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Abstract. We study the dynamics of an infinitesimal mass under the gravitational attraction

of N − 1 primaries arranged in a planar ring configuration plus the influence of the central mass

with a Manev potential (−1/r + e/r2), e 6= 0, where e is a parameter related to the oblaticity
or radiation source (according to the sign of the parameter e). Specifically, we investigate the

relative equilibria of the infinitesimal mass and their linear stability as functions the parameter
e and the mass parameter β, the ratio of mass of the central body to the mass of one of N − 1

remaining bodies. We also prove the nonexistence of binary collisions between the central body

and the infinitesimal mass.
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1. Introduction7

The two body problem with a quasi–homogeneous potential of the form −(a/r − e/r2), where8

r is the distance between the two bodies, and a, e are real constants, was considered by Newton9

in his work Philosophiae Naturalis Principia Mathematica (Book I, Article IX, Proposition XLIV,10

Theorem XIV, Corollary 2). One of the reasons to add the term e/r2 to the gravitational attraction11

(−a/r) was the impossibility to explain the Moon’s apsidal motion within the framework of the12

inverse-square force law, although the model was abandoned in favor of the classical Newtonian13

potential. Manev in 1924, [15], proposed a similar corrective term in order to maintain classical14

mechanics and offering at the same time good explanations of the observed phenomena as in the15

relativity theory. For instance, when a is positive and e is negative, the corrective term is good16

enough to explain the perihelion advance of Mercury.17

In this work we consider the motion in a three-dimensional space of an infinitesimal mass P18

under the gravitational attraction of N = n+ 1 point masses, P0, Pi, i = 1, . . . , n called primaries.19

We assume that the potential generated by the primary P0 is a Manev potential (−1/r + e/r2),20

with parameter e, and that the gravitational attraction due to Pi, i = 1, . . . , n is Newtonian −1/r.21

We also shall assume that the n-primaries Pi (i = 1, . . . , n) are in a n-gon configuration, that is,22

the bodies Pi, i = 1, . . . , n have the same mass mi = m, for all i = 1, . . . , n, and are located23

symmetrically with respect to the central body P0, of mass m0 = βm, which is at the center of24

mass of the system. P0 will also be called the central body, and Pi, i = 1, . . . , n the peripherals, as25

in the Maxwell ring model. In an inertial reference system the peripheral bodies move in a circular26

Date: April 20, 2023.
Second author is supported by the Spanish grant PGC2018-100928-B-I00.

Third author is supported by MINECO grants MTM2013-40998-P,MTM2016-77278-P FEDER and AGAUR grant

2014 SGR 568.

1



2 MAURICIO ASCENCIO, ESTHER BARRABÉS, JOSEP M. CORS, AND CLAUDIO VIDAL

orbit around P0 with angular velocity ω. This problem will be called Maxwell’s ring restricted27

(N + 1)-body problem with Manev potential or shortly, Manev R(N + 1)BP.28

The case e = 0, shortly, the classical Maxwell model was considered by Scherees in [19] several29

aspects of the dynamcis were studied, such as , Hill stability, invariant transformations, equilibrium30

points and their stability, and periodic orbits. After that, Kalvouridis in [14] for the planar case31

formulate the general equations of motion and studied the stationary solutions and the zero-velocity32

contours for various values of n.33

We emphasize that the parameter e ∈ R models several problems, for example, when the central34

body of the ring is no longer spherical, but an ellipsoid of revolution (spheroid). According to [11],35

[12] the parameter e is associated with flattening, in natural bodies like planets, the spheroid is36

flattened e < 0, but also we can think of artificial bodies and assume they are prolates, in that case37

e > 0. In general, this fact is seen more used in potentials of the Schwarzschild type (A/r − e/r3,38

introduced in 1998 by Mioc and Savinski in [17]). We consider that the central body is a source of39

radiation, repulsive if e > 0 and attractive if e < 0, and then the effect of radiation can be modeled40

in a similar way to the flattened ellipsoid (see, for example, [13]).41

In Fakis and Kalvouridis [11] (2013) the authors study numerically some aspects of the dynamics42

of a small body under the action of Maxwell-type N -body system with a spheroidal central body.43

As for example, the equilibrium locations and their parametric dependence, as well as the zero-44

velocity curves and surfaces for the planar motion, and the evolution of the Hill’s regions. The45

non-sphericity of the central body is described by a Manev potential, as presented in this work.46

See also Elipe et al. [12] (2007), Arribas et al. [4] (2003) and Arribas et al. [5] (2007). In Alavi47

and Razmi [1] (2015), such a correction term in a Newtonian potential, with e > 0 (that represents48

a repulsive centripetal force), is used in disk galaxies evolution. Also, in Mioc and Stoica [16]49

