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Abstract In this chapter we present the results obtained in two predator-prey systems,
paying special attention to the dynamics near the infinity and the nonelementary
singular points. First, the desingularization technique known as blow up technique,
allows one to study any type of singularities of analytic systems in dimension two
even if they are not elementary. In the other hand, the introduction of the Poincaré
compactification allows one to accomplish a complete study of the global dynamics
of these systems. In addition to the proofs of the results obtained in those cases, we
include a survey on the used techniques from a theoretical point of view.

1 Introduction

Dynamical systems that represent the interaction between coexisting species, as it
is the particular case of predator-prey systems, have been widely studied in the
literature. Starting from the most classical models, such as the one proposed by A.
Lotka [1] and V. Volterra [2], researchers have made efforts to add new features to
these models, making them more realistic and allowing them to be adapted to more
real-world situations.

In [3] different proposals for modeling predator-prey systems have been studied
comparatively. Special attention has been paid to the inclusion of characteristics such
as the Allee effect, immigration, fear and, in general, to the indirect effects that the
presence of predators can produce on prey, apart from direct attack.
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One thing that can be appreciated is that, while trying to make the models more
realistic from a biological and ecological point of view, from a mathematical point
of view appear more difficulties in the study of these differential systems.

For example, there are many population models focused on the analysis of finite
singular points and their stability, but especially in hyperbolic cases. We will give a
summary on a desingularization technique that can improve or complete the existing
works in the sense that it allows one to study any type of singularities even if they
are not elementary.

On the other hand, we will also present the Poincaré compactification which
allows one to accomplish a complete study of the global dynamics of the systems,
making possible to know the behavior of the orbits in a neighborhood the infinity.

In addition to the description of these techniques from a theoretical point of view,
we present two systems in the field of population dynamics to which we have applied
them, and we present the results obtained.

The first model we have studied is obtained from the classical Rosenzweig and
MacArthur model, introduced in [4]. Considering x ≥ 0 as the prey density and
y ≥ 0 as the predator density, the original model has the form

Ûx = r x
(
1 −

x
K

)
− y

mx
b + x

,

Ûy = y
(
−δ + c

mx
b + x

)
,

where the parameter δ > 0 represents the death rate of the predator species and c > 0
is the rate of conversion of prey to predator. In this system, the functional response
is given by the function mx/(b + x), so it is a Holling type II functional response.

As we can see with detail in [5], the previous system can be reduced to a
polynomial differential system. Summarizing it is necessary to do a rescaling
(x, y, b, c, δ) = (x/K, (m/rK)y, b/K, cm/r, δ/r) and a time rescaling multiplying by
b+ x. Thus a polynomial system of degree three is obtained, being b, c and δ positive
parameters:

Ûx = x(−x2 + (1 − b)x − y + b),

Ûy = y((c − δ)x − δb).
(1)

This is a particular case of Kolmogorov systems, which were proposed in [6] as
an extension of the Lotka-Volterra systems to arbitrary dimension and degree. Kol-
mogorov systems are differential systems of the form

Ûxi = xiPi(x1, . . . , xn), i = 1, ...,n,

where Pi are polynomials. The techniques we are describing in this chapter have been
used to classify all the global dynamics of some families of general Kolmogorov
systems in [7, 8, 9, 10].

We study system (1) in the positive quadrant of the planeR2 where it has ecological
meaning, more precisely, we wanted to complete the study of the dynamics of system
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(1) and classify all their phase portraits on the closed positive quadrant of the Poincaré
disc, that we will introduce later on, so in this way we can control the dynamics of
the system near the infinity. More details can be found in [11].

The second system we will consider in this chapter is the system

Ûx = x
(
a0 + c1x + c2z2 + c3z

)
,

Ûz = z
(
c0 + c1x + c2z2 + c3z

)
,

(2)

This system, which is also a Kolmogorov system, is important as it has been ob-
tained from a general Lotka-Volterra system on dimension three. Those kind of
Lotka-Volterra systems have been used for modelling different problems as in hydro-
dynamics [12], chemical reactions [13], economic and social problems [14, 15, 16].
They have been also used in the field in which we are focusing our attention: popu-
lation dynamics. For example, the the interaction between species has been modeled
with these kind of systems in [17, 18, 19, 20, 21].

Only very particular cases of Lotka-Volterra systems in dimension three had been
studied, as for example the cases in [22], where the authors give the global phase
portraits in the Poincaré ball of a system related with the study of black holes or in
[23], where the authors study a family depending only on two parameters.

In view of the lack of general results, and although the complete study of all these
systems does not seem directly approachable, it seemed interesting to address the
study of larger classes of systems within the Lotka-Volterra in dimension three. From
general 3-dimensional Lotka-Volterra systems depending on 12 parameters, we have
obtained two big subfamilies in [7] by applying the Darboux theory of integrability.

System (2) corresponds with one of those subfamilies by setting the value of one
of the parameters equal to −1. We present this particular case as it has a line of
singular points at infinity, i.e., all the infinity is filled up with singular points.We
consider this system interesting as there are few works that study these kind of
systems when they have a line filled up of singular points.

Next, in Section 3, we describe the desingularization technique using directional
blow ups, and then apply it to the systems that we have just presented. With the same
structure, we describe the Poincaré compactification in Section 2, and apply it to
both systems, explaining the results obtained.

2 The dynamics near the infinity

Many systems used in population dynamics are planar systems, for example, all
those which deal with the evolution of a predator species and a prey species that
coexist. When trying to study the behavior of those systems in the whole plane R2,
an obvious difficulty arises if we try to define what happens globally, because we
cannot fully control the orbits as they go to or come from infinity.
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What we present here is a special kind of compactification, which can be used
provided that the functions defining the vector field are polynomials. This technique,
introduced by Poincaré [24], allows one to control the orbits which tend to or come
from infinity, and to draw the phase portrait in a finite region, the sphere S2, or even
simpler, in the planar disk D2.

