+ 4b3c2 − 4a3d2)x
4
2 + 4(b2c2 − b3c3 − a2d2 + a3d3)x

3
2x3 + 2(−a3b2 + a2b3 − 2b3c2

+ 2b2c3 + 2a3d2 − 2a2d3)x
2
2x

2
3 + 4(b2c2 − b3c3 − a2d2 + a3d3)x2x

3
3 − (a3b2 − 4b2c3

− a2(b3 − 4d3))x
4
3,

(10)

P2 is equal to

(a3b1 − a1b3)(r
2
1 − r22)

2 − 4(b3c0 − a3d0)(r
2
1 + r22)x1 + 4(b1c0 − a1d0)(r

2
1 − r22)x3

− 2(a3b1 − a1b3 + 2b3c1 − 2a3d1)(r
2
1 + r22)x

2
1 − 4(b3c2 − a3d2)(r

2
1 + r22)x1x2

− 4(a1d1r
2
1 − a3d3r

2
1 − a1d1r

2
2 − a3d3r

2
2 + b1c1(r

2
2 − r21) + b3c3(r

2
1 + r22))x1x3

− 2(a3b1 − a1b3)(r
2
1 + r22)x

2
2 + 4(b1c2 − a1d2)(r

2
1 − r22)x2x3 − 2(a3b1 − a1b3 − 2b1c3

+ 2a1d3)(r
2
1 − r22)x

2
3 + 4(b3c0 − a3d0)x

3
1 + 4(a1d0 − b1c0)x

2
1x3 + 4(b3c0 − a3d0)x1x

2
2

+ 4(b3c0 − a3d0)x1x
2
3 + 4(a1d0 − b1c0)x

2
2x3 + 4(a1d0 − b1c0)x

3
3 + (a3b1 − a1b3 + 4b3c1

− 4a3d1)x
4
1 + 4(b3c2 − a3d2)x

3
1x2 − 4(b1c1 − b3c3 − a1d1 + a3d3)x

3
1x3 + 2(a3b1 − a1b3

+ 2b3c1 − 2a3d1)x
2
1x

2
2 + 4(a1d2 − b1c2)x

2
1x2x3 + 2(2b3c1 − a1b3 − 2b1c3 + a3(b1 − 2d1)

+ 2a1d3)x
2
1x

2
3 + 4(b3c2 − a3d2)x1x

3
2 + 4(b3c3 − b1c1 + a1d1 − a3d3)x1x

2
2x3 + 4(b3c2

− a3d2)x1x2x
2
3 + 4(b3c3 − b1c1 + a1d1 − a3d3)x1x

3
3 + (a3b1 − a1b3)x

4
2 + 4(a1d2 − b1c2)x

3
2x3

+ 2(a3b1 − a1b3 − 2b1c3 + 2a1d3)x
2
2x

2
3 + 4(a1d2 − b1c2)x2x

3
3 + (a3b1 − a1b3 − 4b1c3

+ 4a1d3)x
4
3,

(11)
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and P3 is equal to

− (a2b1 − a1b2)(r
2
1 − r22)

2 + 4(b2c0 − a2d0)(r
2
1 + r22)x1 − 4(b1c0 − a1d0)(r

2
1 + r22)x2

+ 2(a2b1 − a1b2 + 2b2c1 − 2a2d1)(r
2
1 + r22)x

2
1 − 4(b1c1 − b2c2 − a1d1 + a2d2)(r

2
1 + r22)x1x2

+ 4(b2c3 − a2d3)(r
2
1 + r22)x1x3 + 2(a2b1 − a1b2 − 2b1c2 + 2a1d2)(r

2
1 + r22)x

2
2

− 4(b1c3 − a1d3)(r
2
1 + r22)x2x3 + 2(a2b1 − a1b2)(r

2
1 − r22)x

2
3 + 4(a2d0 − b2c0)x

3
1

+ 4(b1c0 − a1d0)x
2
1x2 + 4(a2d0 − b2c0)x1x

2
2 + 4(a2d0 − b2c0)x1x

2
3 + 4(b1c0 − a1d0)x

3
2

+ 4(b1c0 − a1d0)x2x
2
3 + (a1b2 − a2b1 − 4b2c1 + 4a2d1)x

4
1 + 4(b1c1 − b2c2 − a1d1 + a2d2)x

3
1x2

+ 4(a2d3 − b2c3)x
3
1x3 + 2(a1b2 − a2b1 − 2b2c1 + 2b1c2 + 2a2d1 − 2a1d2)x

2
1x

2
2 + 4(b1c3

− a1d3)x
2
1x2x3 + 2(a1b2 − a2b1 − 2b2c1 + 2a2d1)x

2
1x

2
3 + 4(b1c1 − b2c2 − a1d1 + a2d2)x1x

3
2

+ 4(a2d3 − b2c3)x1x
2
2x3 + 4(b1c1 − b2c2 − a1d1 + a2d2)x1x2x

2
3 + 4(a2d3 − b2c3)x1x

3
3

− (a2b1 − 4b1c2 − a1(b2 − 4d2))x
4
2 + 4(b1c3 − a1d3)x

3
2x3 + 2(2b1c2 − a2b1 + a1(b2 − 2d2))x

2
2x

2
3

+ 4(b1c3 − a1d3)x2x
3
3 − (a2b1 − a1b2)x

4
3.

(12)

5. Proof of Theorem 5

In view of Theorem 1 the 2-dimensional torus T2 in cartesian coordinates can
be written as the surface g1 = 0 with g1 as in (8). It follows from the proof
of Theorem 4 that any polynomial vector field X = (P1, P2, P3) of degree four
having T2 as an invariant surface must be written as in (10)–(12). Now it follows
from the proof of Theorem 3 and the definition of invariant parallel that in order
to obtain the most general polynomial vector fields having the maximum number
of parallels (which is at most two) we must have that the polynomial P1 in (10)
must be of the form

P1 = (x1 − κ1)(x1 − κ2)(s0 + s1x1 + s2x2 + s3x3 + s4x
2
1 + s5x1x2 + s6x1x3

+ s7x
2
2 + s8x2x3 + s9x

2
3),

for some κ1, κ2, si ∈ R for i = 0, . . . , 9. Solving this equation for any κ1, κ2, si we
get that the unique eventual solution is s0 = · · · = s9 = 0 which is not possible
because then P1 = 0. So, there are no polynomial vector fields on T2 of degree
4 having two invariant parallels. The most general form for a polynomial vector
field on T2 of degree four having one parallel is

P1 = (x1 − κ)(s0 + s1x1 + s2x2 + s3x3 + s4x
2
1 + s5x1x2 + s6x1x3 + s7x

2
2

+ s8x2x3 + s9x
2
3 + s10x

3
1 + s11x

2
1x2 + s12x

2
1z + s13x1x

2
2 + s14x1x2x3

+ s15x1x
2
3 + s16x

3
2 + s17x

2
2x3 + s18x2x

2
3 + s19x

3
3),

for some κ, si ∈ R for i = 0, . . . , 19 with (s0, . . . , s19) ̸= (0, . . . , 0). Solving
this equation we obtain many solutions. One of these solutions is the solution
provided in the statement of the theorem.
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