(1997) the Manev-type potential is considered in the frame of a two-body problem. The spatial50

restricted four body problem (case n = 2) with repulsive Manev potential (e > 0) was studied from51

an analytical point of view in [10]. For the planar case and n = 7, a particular numerical study52

on the number of equilibria and the bifurcations that depend on the Manev parameter is made53

in [3]. We found that in [12] was studied the existence of some symmetric periodic solutions in54

the planar case using numerical methods. For the spatial case with general n, an analytical study55

of the existence of periodic solution families around the central body and far from the primaries56

was studied by Ascencio and Vidal. In [6] the authors proved the existence of symmetric periodic57

solutions. Then, in [7] they proved the existence of periodic solutions (not necessarily symmetric),58

where they also guaranteed the existence of KAM tori that enclosed them.59

The main purpose of this paper is to study important aspects of the dynamics of the spatial60

restricted (N + 1)-body problem with repulsive or attractive Manev potential from an analytical61

point of view, for any quantity of peripherals n. Initially, we characterize the symmetries of the62

associated Hamiltonian function. On the other hand, for the repulsive case, that is, e > 0 we prove63

that, due to the repulsive force emanating from the central body, it is not possible to have a binary64

collision between the infinitesimal mass and the central body in the Manev R(N + 1)BP. We prove65

that any equilibrium point must lie on the lines of symmetries of the regular polygon formed by66

the peripheral bodies, or on the z-axis. Using this information we are able to determine the type67

of equilibrium points and the number of them as functions of the parameters β and e. Bifurcation68

parameters are characterized. After that, several general results concerning the type of stability of69

each equilibria are proved analytically.70

The paper is organized as follows: in Section 2 we point out the equation of motions, the71

admissible values of the Manev parameter e, and the symmetries. We also prove the nonexistence72

of binary collisions between the central body and one of the infinitesimal mass. Section 3 is devoted73
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to the observe that any planar equilibrium point must lie on the symmetries lines of the regular74

polygon formed by the peripherals. Using this information we are able to determine the type of75

equilibrium points and the number of them as function of the parameters β and e. Bifurcation76

parameters are characterized. In Section 4 the linear stability of each equilibrium point is given.77

Finally, in Section 6 we introduce some technical lemmas that are necessary for the proof of our78

results.79

2. Statement of the problem and main features80

In this section we derive the equations of motion of the Manev R(N+1)BP as follows. Consider81

N+1 bodies, Pi, with positive massesmi, in an inertial frame moving under their mutual Newtonian82

gravitational attraction, plus a Manev perturbation coming from body P0. The potential generated83

by the N + 1 bodies is given by84

(1) U =
∑

0≤i<j≤N

Gmimj

||qi − qj ||
−

N∑
j=1

Gm0mjB

||q0 − qj ||2
,85

where qi is the position of Pi, i = 0, 1, . . . , N , G is the Gaussian constant of gravitation and B is86

the corrective coefficient corresponding to Manev potential.87

If we consider that the particle P = PN with position q = qN is small, mN ≈ 0, so that its88

influence on the other bodies can be neglected, the equations of motion of a restricted N + 1-body89

problem are90

(2)

q̈0 =

n∑
j=1

(
Gmj(qj − q0)

||q0 − qj ||3
− 2GmjB(qj − q0)

||q0 − qj ||4

)
,

q̈i =

n∑
j=0, j 6=i

Gmj(qj − qi)
||qi − qj ||3

− 2Gm0B(q0 − qi)
||q0 − qi||4

, i = 1, . . . , n,

q̈ =

n∑
j=0

Gmj(qj − q)
||q − qj ||3

− 2Gm0B(q0 − q)
||q − q0||4

.

91

where N = n + 1. The first n + 1 equations correspond to the motion of the primaries and are92

uncoupled, in the sense that they can be solved independently from the last one. The last one93

corresponds to the motion of the infinitesimal particle, and in order to solve it a solution of the94

first n+ 1 equations is required.95

We impose the following solution for the primaries. We place P0, called central primary, at the96

origin and the remaining bodies, called peripherals, Pi, i = 1, . . . , n, with equal masses mi = m,97

i = 1, . . . , n, at the vertices of a regular polygon with center at P0, and moving around it, in a98

plane, with constant angular velocity ω. Then99

(3) qj(t) = deiwtei
2π(j−1)

n , j = 1, . . . , n,100

where d is the radius of the polygon. Substituting into the first n + 1 equations in (2), and101

introducing the mass parameter β = m0/m, we obtain the following two algebraic equations102

0 = deiωtGm

 n∑
j=1

ei
2π(j−1)

n

d3
− 2Bei

2π(j−1)
n

d4

 ,(4)103

−ω2deiωt = Gmdeiωt
 n∑
j=2

ei
2π(j−1)

n − 1

d3
j

− β

d3
+

2Bβ

d4

 ,(5)104
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where dj = ||q1 − qj || is the distance between the peripherals P1 and Pj , with j = 2, . . . , n.105

Figure 1. The “ring” configuration of the n+ 1 primaries, where ψ = 2π/n, d is
the radius of the ring and a the side of the regular polygon, related by (6).