In the followingwe describe the construction of this compactification for a general
polynomial system, and the we apply it to the predator-prey systems given in Section
1.

2.1 The Poincaré compactification

Let consider a polynomial vector field of degree d of the form:

X = P
∂

∂x1
+Q

∂

∂x2
,

where P and Q are polynomials such that d is the maximum of the degrees of P and
Q. Let consider that the variables of the polynomial are x1 and x2, so the vector field
defines a polynomial differential system of the form

Ûx1 = P(x1, x2),

Ûx2 = Q(x1, x2).
(3)

For this polynomial system we give the construction of the Poincaré com-
pactification. The main idea is that we want to project our vector field from
an infinite surface, which is R2 onto the bounded surface of the sphere S2 ={
y ∈ R3 : y2

1 + y2
2 + y2

3 = 1
}
. Thus, we can place R2 as a tangent plane to the

sphere at the point (0,0,1), i.e., we consider R2 as the plane in R3 defined by
(y1, y2, y3) = (x1, x2,1). We call the Poincaré sphere to the sphere S2, which is
usually divided into three regions: the northern hemisfere,

H+ =
{
y ∈ S2 : y3 > 0

}
;

the southern hemisphere,

H− =
{
y ∈ S2 : y3 < 0

}
;

and the equator
S1 =

{
y ∈ S2 : y3 = 0

}
.

Now we need a way to project what is on R2 onto the Poincaré sphere. For doing
that we can consider the central projections f + : R2 → S2 and f − : R2 → S2.

The image f +(x) of a point x is defined as the intersection of the straight line
passing through the point x and the origin with the northern hemisphere of S2,
and respectively, the image f −(x) of a point x is the intersection of the straight
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line passing through the point x and the origin with the southern hemisphere.The
analytical expressions of these projections are

f +(x) =
(

x1
∆(x)

,
x2
∆(x)

,
1
∆(x)

)
, f −(x) =

(
−x1
∆(x)

,
−x2
∆(x)

,
−1
∆(x)

)
,

where ∆(x) =
√

x2
1 + x2

2 + 1.
With the differential of these projections we obtain induced vector fields in the

northern and southern hemispheres. The induced vector field on H+ is

X(y) = D f +(x)X(x), where y = f +(x),

and the one in H− is

X(y) = D f −(x)X(x), where y = f −(x).

Now we have a vector field on S2\S1, that we name by X , that is everywhere
tangent to S2.

But our motivation for doing this compactification was to study the dynamics of
the orbits in a neighborhood of the infinity. Note that the points at the infinity of
R2 are in bijective correspondence with the points of the equator of S2, and for the
moment our induced vector field X is not defined over the equator.

So the next step is to carry out this extension of the induced vector field X from
S2\S1 to S2. In general, the field is not bounded as we get close to S1 so, to make
possible the extension, we should multiply the vector field by the factor ρ(x) = xd−1

3
and then the extension is feasible.

In short, we call the Poincaré compactification of the vector field X on R2 to this
extended vector field, and we denote it by ρ(X).

Once the idea of this method has been exposed, we need to specify what will be
the expression of this compactification, in order to be able to work with it, as we will
do later on with the predator-prey systems. As we are working on a surface S2, to
make calculations we need to use local charts in the surface.

We consider the six local charts of S2 given by

Ui =
{
y ∈ S2 | yk > 0

}
, Vi =

{
y ∈ S2 | yk < 0

}
,

and the local maps

φk : Uk −→ R
2 and ψk : Vk −→ R

2,

for i = 1,2,3. The previous maps are defined by

φi(y) = ψi(y) =

(
ym

yi
,
yn

yi

)
,
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with m < n and m,n , i. We denote by z = (u, v) the value of the maps φi(y) or
ψi(y), for any value of i. Then (u, v) has different roles depending on the selected
local chart. Geometrically the coordinates (u, v) can be expressed as in Figure 1. In
all the charts, the points which are over the equator have the coordinate v = 0.

Fig. 1: : The Poincaré sphere with the local charts (Uj, φ j) for j = 1,2,3.

Let consider the chart U1 and let calculate the expression of ρ(X) in this chart
(see [25]). Our initial polynomial vector field was

X(x) = (P(x1, x2),Q(x1, x2))

and with the central projection f + we get the vector field on the northern hemisphere

X(y) = D f +(x)X(x) with y = f +(x),

with the local map φ1:

Dφ1(y)X(y) = Dφ1(y) ◦ D f +(x)X(x) = D(φ1 ◦ f +)(x)X(x).

Then
(φ1 ◦ f +)(x) = φ1

(
x1
∆(x)

,
x2
∆(x)

,
1
∆(x)

)
=

(
x2
x1
,

1
x1

)
= (u, v),

and

D(φ1 ◦ f +)(x) =
©­­­­«
−

x2

x2
1

1
x1

−
1
x2

1
0

ª®®®®¬
.

If we denote by X |U1 the system defined as Dφ1(y)X(y), we have
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X |U1 =

©­­­­«
−

x2

x2
1

1
x1

−
1
x2

1
0

ª®®®®¬
(

P(x1, x2)
Q(x1, x2)

)
,

and so the components of the field can be expressed as

X |U1 =

(
−

x2

x2
1

P(x1, x2) +
1
x1

Q(x1, x2),−
1
x2

1
P(x1, x2)

)
=

1
x2

1
(−x2 P(x1, x2) + x1 Q(x1, x2),−P(x1, x2)) .

Also

ρ(y) = yd−1
3 =

(
1
∆(x)

)d−1
=

(
1
x1

)d−1
m(z),

where

m(z) =

(
1 +

(
x2
x1

)2
+

(
1
x1

)2
) 1−d

2

.