On one hand, using trigonometric identities it is not difficult to see that
∑n
j=1 e

i
2π(j−1)

n = 0, so106

equation (4) is satisfied trivially. On the other hand, using the geometry of the configuration (see107

Figure 1) we have that108

(6) d =
a

2 sin(π/n)
=
a

ρ
, dj =

2a

ρ
sin
(

(j − 1)
π

n

)
,109

where a is the side of the regular polygon and ρ = 2 sin(π/n). Substituting (6) into (5) and defining110

e = B/a, the Manev parameter, we have that111

(7) w2 = −Gm
n∑
j=2

ei
2π(j−1)

n − 1

d3
j

+ Gmβρ3

a3
− Gm2βeρ4

a3
.112

Clearly, using the symmetry of the configuration and (6)113

=

 n∑
j=2

ei
2π(j−1)

n − 1

d3
j

 = 0,114

<

 n∑
j=2

ei
2π(j−1)

n − 1

d3
j

 =
−ρ
a3

n∑
j=2

sin2(π/n)

sin((j − 1)π/n)
.115

We define116

(8) Λ =

n∑
i=2

sin2(π/n)

sin[(i− 1)(π/n)]
,117
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Figure 2. Evolution of e0, defined in (11), as a function of the mass ratio β for
different values of n (log scale).

so that equation (7) writes

w2 = Gm
(
ρΛ

a3
+
βρ3

a3
− 2βeρ4

a3

)
,

or equivalently118

(9)
Gm
a3ω2

=
1

∆
,119

where120

(10) ∆ = ρ(Λ + βρ2 − 2βeρ3).121

Therefore the configurations were n bodies are at the vertices of a regular polygon, rotating122

with constant angular velocity, plus a mass with a Manev potential at the center is solution of the123

n + 1-body problem provided that equation (9) is satisfied. Equation (9) can be interpreted as124

generalized third Kepler law.125

Notice that, from (9), ∆ must always be positive, which gives an upper bound on the Manev126

parameter e.127

Definition 2.1. For each fixed integer n ≥ 2 and mass ratio β > 0, the admissible values of the128

Manev parameter e are the values such that129

(11) e < e0 :=
Λ + βρ2

2βρ3
,130

where Λ is given in (8).131

In Figure 2 we see the evolution of e0 as a function of β for different values of n. Clearly, the132

greater the number of peripherals, the greater the curve e0(β). Thus, if the Manev parameter is133

big, either the mass ratio β is small or the number of peripherals is big enough.134

Introducing the Manev parameter e and the mass ratio β in the last equation of system (2), the135

motion of the infinitesimal particle P is given by136

(12) q̈ = Gm

(
− β
r3
0

q +
2eβ a

r4
0

q +

n∑
i=1

qi − q
r3
i

)
,137
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where qi(t) are given in (3), ri(t) is the distance between P and the ith primary, and parameters138

G, m, β, e, a must satisfy equation (9). By scaling distances by q∗i = qi
a , i = 0, . . . , n, q∗ = q

a139

and time by t∗ = ωt, and using the identity (9) we obtain the equations of the restricted Manev140

problem in the inertial frame (for simplicity we drop the ∗ notation)141

(13) q̈ =
1

∆

(
−βq
r3
0

+
2eβq

r4
0

+

n∑
i=1

qi − q
r3
i

)
.142

Notice that, with the reescaling, the peripherals are located in an n-gon of side 1 with radius 1/ρ143

and rotating periodically with period 2π.144

We change to a rotating system Oxyz, that rotates with angular velocity equal to 1, so that the145

peripherals are contained in the plane z = 0 at fixed positions (xi, yi, 0), where146

(14) xj =
1

ρ
cos

(
2π(j − 1)

n

)
, yj =

1

ρ
sin

(
2π(j − 1)

n

)
, j = 1, . . . , n.147

Then, the motion of the infinitesimal particle in the rotating system (see Figure 3) is described by148

the following system of second-order differential equations:149

(15)
ẍ− 2ẏ = Ωx,
ÿ + 2ẋ = Ωy,

z̈ = Ωz,
150

where Ωξ = ∂Ω
∂ξ ,151

Ω(x, y, z) =
1

2
(x2 + y2) + V (x, y, z)(16)152

V (x, y, z) =
1

∆

β( 1

r0
− e

r2
0

)
+

n∑
j=1

1

rj

 ,(17)153

and154

(18) r0 = (x2 + y2 + z2)1/2, rj = [(x− xj , )2 + (y − yj)2 + z2]1/2, j = 1, . . . , n.155

These equations are the same as in [11].156

Figure 3. The configuration of the problem. P is the small body and Pi, i =
0, 1, 2, . . . , n are the primaries.



STABILITY OF EQUILIBRIUM POINTS IN THE SPATIAL RESTRICTED N+1-BODY PROBLEM WITH MANEV POTENTIAL7

The phase space associated to system (15) (as a first order differential system) is

M =
{

(x, y, z, ẋ, ẏ, ż) ∈
(
R3 \ {(0, 0, 0), (xi, yi, 0) : i = 1, . . . , n)}

)
× R3

}
.

We remark that the problem has two invariant subspaces: the subspace z = ż = 0, named Planar157

Manev R(N+1)BP, and the z-axis, named Rectilinear Manev R(N+1)BP.158

Next, we highlight some main properties of the model.159

2.1. Rotation and symmetries. The system (15) admits the following rotation160

(19)
R : (x, y, z, ẋ, ẏ, ż)→ (cos(ψ)x− sin(ψ)y, sin(ψ)x− cos(ψ)y, z,

cos(ψ)ẋ− sin(ψ)ẏ, sin(ψ)ẋ+ cos(ψ)ẏ, ż),
161

with ψ = 2π/n. In the next section we will see that the use of previous rotation will simplify the162

study of the equilibrium points.163

In addition, the system (15) admits the following time reversal symmetries:164

(20)
S1 : (x, y, z, ẋ, ẏ, ż, t)→ (x,−y,−z,−ẋ, ẏ, ż,−t),
S2 : (x, y, z, ẋ, ẏ, ż, t)→ (x,−y, z,−ẋ, ẏ,−ż,−t),165

for all n, and166

(21)
S3 : (x, y, z, ẋ, ẏ, ż, t)→ (−x, y,−z, ẋ,−ẏ, ż,−t),
S4 : (x, y, z, ẋ, ẏ, ż, t)→ (−x, y, z, ẋ,−ẏ,−ż,−t),167

for n even. They have been used to prove the existence of comet and Hill periodic orbits around168

the primaries (see [6]).169

2.2. Jacobi constant. Similarly to the classical circular restricted three-body problem, the system170

(15) possesses the first integral, known as Jacobi constant, given by171

(22) C = 2Ω(x, y, z)− (ẋ2 + ẏ2 + ż2).172

Using the above first integral, we can prove that in the repulsive case, it is not possible to have173

a binary collision between the infinitesimal mass and the central body in the Manev R(N + 1)BP.174

This is consequence of the following result.175

Theorem 2.1. For each integer n ≥ 2, β > 0 and an admissible e > 0, a solution of the restricted
Manev R(N+1)BP (15) must satisfy

lim inf
t→±∞

r0(t) > 0,

where r2
0 = x2 + y2 + z2.176

Proof. Consider γ(t) a solution of (15). Then by (22), there exists a constant C ∈ R such that
C(γ(t)) = C ∀ t. Suppose that lim inft→+∞ r0(t) = 0 (analogously when t → −∞). Then, using
(17), there exists a sequence tn−→+∞ such that

lim
n→∞

C(γ(tn)) = −∞,

which is a contradiction. �177
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3. Equilibrium points178

The equilibrium points of the Manev R(N+1)BP (15) correspond to the points (x, y, z, 0, 0, 0) ∈179

M such that180

(23)

x− 1

∆

[
β

(
1

r3
0

− 2e

r4
0

)
x+

n∑
i=1

x− xi
r3
i

]
= 0,

y − 1

∆

[
β

(
1

r3
0

− 2e

r4
0

)
y +

n∑
i=1

y − yi
r3
i

]
= 0,

z

[
β

(
1

r3
0

− 2e

r4
0

)
+

n∑
i=1

1

r3
i

]
= 0.

181

Since any equilibrium point is determined by the position (x, y, z) of the infinitesimal mass, from182

now we represent them only by the position vector.183

In the following result we characterize the location of the equilibrium points.184

Theorem 3.1. Consider the Manev R(N+1)BP (15) for a fixed n ≥ 2, β > 0 and an admissible185

e. The equilibrium points in the z = 0 plane lie on the lines y = tan( iπn )x, i = 1, . . . , n. In the186

spatial case z 6= 0, for e > 0 the equilibrium points are located on the z-axis, while for e ≤ 0 there187

are no equilibrium points.188

Proof. For n = 2, the result is already proved in [10]. Then, we consider n ≥ 3.189

We first consider the planar case z = 0. The equations of the equilibrium points given in (23)190

are reduced to191

(24)
x+ Vx = 0,
y + Vy = 0,

192

where V is given in (17). The system (24) implies193

(25) yVx − xVy = 0, −→
n∑
i=1

xyi − yxi
r3
i

= 0,194

where xi and yi are given in (14). Denote by ϕi = 2π(i−1)
n , i = 1, . . . , n. Introducing polar

coordinates x = −r cos θ, y = r sin θ, for a fixed r > 0 the equation (25) can be written as F (θ) = 0
where

F (θ) :=

n∑
i=1

sin(θ + ϕi)

r3
i

=
sin(θ)

r3
1

+

n−1∑
i=1

sin(θ + ϕi+1)

r3
i+1

,

where r2
i = r2 + 2r cos(θ + ϕi) + 1. Notice that if we consider ri as a function of θ, then ri(θ) =

r1(θ + ϕi). Therefore, F (θ) can be written as

F (θ) = f(θ) +

n−1∑
i=1

f(θ + iT ),

with f(θ) = sin(θ)
r31(θ)

and T = 2π
n . In this way, F (θ) satisfies the hypothesis of Lemma 6.1 (see195

Appendix 6), and F (θ) = 0 if and only if θ = kπ
n , k ∈ Z, which completes the proof in the case196

z = 0.197
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Next we consider z 6= 0. In this case the system (23) can be rewritten as198

(26)

∆Qx = −
n∑
i=1

xi
r3
i

,

∆Qy = −
n∑
i=1

yi
r3
i

,

(1−Q) z = 0,

199

with Q = 1− 1

∆

(
β

(
1

r3
0

− 2e

r4
0

)
+

n∑
i=1

1

r3
i

)
. Since z 6= 0, then Q = 1 and we have that

β

(
1

r3
0

− 2e

r4
0

)
+

n∑
i=1

1

r3
i

= 0.

Clearly, this equation does not have solution if e < 0, so there are not equilibrium points on the200

z-axis when e < 0.201

When e > 0, system (26) is reduced to202

(27)

∆x = −
n∑
i=1

xi
r3
i

,

∆ y = −
n∑
i=1

yi
r3
i

.