We can multiply the field X |U1 by ρ(y), which is equivalent to change the time
variable t for a new variable s, so that dt = ρ(y)ds, and the only change on the phase
portrait is the velocity at which orbits are traveled.

Now we have a compactification of the field on the local charts that has a well
defined polynomial expression

ρ(y)(X |U1 ) =
m(z)
x2

1
(−x2 P(x1, x2) + x1 Q(x1, x2),−P(x1, x2)) ,

and, although X |U1 is not definedwhen at the points of the equator, p(X) |U1= ρX |U1

is well defined at the infinity, so the extension of ρX to p(X) is defined on the whole
of S1. Moreover, in order to simplify the extended vector field we also make a change
in the time variable and remove the factor m(z).

If the variables in the local charts are (u, v), the Poincaré compactification of the
vector field X is given by

Ûu = vd
[
−u P

(
1
v
,
u
v

)
+Q

(
1
v
,
u
v

)]
,

Ûv = −vd+1 P
(
1
v
,
u
v

)
,

(4)

in local chart (U1, φ1). In (U2, φ2) we have
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Ûu = vd
[
P

(
u
v
,
1
v

)
− uQ

(
u
v
,
1
v

)]
,

Ûv = −vd+1 Q
(

u
v
,
1
v

)
,

(5)

and finally, in (U3, φ3):

Ûu = P(u, v),

Ûv = Q(u, v).
(6)

Even the complete geometrical construction is important to understand the idea
of this method, once we want to apply it to some particular equations we can obtain
the expression in the following way.

To obtain (4) we start with (3) and introduce coordinates (u, v) by the formulas
(x1, x2) = (1/v,u/v). This leads to a vector field X

u which we must multiply by vd−1.
To obtain (5) we start with (3) and introduce coordinates (u, v) by the formulas

(x1, x2) = (u/v,1/v). We again multiply the obtained vector field X
v by vd−1.

The expressions in (6) do not need any elaboration, and we just have to replace
(x1, x2) by (u, v).

In the remaining charts (Vk,ψk), with k = 1,2,3, the expression for ρ(X) is the
same as for (Uk, φk) but multiplied by (−1)d−1. Therefore, it is not necessary to study
the system in these charts, as it is enough to determine the behavior of the orbits
based on the behavior on the charts (Ui, φi), with i = 1,2,3.

We recall that the importance of this compactification relies on the fact that the
points at the infinity of R2 are now the finite point on the equator of the sphere. All
the singular points of ρ(X) which lie in the equator are called the infinite singular
points of X , and the following result holds:

Proposition 1 If y ∈ S1 is an infinite singularity of the Poincaré compactification
ρ(X) of a field X , then the opposite point −y is an infinite singularity of the compact-
ification ρ(X) and both singularities have the same stability if the degree of vector
field is odd; they have opposite stability if the degree is even.

As mentioned in the introduction we can make a new projection that simplifies
the representation of the phase portraits. The idea is now to project the northern
hemisphere of S2 onto the plane y3 = 0 with the orthogonal projection π. The image
of the hemisphere is called the Poincaré disk, and we denote it by D2.

It will be enough to study the system in the Poincaré disk since the orbits of ρ(X)
on S2 are symmetric with respect to the origin of R3, so we only need to consider the
flow of ρ(X) in the closed northern hemisphere. In Figure 2 we include the Poincaré
disk with the charts U1, U2, v1 and V2, and in the examples that we will provide, we
will also include the phase portraits in the Poincaré disk.
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U1

V1

U2

V2

Fig. 2: : The projection of the northern hemisphere on the Poincaré disk, with charts
U1, V1, U2 and V2.

2.2 Application of the Poincaré compactification to predator-prey
systems

In this subsection we obtain the Poincaré compactifications of systems (1) and (2).

2.2.1 A Kolmogorov system obtained from the Rosenzweig-MacArthur system

First, we consider (1) and we are going to obtain the expression of the compactifi-
cation in the charts U1 and U2. In this case, as the system is proposed in the field
on population dynamics, and the variables only have biological meaning if they are
non-negative, we are going to restrict the study of the orbits to the positive quadrant
of the Poincaré disk. In any case it is necessary to study the compactification in the
charts U1 and U2, as the origin of U2 is not included in the chart U1. Following the
structure in system (3), for system (1) we have

P(x1, x2) = x1(−x2
1 + (1 − b)x1 − x2 + b) and Q(x1, x2) = x2((c − δ)x1 − δb).

The degree of the equations is d = 3. According with the expression in (4), the
compactification in chart U1 is

Ûu = uv2 − b(δ + 1)uv2 + (b + c − δ − 1)uv + u,

Ûv = uv2 − bv3 + (b − 1)v2 + v.
(7)

This new expression of system (1) allows one to study the singular points at the
inifinity, which are those over the line v = 0. In this case the only inifinite singular
point in this chart is the origin of U1. The linear part of system (7) at the origin is
the identity matrix, so O1 is an unstable node as there are two positive eigenvalues.

We deal nowwith the compactification in chartU2. According with the expression
in (5), system (1) in chart U2 writes
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Ûu = −u3 + (δ + 1 − b − c)u2v + b(δ + 1)uv2 − uv,

Ûv = (δ − c)uv2 + bδv3.
(8)

We recall that we are interested in the phase portrait in the positive quadrant of the
Poicaré disk. The only infinite point in the disk which is not covered by the chart U1
is the origin of chart U2. Then we only need to determine if the origin of system (8)
is a singular point. In this case, the origin is indeed a singular point, but in contrast
to the origin of U1, the linear part of system (8) at O2 is identically zero, so we need
a desingularization technique to study it. In the following section we will introduce
the blow up technique, and then we will deal again with this system.

Now we consider system (2). Again we will obtain the compactification in the
local charts U1 and U2, taking into account that for studying all the infinite singular
points, it is enough to study the singular points over v = 0 in the chart U1 and the
origin of the chart U2. In this case we consider the complete Poincaré disk because,
although in the case of the population dynamics the variables only have biological
meaning when they are positive, these equations can be used in many other contexts,
as explained in the Introduction, and in some of them it may make sense to consider
negative values of the variables.

2.2.2 A Kolmogorov system obtained from the spatial Lotka-Volterra systems

System (2) is a polynomial system of degree 3 of the form (3) with

P(x1, x2) = x1(a0+c1x1+c2x2
2 +c3x2) and Q(x1, x2) = x2(c0+c1x+c2x2

2 +c3z).

We start in this case with the study of the chart U2, which is simpler. According
to equations (5) the system (2) in this chart has the expression:

Ûu = (a0 − c0)uv2,

Ûv = −c1uv2 − c0v
3 − c3v

2 − c2v.
(9)

As we are interested in the infinite singular points, we study the singular points
appearing over the line v = 0. In this case over this line we get that

Ûu |v=0= Ûv |v=0= 0,

and then all points at infinity are singular points, including the origin which is the
only we must study in this chart.

We see that the eigenvalues of the Jacobian matrix at the origin are zero and −c2,
therefore, it can be concluded that if c2 > 0 there is exactly one orbit that goes from
outside the infinity to the origin of the chart U2 and if c2 < 0 there is exactly one
orbit that leaves the origin of U2 and goes outside the infinity. This result is obtained
with the results about normally hyperbolic surfaces. As it is not our objective here,
we will not give more details, but interested readers can see [9].
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Now we address the study of the infinite singular points in the local chart U1,
where according to equations (4) the expression of the systems is

Ûu = (c0 − a0)uv2,

Ûv = −c2u2v − c3uv2 − a0v
3 − c1v

2.
(10)

Taking v = 0 we get again that all points at infinity in this chart are singular points.
At any point (u0,0) with u0 , 0 the eigenvalues are one zero and the other −c2u2

0
so, with the same results mentioned for the origin of U2 we can conclude that if
c2 > 0 exactly one orbit outside the infinity arrives at each infinite singular point
on the chart U1 distinct from the origin; and if c2 < 0 from each inifinite singular
point on the chart U1 distinct from the origin leaves exactly one orbit from outside
the infinity.

However at the origin of chart U1 the eigenvalues of the Jacobian matrix are both
zero, so it is a linearly zero singular point. Again we will return to this problem after
Section 3, in which we will introduce the blow up’s.

3 A desingularization technique

The study of the dynamics around the singular points of a differential system is
important as it can determine behaviors of practical interest, such as stabilization of
populations at a certain level, or the extinction of some of the populations. However
given the difficulty involved in the study of some of these points, we find in the
literature that the study of the singular points is often omitted when they are not
elementary.

In addition to thewell known case of hyperbolic singularities, for the case of planar
polynomial systems, there are very good results that give a complete classification
in the semi-hyperbolic and nilpotent cases, i.e. when the eigenvalues of the Jacobian
matrix at the singular points have one eigenvalue equal to zero or both equal to zero
but the Jacobianmatrix is not identically zero. These results can be found in Chapters
2 and 3 of [25].

The result for the nilpotent case in [25] is obtained by using the so called homoge-
neous blow up’s. This technique is based essentially in the use of polar coordinates
to transform the singular points which are nilpotent. As the result is completed in
that case, and it can be directly applied to classify the nilpotent singular point de-
termining the local behavior of the orbits, we will not give details about the proof,
which can be found in [25].

However for the linearly zero singular points there are no results that allow us
to classify them. Then we will give a short description on a technique that we have
used in the context of population dynamics for the desingularization of these points:
the directional blow up’s.
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3.1 Theoretical introduction of the directional blow up’s

The basic idea behind this method is to convert the singular point that we want to
study into a line. For doing that we do a change in the variables that “explodes”
the singularity. The new singular points that appear on the line in which we have
converted the singular point can be easier to study. If this is not the case, the process
is repeated until we get to a system which does not have linearly zero singular points.
Then we can study these singularities which are simpler and go back to our original
system undoing the variable changes. This method is always valid since Dumortier
demonstrated the finiteness of this iterative desingularization procedure (see [26]).

We introduce the directional blow up’s for polynomial equations. To this end, we
consider a differential system of the form

Ûx = P(x, y) = Pm(x, y) + Ph(x, y),

Ûy = Q(x, y) = Qm(x, y) + Gh(x, y),
(11)

where P and Q are coprime polynomials, Pm and Qm are homogeneous polynomials
of degree m ∈ N and Ph and Qh are higher order terms in x and y. Our objective is
to study the origin of this system, as it is a singular point since m > 0.

For a system of this form we call the polynomial

F (x, y) := xQm(x, y) − yPm(x, y),

the characteristic polynomial of system (11). With the directional blow up’s we
transform the origin of this system into a line, and we call that line the exceptional
divisor.

3.1.1 Homogeneous vertical blow up

The homogeneous directional blow up in the vertical direction is the correspondence

(x, y) → (x, z) = (x, y/x),

where z is a new variable. Then the exceptional divisor in this case is the line x = 0,
as we transform the origin of system (11) into this line. After doing the variable
change, the expression of the original system (11) is

Ûx = P(x, xz),

Ûz =
Q(x, xz) − zP(x, xz)

x
,

(12)

that is always well-defined since we are assuming that the origin is a singular point.
In the obtained system, all the points at the exceptional divisor are singular points.
The next step in this process is to cancel some common factors, more precisely:
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• We cancel a common factor xm−1 if F . 0.
• We cancel a common factor xm if F ≡ 0.

We have to take into account, while studying the transformation of the orbits, that
in this kind of blow up, the variable change swaps the second and third quadrants
with respect to the original system.