203

Using first Lemma 6.2 we have that if y 6= 0 both sides of the second equation in (27) have different204

sign, so we have a contradiction and y = 0. Then, introducing y = 0 in the first equation, and205

using Lemma 6.3 we have that if x 6= 0 both sides of the equation have different sign, so again we206

have a contradiction. Therefore, x = 0 and the equilibrium points with z 6= 0 must be located on207

the z-axis. This completes the proof. �208

Notice that the lines y = tan( iπn )x, i = 1, . . . , n, are lines of symmetry of the configuration of209

the primaries, and using the rotational symmetry (19) it is enough to study the localization and210

number of equilibrium points on the half lines R and L defined bellow (see Figure 4). Analogously,211

by symmetry with respect the plane z = 0, it is also enough to study the spatial equilibria for212

z > 0.213

Definition 3.1. We denote by R and L the half lines on the z = 0 plane:214

R = {y = z = 0, x > 0},215

L = {z = 0, y = tan(π/n)x, x > 0}.216

We also denote R1 = {y = z = 0, x > 1/ρ} and R2 = {y = z = 0, 0 < x < 1/ρ}.217

Notice that R contains one peripheral at (1/ρ, 0), whereas L is the bisector between the lines218

containing P1 and P2. We study separately the number and location of equilibrium points on R219

and L, see Figure 4.220

Definition 3.2. The equilibrium points that lie on R and L are denoted by Lp and Lm respectively,221

and the equilibrium points on the z-axis, with z > 0 by Lz.222
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Figure 4. It is enough to study the equilibrium points on R and L (see Defi-
nition 3.1). All the other equilibrium points are obtained applying rotations of
angle 2π/n. The dotted circles indicates the location of the peripherals.

3.1. Equilibrium points on the z-axis with e > 0. From (23) an equilibrium point on the223

positive z-axis is a solution z > 0 of224

(28) β

(
1

z3
− 2e

z4

)
+

n

(1/ρ2 + z2)3/2
= 0.225

The following result shows the existence of only one equilibrium point on the z-axis with z > 0226

and gives a bound on its location.227

Theorem 3.2. Consider the Manev R(N+1)BP (15) for a fixed n ≥ 2, β > 0 and an admis-228

sible e > 0. Then there exists a unique equilibrium point on the positive z-axis, Lz = (0, 0, z̄).229

Furthermore, 0 < z̄ < 2e.230

Proof. Consider the auxiliary functions

h1(z) = β

(
1

z3
− 2e

z4

)
and h2(z) = − n

(1/ρ2 + z2)3/2
.

From (28) an equilibrium point on the positive z axis is a solution of the equation h1(z) = h2(z).231

On one hand, we have that limz→0+ h1(z) = −∞, h1(z) < 0 and h′1(z) > 0 for 0 < z < 2e, and232

h1(z) > 0 for z > 2e. On the other hand, h2(z) < 0 and h′2(z) > 0 for z > 0 (see Figure 5). Then,233

it is straightforward that there exists a unique positive solution of (28) located in (0, 2e). �234

Proposition 3.1. Let Lz = (0, 0, z̄), z̄ = z̄(e, β), be the equilibrium point given in Theorem 3.2.
Then,

lim
e→0+

z̄ = 0, lim
β→0+

z̄ = 0, and lim
β→+∞

z̄ = 2e.
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Figure 5. Graphics associated to the functions h1 and h2 (see Theorem 3.2).
The intersection of the curves show the existence of the equilibrium on the z-axis.

Moreover z̄ is an increasing function of β and e, and z̄ = 2e+O(e3) for all β.235

Proof. The first limit is obtained from the upper and lower bounds of z̄. To obtain the second
limit, notice that using (28), we can write (for any fixed value of e) β as a function of z̄ as

β =
nz̄4

(2e− z̄)(1/ρ2 + z̄2)3/2
.

Using Taylor expansion we get β = ρ3n
2e z̄

4 + O(z̄5). The third limit is obtained directly dividing236

equation (28) by β.237

For the monotonicity, notice that the function h1 in the proof of Theorem 3.2 is decreasing in238

the variables β and e, which implies that z̄ is increasing in β and e.239

Finally, to prove that

lim
e→0+

∂z̄

∂e
= 2

we introduce in equation (28) the variable u2 = 1 + ρ2z2 and the rational parametrization

z =
s2 − 1

2s
, u =

s2 + 1

2s
, s > 1

to obtain
β(s2 + 1)3(s2 − 4eρs− 1) + n(s2 − 1)4 = 0.

It is not difficult to see that the above equation has a unique solution for s > 1, s̄ = s̄(e, β), which

satisfies s̄ < 2eρ+
√

1 + 4e2ρ2. Deriving with respect e we have

lim
e→0+

∂s̄

∂e
= 2ρ,

from which the claim follows. �240

Notice that 2e is a sharp bound when β is bigger or e is small. In Figure 6 we show the evolution241

of the location of Lz as a function of e for different values of β and n. As we have proved in the242

previous proposition the curves are tangent to the line z̄ = 2e.243

Remark 3.1. In [10] was proved that min{e, βe} < z̄ when n = 2. Straightforward argument244

shows that it is also true for n = 3, 4. As we can see at Figure 6 the lower bound fails for bigger245

values of n.246
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Figure 6. Curves (e, z(e)) for e ∈ (0, e0) (see Theorem 3.2) for different fixed
values of β = 1, 2, . . . , 10 and n = 3 (left) and n = 10 (right). The dashed lines
correspond to the lines z̄ = e and z̄ = 2e (see Proposition 3.1).