3.1.2 Homogeneous horizontal blow up

The homogeneous directional blow up in the horizontal direction is the correspon-
dence

(x, y) → (z, y) = (x/y, y),

where z is a new variable. The exceptional divisor in this case is the line y = 0, as we
transform the origin of system (11) into this line. After doing the variable change,
the expression of the original system (11) becomes

Ûz =
P(yz, y) − zQ(yz, y)

y
,

Ûx = P(yz, y),

that is always well-defined since we are assuming that the origin is a singular point.
As in the case of the vertical blow up, in the obtained system, all the points at the
exceptional divisor are singular points, so we have to cancel some common factors,
more precisely:

• We cancel a common factor xm−1 if F . 0.
• We cancel a common factor xm if F ≡ 0.

Now, the quadrants that are swapped are the third and fourth quadrants, so we have
to take this into account to studying the configuration around the original singular
point.

Depending on the expression of the characteristic polynomial, the origin can be
either a nondicritical singular point if F . 0, or a dicritical singular point if F ≡ 0.

In the dicritical case we have

Pm = xWm−1 and Qm = yWm−1,

withWm−1 . 0 a homogeneous polynomial of degree m−1. If this polynomialWm−1
has a factor of the form y − vx where v = tan θ∗, θ∗ ∈ [0,2π), then we say that θ∗ is
a singular direction.

The advantage of this method is that it allows one to study and determine the
behavior of the solutions around the origin of our initial system (11), by studying the
singular points of system (12) on the exceptional divisor, which can be of a simpler
nature. If this does not occur, then some of the singular points on the exceptional
divisor are linearly zero, and we can repeat the process until all the points obtained
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are non-elementary. This method always works because it has been proven in [26]
that this chain of blow ups necessary to get only elementary singular points is finite.
We recall that singular points on the exceptional divisor we have to study, correspond
to either characteristic directions in the nondicritical case, or singular directions in
the dicritical case.

Once we have studied the dynamics around the exceptional divisor, to obtain
the dynamics around the origin of the original system, we must undo the variable
changes, taking into account the changes in the orbits and their orientations.

For example, if we have performed a blow up in the vertical direction, by undoing
it, the third and fourth quadrants will swap their position and all the orbits arriving
or leaving from a point that is on the exceptional divisor with the second coordinate
equal to p, will become orbits arriving or leaving from the origin, respectively, with
a slope p.

We must also study the flow over the axes in the original system, and combining
the information, determine the sectors that appear in the phase portrait. The blow up’s
always determine the behavior of the orbits except, at most, around the exceptional
divisor. For this reason, if when undoing the blow up we find some indeterminacy,
it will be necessary to carry out a directional blow up in another direction. For
example, if we have performed a blow up in the vertical direction, and we find an
indeterminacy around the vertical axis of the original system, to solve it, it can be
enough to perform a blow up in the horizontal direction.

The theoretical results that provide the relationship between the original singular
point of system (11) and the new singularities of system (12) are the following: (for
more details see [27]).

Proposition 2 Let ϕt = (x(t), y(t)) be a solution of system (11) which tends to the
origin when t goes to ±∞. Suppose that the origin of the system is a nondicritical
singular point. Assume that ϕt is tangent to one of the two angle directions tan θ = v,
v , ∞. Then the following statements hold.

1. The two angle directions θ = arctan v (in [0,2π)) are characteristic directions.
2. The point (0, v) on the (x, z)-plane is an isolated singular point of system (12).
3. The solution ϕt corresponds to a solution of system (12) tending to the singular

point (0, v).
4. Conversely, any solution of system (12) tending to the singular point (0, v) on the
(x, z)-plane corresponds to a solution of system (11) tending to the origin in one
of the two angle directions tan θ = v.

Proposition 3 Consider system (11) and suppose that the origin is a dicritical sin-
gular point. Then for every nonsingular direction θ there exists exactly one semipath
tending to the origin in the direction θ in forward or backward time. If θ∗ is a singular
direction, there may be either no semipaths tending to the origin in the direction θ∗,
or a finite number, or infinitely many.
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3.2 Application of the directional blow up’s to predator-prey systems

3.2.1 A Kolmogorov system obtained from the Rosenzweig-MacArthur system

For system (1) we have studied the finite singular points in the positive quadrant,
but this study is quite simple as the points turn out to be elementary. For this
system, the origin P0 = (0,0) and the point P1 = (1,0) are singular points for
any values of the parameters, and for some values a third singular point arises:
P2 =

(
bδ/(c − δ), (−bc(δ + bδ − c))/(c − δ)2

)
. In summary, we obtain the classifi-

cation described in Table 1 for the finite singular points according the values of the
parameters b, c and δ. More details can be found in [11].

Case Conditions Finite singular points
1 bδ > c − δ. P0 saddle, P1 stable node.
2 bδ = c − δ. P0 saddle, P1 saddle-node.
3 0 < bδ < c − δ, B ≥ 0, A > 0. P0 saddle, P1 saddle, P2 unstable node.
4 0 < bδ < c − δ, B ≥ 0, A < 0. P0 saddle, P1 saddle, P2 stable node.
5 0 < bδ < c − δ, B < 0, A > 0. P0 saddle, P1 saddle, P2 unstable focus.
6 0 < bδ < c − δ, B < 0, A < 0. P0 saddle, P1 saddle, P2 stable focus.
7 0 < bδ < c − δ, B < 0, A = 0. P0 saddle, P1 saddle, P2 weak stable focus.

Table 1: The finite singular points in the closed positive quadrant for system (1).