3.2. Equilibrium points on the half line R. From (23), an equilibrium point on the positive247

x-axis must be a solution of248

(29) ∆x3 +
2βe

x
− β = x2

n∑
i=1

x− xi
((x− xi)2 + y2

i )3/2
.249

In order to solve the above equation we use the auxiliary functions250

(30) f1(x) = ∆x3 +
2βe

x
− β,251

and252

(31) f2(x) = x2
n∑
i=1

x− xi
((x− xi)2 + y2

i )3/2
,253

defined for x > 0. It is clear that solving equation (29) is equivalent to solve f1(x) = f2(x) for254

x > 0.255

Definition 3.3. For 0 < e < e0, let x∗ = x∗(e) =

(
2βe

3∆

)1/4

be the minimum of f1 given in (30).256

Next result states the number of equilibrium points along R1, that is, when x > 1/ρ at the right257

hand side of the peripheral.258

Theorem 3.3. For any fixed value of n and β > 0:259

(1) If 0 < e < e0 there exists at least one equilibrium point on R1 denoted by Lp1 = (x̄1, 0, 0).260

In addition, if n ≤ 472 this equilibrium is unique. Moreover, x̄1 ≥ max{1/ρ, x∗}, where x∗261

is given in Definition 3.3.262

(2) If e ≤ 0, there exists exactly one equilibrium point on R1, Lp1 .263

Proof. An equilibrium point on R1 satisfies the equation f1(x) = f2(x). The existence of at least264

one equilibrium point for any admissible 0 < e < e0 follow observing that the curve f1(x) and f2(x)265

intersect in at least one point for x > 1/ρ (see Figure ). This affirmative is consequence of Lemmas266
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(a) f1(1/ρ) < n (b) f1(1/ρ) > n (c) f1(1/ρ) > n

Figure 7. Examples of graphics associated to the function f1 and f2 (see Theo-
rem 3.3). The intersection of the curves show the existecne of equilibrium points
on the x-axis.

6.4 and 6.5. Using that f1(x∗) < f1(1/ρ) < f2(x) for any x > 1/ρ, we obtain the lower bound for267

x̄1. The uniqueness follows observing that by Lemma 6.4 item (2).(iv) the function f1(1/ρ) is an268

increasing function of n. Thus, by simple inspection we arrive that when n ≤ 472 then f1(1/ρ) < n269

(note that for n = 472 the respective value f1(1/ρ) ≈ 471.956882), this guarantee the uniqueness270

of the intersection point between the curves f1(x) and f2(x) for x > 1/ρ (see Figure 7). �271

Proposition 3.2. For any β > 0 and admissible e, let Lp1 be the equilibrium point given in272

Theorem 3.3. Then:273

(1) lime→0 x̄1 is finite;274

(2) limβ→0 x̄1 = x̄10
, where x̄10

does not depend on e and Lp1 coincides with the equilibrium275

of the Maxwell’s Ring R(N+1)BP with equal masses;276

(3) there exists an admissible value of e, such that the equilibrium point Lp1 = (x̄10
, 0, 0) for277

all β > 0.278

Proof. When e→ 0, we can write the equation f1(x) = f2(x) as

ρ(Λ + βρ2)

β
x3 = 1 +

1

β
x2

n∑
i=1

(x− xi)
((x− xi)2 + y2

i )3/2
,

which clearly has one solution for x > 1/ρ (using Lemma 6.5).279

When β → 0 the equation f1(x) = f2(x) transforms into

ρΛx3 = x2
n∑
i=1

(x− xi)
((x− xi)2 + y2

i )3/2
.

Thus, the equilibrium point (x̄10
, 0, 0) coincides with the equilibrium of the restricted (N+1)-body280

problem (see [9], case m0 = 0, the authors called him R1).281

For the last statement, recall that x̄1 is the only positive solution of the equation (29). This
equation can be written as

x2

(
ρΛx−

n∑
i=1

(x− xi)
((x− xi)2 + y2

i )3/2

)
+
β

x

(
ρ4

(
1

ρ
− 2e

)
x4 − x+ 2e

)
= 0.

Substituting x = x̄10
in the above equation, the first term vanishes and we get that

ρ4

(
1

ρ
− 2e

)
x̄4

10
− x̄10

+ 2e = 0.



14 MAURICIO ASCENCIO, ESTHER BARRABÉS, JOSEP M. CORS, AND CLAUDIO VIDAL

Solving for e,

e =
x̄10(ρ2x̄2

10
+ ρx̄10 + 1)

2(1 + ρx̄10
)(1 + ρ2x̄2

10
)
<

1

2ρ
,

which is an admissible value.282

�283

In Figure 8, we show the variation of the coordinate x̄1 of the equilibrium point Lp1 for several284

values of β and n. We can see the intersection point x̄10 . The approximate value of e for which285

Lp1 = (x̄10
, 0, 0) for some values of n are given in Table 1.286
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(b) n = 5
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(c) n = 10
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(d) n = 500

Figure 8. Variation of the coordinate x̄1 of the equilibrium point Lp1 as a func-
tion of e for n = 3, 5, 10, 500.

n x̄10
e

3 1.1799984049 0.27099478169
5 1.4548950111 0.36616775409
10 2.5629997052 0.50888405339
500 101.8255392116 0.59920105662