However, for the study of infinite singular points, as we mentioned in Section 2,
it is necessary to use some desingularization technique. More precisely, we need to
desingularize the origin of the system in chart U2, i.e. the origin of

Ûu = −u3 + (δ + 1 − b − c)u2v + b(δ + 1)uv2 − uv,

Ûv = (δ − c)uv2 + bδv3.
(13)

For doing that we use the blow-up technique. More precisely, we do a horizontal
blow up introducing the new variable w1 by means of the variable change vw1 = u,
and get the system

Ûw1 = v
2w3

1 + (1 − b)v2w2
1 + bw1v

2 − w1v,

Ûv = (δ − c)w1v
3 + bδv3.

(14)

Now rescaling the time variable we cancel the common factor v, getting the system

Ûw1 = vw
3
1 + (1 − b)vw2

1 + bw1v − w1,

Ûv = (δ − c)w1v
2 + bδv2.

(15)

Now the only singular point on v = 0 is the origin, which is semi-hyperbolic, so it
is not necessary no do more chained blow up’s. We can apply [25, Theorem 2.19]
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and thus we conclude that it is a saddle-node. Studying the sense of the flow over the
axis we determine that the phase portrait around the origin of system (15) is the one
on Figure 3(a).

Now we start to undo the change. If we multiply by v, all the points of the w1-axis
become singular points and the sense of all the orbits on the third and fourth quadrants
is reversed. With these modifications we obtain the phase portrait for system (14),
given in Figure 3(b).

After that we undo the blow up going back to the (u, v)-plane. We have to swap
the fourth and third quadrants and compress the exceptional divisor into the origin.
The phase portrait obtained for system (8) is not totally determined in the shaded
regions of the third and fourth quadrants, see Figure 3(c).

As it was explained in the previous subsection, it can be solved by doing a vertical
blow up but, in the case of this system, it is not necessary because we only need to
know the phase portrait of O2 in the positive quadrant of the Poincaré disc, which
corresponds with the positive quadrant in the plane (u, v), in which the phase portrait
has been totally determined.

v

w1

(a) Origin of system (15)

v

w1

(b) Origin of system(14)

v

u

(c) Origin of system (8)

Fig. 3: Desingularization of the origin of system (8).

Finally, we have concluded that the local phase portrait at the origin of chart U2
(which is an infinite singular point) is the same for all the values of the parameters:
particularly, the origin of the chart U2 has only one hyperbolic sector on the positive
quadrant of the Poincaré disc being one separatrix at infinity and the other on x = 0.

The application of this technique is essential in order to complete the global
classification of all the phase portraits of the system, which is included in Figure 4.
More results and details about this system can be found in [11].
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(a) (b) (c)

Fig. 4: Phase portraits of system (1) in the positive quadrant of the Poincaré disc.

3.2.2 A Kolmogorov system obtained from the spatial Lotka-Volterra systems

Let us now deal with system (2). For this system, as stated in Section 2, the singular
point at the origin of the chart U1, which we will name O1, is linearly zero. For this
singular point we will prove the following result.

Lemma 1 The origin of the chart U1 is an infinite singular point of system (2) and
it has 12 distinct local phase portraits described in Figure 5.

To prove Lemma 1 we use, among other results, the blow up technique. We
illustrate now how is the proof of the result and how we can conclude by using
directional blow up’s. It is important to set that we work under the conditions

H =
{
c2 , 0,a0 ≥ 0, c1 ≥ 0, c3 ≥ 0,a0 , c0,a2

0 + c2
1 , 0

}
,

and the proof that this does not suppose any restriction ir order to study all the
dynamics, can be found in [9].

We recall that the system in chart U1 has the expression

Ûu = (c0 − a0)uv2,

Ûv = −c2u2v − c3uv2 − a0v
3 − c1v

2,
(16)

and from these equations we can remove a common factor v obtaining:

Ûu = (c0 − a0)uv,

Ûv = −c2u2 − c3uv − a0v
2 − c1v.

(17)
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u

v

(a) L1

u

v

(b) L2

u

v

(c) L3

u

v

(d) L4

u

v

(e) L5

u

v

(f) L6

u

v

(g) L7

u

v

(h) L8

u

v

(i) L9

u

v

(j) L10

u

v

(k) L11

u

v

(l) L12

Fig. 5: Local phase portraits at the infinite singular point O1.
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Then we study the only singular point over the exceptional divisor, i.e. over the
line v = 0, the origin. We name this singular point Õ1. Now the eigenvalues of the
Jacobian matrix at Õ1 are zero and −c1, so if c1 , 0 the singular point of system (17)
is semi-hyperbolic and we can study it applying Theorem 2.19 of [25]. The phase
portraits corresponding with the semi-hyperbolic case are L1 to L4 in Figure 5, and
more details can be found in [9].

Here we focus our attention in the case with c1 = 0 in which we must do a
desingularization process so we use the blow up technique.

We have to study which is the characteristic polynomial F for system (17), and
we obtain

F = −c2u3 − c3u2v − c0uv2,

which can not be identically zero because c2 , 0, so the singular point Õ1 is
nondicritical.

We introduce now a new variable w1 trying to explode the singular point Õ1 into
a straight line, in particular, the line u = 0. We consider the variable change uw1 = v,
and making calculations we obtain the system

Ûu = (c0 − a0)u2w1,

Ûw1 = −c0uw2
1 − c3uw1 − c2u.

(18)

With this variable change we have introduced a line filled up with singular points in
the line u = 0 so, to remove it we must eliminate a common factor u, obtaining:

Ûu = (c0 − a0)uw1,

Ûw1 = −c0w
2
1 − c3w1 − c2.

(19)

Now we focus our attention in the line u = 0, which is the exceptional divisor. The
singularities over this line are the points with the first coordinate zero and the second
one a solution of the equation −c0w

2
1 − c3w1 − c2 = 0. We must study all the singular

points but, as they depend on the parameters, we should distinguish the following
cases from (A) to (G).

(A) If c0 = 0 and c3 = 0, as we are working under hypothesis H previously stated,
and then c2 , 0, there are no singularities with u = 0. We consider two cases
depending on the sign of the parameter c2:
Subcase (A.1). Let c2 > 0. Then system (19) has the phase portrait given in
Figure 6(a). To undo the changes, the first step is to multiply by u, then all the
points over the w1-axis become singular points, and the orbits on the second and
third quadrants reverse their orientation. We obtain the configuration in Figure
6(b). Now we blow down, shrinking the exceptional divisor into the origin, and
interchanging the second and third quadrants. Thuswe obtain the phase portrait on
Figure 6(c). Finally, to obtain the phase portrait of the initial system, we multiply
by v, obtaining the phase portrait L5 given in Figure 5, which has a line filled up
with singularities, the u-axis.
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u

w1

(a)

u

w1

(b)

u

v

(c)

Fig. 6: Desingularization of the origin of systems (10) with c0 = c1 = c3 = 0 and
c2 > 0.

Subcase (A.2). Let c2 < 0. Then if we do a vertical blow up as in the previous
case, it does not determine the configuration of the orbits. We only obtain the
information that over the u-axis the flow is vertical and it goes in the positive
sense. Therefore to obtain the complete phase portrait we do a horizontal blow
up. We introduce a new variable w2 with the change vw2 = u, and with the
hypothesis of this case we get the system

Ûw2 = c2w
3
2 v,

Ûv = −c2w
2
2 v − a0v

2.
(20)

If we remove a factor v in both equations we obtain

Ûw2 = c2w
3
2,

Ûv = −c2w
2
2 − a0v.

(21)

We study the singularities over the exceptional divisor, which in this case, as we
have done a horizontal blow up, is the line v = 0. Over this line there is only
one singular point, the origin, and it is a semi-hyperbolic singularity. We can use
Theorem 2.19 in [25] to determine the phase portrait, and we obtain that it is a
stable topological node. Then the phase portrait near the origin for system (21) is
the one given in Figure 7(a).
If we multiply by the variable v, the phase portrait that we obtain for system (20)
is the one in Figure 7(b).
To blow down we shrink the exceptional divisor into the origin and swap the third
and fourth quadrants, so we get that in the first and second quadrants the orbits go
to the origin tangent to the v-axis and in the third and fourth quadrants the orbits
leave the origin tangent to the v-axis.
This qualitative behavior together with the information from the vertical blow up
leads to the phase portrait in Figure 7(c).
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Finally, we obtain the phase portrait for the initial system multiplying by v. The
final result is the L6 of Figure 5.

w1

v

(a)

w2

v

(b)

u

v

(c)

Fig. 7: Desingularization of the origin of systems (10) with c0 = c1 = c3 = 0 and
c2 < 0.

(B) Let c0 = 0 and c3 > 0. Then over the exceptional divisor we have one singular
point: Q1 = (0,−c2/c3). This singularity is hyperbolic and the eigenvalues of the
Jacobian matrix are a0c2/c3 and −c3 so we have two subcases depending on their
signs:
Subcase (B.1). If c2 > 0we do a horizontal blow up introducing the variable vw2 =
u in systems (17), as with the vertical blow up we obtain some indeterminacies
around the exceptional divisor. With the new variable w2 we get

Ûw2 = c2w
3
2 v + c3w

2
2 v,

Ûv = −c2w
2
2 v + c3w2v

2 − a0v
2.

(22)

Removing a common factor v, the system becomes:

Ûw2 = c2w
3
2 − c3w

2
2,

Ûv = −c2w
2
2 v − c3w2v − a0v.

(23)

For this system we study the existence of singularities on the line v = 0, and we
found two different points: the origin and the point (−c3/c2,0). The first one is a
semi-hyperbolic saddle-node and the second one is a saddle.
Combining the phase portraits of both singularities the phase portrait for system
(23) is the one in Figure 8(a).
If we multiply by v the phase portrait for system (22) is the one in Figure 8(b).
If we blow down we get the phase portrait in Figure 8(c) and finally, if we multiply
again by v we obtain for the initial system the phase portrait L7 of Figure 5.
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w1

v

(a)

w1

v

(b)

u

v

(c)

Fig. 8: Desingularization of the origin of systems (10) with c0 = c1 = 0, c3 > 0 and
c2 < 0.

Subcase (B.2). In the case c2 < 0 the singular point Q1 is a stable node and we
also need a horizontal blow up to determine the local phase portrait. The result
obtained is the phase portrait L6 of Figure 5.

(C) Let c0 , 0, c3 = 0 and c0c2 > 0. In this case there are no singularities over the
exceptional divisor. We distinguish three subcases depending on the behavior of
the orbits around that exceptional divisor. If c0 and c2 are positive we obtain the
same phase portrait L5 of Figure 5, and if c0 and c2 are negative, we obtain again
the phase portrait L6 of Figure 5, but in this case, to get to the final result, it is
also necessary to do a horizontal blow up.

(D) Let c0 , 0, c3 = 0 and c0c2 < 0. Then over the exceptional divisor there are two
hyperbolic singularities:

Q2 =

(
0,

√
−c2
c0

)
and Q3 =

(
0,−

√
−c2
c0

)
.

Taking into account the eigenvalues of the Jacobian matrix at both points, we
consider three subcases.
Subcase (D.1). If c0 > 0 and a0 − c0 > 0, then the singular point Q2 is a stable
node and the singular point Q3 is an unstable node. Undoing the blow up we
obtain phase portrait L6 of Figure 5.
Subcase (D.2). If c0 > 0 and a0 − c0 < 0, then the singular points Q2 and Q3 are
both saddle points with the orientation of the hyperbolic orbits given in Figure
9(a). If we multiply by u and then blow down, we obtain the phase portraits in
Figure 9(b) and (c). Multiplying by u again we obtain that the local phase portrait
for O1 is L8 of Figure 5.
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w1

(a)

u

w1

(b)

u

v

(c)

Fig. 9: Desingularization of the origin of systems (10) with c3 = 0, c0 > 0, c2 < 0
and a0 − c0 < 0.