Table 1. The approximate value of e for which x̄1 = x̄10
, see Proposition 3.2.
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Next result states the number of equilibrium points along R2, that is, when 0 < x < 1/ρ at the287

left hand side of the peripheral.288

Theorem 3.4. For any β > 0, there exists a value e∗ = e∗(β) > 0 such that the number of289

equilibrium points along the R2 is290

(1) 0 if e ∈ (e∗, e0),291

(2) 1 if e = e∗,292

(3) 2 if 0 < e < e∗,293

(4) 1 if e ≤ 0.294

Furthermore, e∗ < 3e0/4, where e0 is given in (11).295

Proof. We are looking for solutions of f1(x) = f2(x) for 0 < x < 1/ρ.296

First, we consider 0 < e < e0. On one hand, from Lemma 6.4, f1 has a unique minimum at297

x∗ = x∗(e), and x∗(e) > 1/ρ and f1(x∗(e)) > 0 for e > 3e0/4. Using Lemma 6.5, f2 is negative, so298

for e > 3e0/4 the two functions do not intersect.299

On the other hand, also using Lemma 6.4, lime→0 f1(x∗(e)) = −β, so that for small values of300

e, f1(x∗) < f2(x∗) and the two functions intersect twice. Therefore, by continuity, there exists a301

value of e such that f1 and f2 coincide tangentially only once for 0 < x < 1/ρ.302

In the case e ≤ 0, again from Lemmas 6.4 and 6.5, f1 is an increasing function from −∞ or303

−n/ρ2 when e < 0, or e = 0, respectively at x = 0, to ∞ at x tend to ∞ and f2 decreases from304

f2(0) = 0 to −∞ at x = 1/ρ. Clearly, f1 and f2 intersect at only one point. �305

Definition 3.4. For the values of e ∈ (−∞, e∗] we denote the equilibrium points Lpi = (x̄i, 0, 0),306

i = 2, 3, where 0 < x̄3 ≤ x̄2 < 1/ρ, and the equality holds when e = e∗ or e ≤ 0.307

From the proof of Theorem 3.4 it follows easily the next result.308

Proposition 3.3. For any fixed value of n, for any β, let e∗ and x∗ be as in Theorem 3.4 and309

Definition 3.3, respectively. Then, for any e < e∗, the equilibrium point Lp3 satisfies that 0 < x̄3 <310

x∗.311

In Figure 9 we can see the variation of e∗ for different values of n (left) and the regions where312

there are 0 and 2 equilibria, and the bifurcation curve e = e∗, where there is only one equilibrium313

(right).314

3.3. Equilibrium points on half line L. We will use complex coordinates to write the equilib-315

rium points on the straight line y = tan(π/n)x, that is Lm = reiπ/n. From the first two equations316

of (23) taking x = r cos(π/n) and y = r sin(π/n), multiplying the second equation by the imagi-317

nary unit, then adding the two equations, the imaginary part vanishes and the real part gives the318

equation319

(32) ∆r3 − β +
2eβ

r
−

n∑
j=1

1− 1
ρr cos( 2πj

n + π
n )

(1 + 1
(ρr)2 −

2
ρr cos( 2πj

n + π
n ))3/2

= 0.320

Theorem 3.5. For any fixed value of n, for any β > 0 and admissible e, consider the half line L321

and C the circumference containing the peripherals.322

(1) If 0 < e < e0, there exist at least two equilibrium points on L. One of them is inside the323

circumference C and the other is outside of C.324

(2) If e ≤ 0, there exists at least one equilibrium point on L. It is outside the circumference C.325
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Figure 9. Left: variation of the function e = e∗(β), for different values of n,
see Theorem 3.4. Right: regions in the (β, e)-plane with different number of
equilibrium points for n = 3.

Proof. The proof follows directly from Lemma 6.6. In the case e > 0, the left-hand side function326

from equation (32) has a parabolic behaviour with a negative value at r = 1/ρ, so at least must327

have two zeros, each one at each side of C.328

For e ≤ 0, the function has one change of sign with a negative value at r = 1/ρ, so at least has329

one zero for r > 1/ρ. �330

Definition 3.5. In the case 0 < e < e0, we denote the equilibrium points Lm1
and Lm2

located331

outside and inside C, respectively.332

4. Linear Stability of the equilibrium solutions333

We study the linear stability of the equilibrium points Lz and Lξ, ξ ∈ {pj ,mk}, j = 1, 2, 3,334

k = 1, 2, through the analysis of the eigenvalues of the differential matrix of the vector field of the335

system (15), given by:336

(33)


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 + Vxx Vxy Vxz 0 2 0
Vxy 1 + Vyy Vyz −2 0 0
Vxz Vyz Vzz 0 0 0

 ,337
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where338

(34)

Vxx =
−1

∆

β( 1

r3
0

− 2e

r4
0

)
+

n∑
j=1

1

r3
j

+
1

∆

β( 3

r5
0

− 8e

r6
0

)
x2 + 3

n∑
j=1

(x− xj)2

r5
j

 ,
Vxy =

1

∆

β( 3

r5
0

− 8e

r6
0

)
xy + 3

n∑
j=1

(x− xj)(y − yj)
r5
j

 ,
Vxz =

z

∆

β( 3

r5
0

− 8e

r6
0

)
x+ 3

n∑
j=1

x− xj
r5
j

 ,
Vyy =

−1

∆

β( 1

r3
0

− 2e

r4
0

)
+

n∑
j=1

1

r3
j

+
1

∆

β( 3

r5
0

− 8e

r6
0

)
y2 + 3

n∑
j=1

(y − yj)2

r5
j

 ,
Vyz =

z

∆

β( 3

r5
0

− 8e

r6
0

)
y + 3

n∑
j=1

y − yj
r5
j

 ,
Vzz =

−1

∆

β( 1

r3
0

− 2e

r4
0

)
+

n∑
j=1

1

r3
j

+
z2

∆

β( 3

r5
0

− 8e

r6
0

)
+ 3

n∑
j=1

1

r5
j

 .