Subcase (D.3). If c0 < 0 and a0 − c0 > 0, then the singular points Q2 and Q3 are
both saddle points but with a different orientation than in case (D.2). Here the
vertical blow up is not enough to determine the behavior of the orbits near the
v-axis. We introduce the variable w2 such that vw2 = u, to explode the origin into
a horizontal line. We obtain

Ûw2 = c2w
3
2 v + c0w2v,

Ûv = −c2w
2
2 v − a0v

2,
(24)

and then, removing a common factor v, we obtain

Ûw2 = c2w
3
2 + c0w2,

Ûv = −c2w
2
2 − a0v.

(25)

For this system we study the singularities on the line v = 0, which are three: The
origin which is a stable node, and two saddle points (±

√
−c0/c2,0). Combining

these three singularities, the phase portrait around the w2-axis for system (25) is
the one in Figure 10(a). If we multiply by v we get the phase portrait in Figure
10(b) for systems (24). Blowing down we obtain the phase portrait in Figure
10(c). If we multiply again by v we obtain the local phase portrait for O1 which
is L9 of Figure 5.
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v
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Fig. 10: Desingularization of the origin of systems (10) with c3 = 0, c0 < 0, c2 > 0
and a0 − c0 > 0.

(E) Let c0 , 0, c3 , 0 and c2
3 − 4c0c2 < 0. In this case there are no singularities over

u = 0. If c2 > 0 the phase portrait is L5 of Figure 5, and if c2 > 0 we obtain, by
combining with a horizontal blow up, the phase portrait L6 of Figure 5.

(F) Let c0 , 0, c3 , 0 and c2
3 −4c0c2 > 0. Then there are two hyperbolic singularities

over u = 0:

Q4 =
©­­«0,−

c3 +
√

c2
3 − 4c0c2

(2c0)

ª®®¬ and Q5 =
©­­«0,−

c3 −
√

c2
3 − 4c0c2

(2c0)

ª®®¬ .
Subcase (F.1). If a0−c0 > 0, c0 > 0 and c2

3−4c0c2−c3 > 0, thenQ4 is an unstable
node and Q5 a stable node. Undoing the blow up we get the phase portrait L6 of
Figure 5.
Subcase (F.2). If a0 − c0 > 0, c0 > 0 and c2

3 − 4c0c2 − c3 < 0, then the singular
point Q4 is an unstable node and the singular point Q5 a saddle. Undoing the blow
up we get the phase portrait L7 of Figure 5.
Subcase (F.3). If a0 − c0 > 0, c0 < 0 and c2

3 − 4c0c2 − c3 > 0, then the singular
points Q4 and Q5 are saddle points, but the vertical blow up does not determine
the behaviour of the orbits around the v-axis. Doing a horizontal blow up we
obtain the phase portrait L9 of Figure 5.
Subcase (F.4). If a0 − c0 > 0, c0 < 0 and Rc − c3 < 0, then Q4 is a saddle and Q5
is a stable node. Again the vertical blow up is not enough to determine the phase
portrait. With a horizontal blow up we obtain the phase portrait L10 of Figure 5.
Subcase (F.5). If a0 − c0 < 0, c0 > 0 and Rc − c3 > 0, then Q4 and Q5 are saddle
points. Undoing the blow up we get the phase portrait L8 of Figure 5.
Subcase (F.6). If a0 − c0 < 0, c0 > 0 and Rc − c3 < 0, then Q4 is a saddle and Q5
is a stable node. Undoing the blow up we get the phase portrait L11 of Figure 5.
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(G) Let c0 , 0, c3 , 0 and c2
3 − 4c0c2 = 0. In this case the singular point on the

exceptional divisor is Q6 = (0,−c3/(2c0)), and it is a semi-hyperbolic saddle-
node. We have three different cases in which the position of the sectors of the
saddle-node changes. These cases are determined by the signs of c0(a0 − c0) < 0
and c0 < 0. If c0(a0 − c0) > 0 and c0 > 0, we obtain the phase portrait L7, if
c0(a0−c0) < 0 and c0 > 0, we obtain the phase portrait L11, and if c0(a0−c0) < 0
and c0 < 0, we get the phase portrait L12 of Figure 5.

4 Conclusions

In this chapter we have presented, for two different predator-prey systems, some
results about their global dynamics, paying special attention to the dynamics near the
infinity and to the configuration of the orbits in a neighborhood of the nonelementary
singular points.

First, in Section 2 we have used the Poincaré compactification, which is a very
useful tool to study the behavior of the orbits which go or come from infinity. After
a theoretical review of the technique, we have applied it to a Kolmogorov system
obtained from a Rosenzweig-MacArthur system, and also to a Kolmogorov system
obtained from a spatial Lotka-Volterra system. In the first case, we have obtained
that there are only isolated singular points at the infinity , while in the second case,
the infinity is formed by a continuum of singular points.

Then, in Section 3 we deal with the desingularization technique consisting on the
use of the variable changes called blow up’s.More precisely, we have used directional
blow up’s in the horizontal and vertical directions. This allows one to study any type
of singularities of analytic systems in dimension two even if they are not elementary.
We believe this is important since these type of singular points are not studied in
many of the predator-prey systems proposed in the literature. In our case, we apply
this technique to the study of singularities in the two planar Kolmogorov systems,
giving a description of the process as well as a complete representation of all the
results obtained.

Thus, the purpose of this chapter is twofold: on the one hand, to present the results
we have obtained for these Kolmogorov systems, and on the other hand, to serve as
an illustrative example of how the techniques used can allow a better study of some
predator-prey systems proposed in the literature.
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