339

Since Vxz = Vyz = 0 for all the equilibrium points, we can separate the planar and the vertical340

stability. The characteristic polynomial associated to matrix (33) is341

(35) p(λ) = (λ2 − Vzz)p̄(λ),342

where343

(36) p̄(λ) = λ4 + (2− Vxx − Vyy)λ2 + 1 + Vxx + Vyy + VxxVyy − V 2
xy.344

Therefore, the vertical stability of all the equilibrium points is given by the eigenvalues345

(37) ±λ3 = ±
√
Vzz,346

and the planar stability is given by the solutions of p̄(λ) = 0.347

Next we study separately the point Lz and the planar equilibria.348

4.1. Stability of the equilibrium point Lz. Consider the equilibrium point Lz = (0, 0, z̄), given349

in Theorem 3.2. Using the fact that z̄ must satisfy the relation (28), it is not difficult to see that350

(38)

Vxy(Lz) = Vxz(Lz) = Vyz(Lz) = 0,

Vxx(Lz) = Vyy(Lz) =
3β(2e− z̄)

2ρ2∆
(
z̄2 + 1

ρ2

)
z̄4
,

Vzz(Lz) =
β

∆(ρ2 + z̄2)z4

(
3z̄ − 8e− 2eρ2z̄2

)
.

351

Proposition 4.1. For each integer n ≥ 2, β > 0 and an admissible e > 0, the eigenvalues352

associated to the the equilibrium point Lz are ±λ3 = ±wi, w > 0, and λ1 = a+ bi, λ̄1, −λ1, −λ̄1,353

a > 0, b > 0.354

Proof. Using (35), (37) and (38) the eigenvalues of the matrix in (33) are ±λ3 = ±
√
Vzz(Lz) and

the solutions of

p̄(λ) = λ4 − (2γ − 2)λ2 + (1 + γ)2,
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where γ = Vxx(Lz) > 0.355

On one hand, using the fact that z̄ < 2e (see Theorem 3.2), we have that

3z̄ − 2eρ2z̄2 − 8e < 3z̄ − 8e < 6e− 8e = −2e < 0.

Therefore, Vzz(Lz) < 0 and two of the eigenvalues are pure imaginary.356

On the other hand, the solutions of p̄(λ) = 0 are

λ2
± = γ − 1± 2i

√
γ.

This completes the proof. �357

Therefore, the equilibrium point Lz is of type center × complex saddle, and it is unstable.358

4.2. Stability of planar equilibrium points. Consider the equilibrium points Lξ, ξ ∈ {pj ,mk},
j = 1, 2, 3 and k = 1, 2 (see Theorems 3.3, 3.4 and 3.5 respectively). Recall that

Vxz(Lξ) = Vyz(Lξ) = 0,

and

Vzz(Lξ) = − 1

∆

β( 1

r3
0

− 2e

r4
0

)
+

n∑
j=1

1

r3
j

 .
As we have seen, we can study separately the vertical stability and the planar stability. Using359

(37), for the vertical stability it is enough to study the sign of Vzz(Lξ).360

Lemma 4.1. For each integer n ≥ 2, β > 0 and an admissible e, Vzz(Lξ) < 0.361

Proof. When e ≤ 0 it is clear that Vzz(Lξ) < 0.362

Consider now 0 < e < e0. For Lpi = (x̄i, 0, 0), we use the equations of the equilibrium points363

(29) to write364

(39) Vzz(Lpi) = − 1

∆

∆ +
1

ρx̄i

n∑
j=1

cos( 2πj
n )

(x̄2
i + 1

ρ2 −
2x̄i
ρ cos( 2πj

n ))3/2

 .365

Now using Lemma 6.3, the sum in the above equation is positive and the proof is completed.366

For Lmk , we use the equations of the equilibrium points (32). For each k, we write Lmk = reiπn367

(being r different for each k). Then we have that368

(40)

Vzz(Lmj ) = − 1

∆

( 1

r3
− 2e

r4

)
β +

n∑
j=1

1

(r2 + 1
ρ2 −

2r
ρ cos( 2πj

n + π
n )3/2


= − 1

∆

∆ +
1

ρr

n∑
j=1

cos( 2πj
n + π

n )

(r2 + 1
ρ2 −

2r
ρ cos( 2πj

n + π
n ))3/2

 .

369

Let r′ = rρ and370

(41) g(r′) =

n∑
j=1

cos( 2πj
n + π

n )

((r′)2 + 1− 2r′ cos( 2πj
n + π

n ))3/2
.371

Lemma 3 in [8] (Bang and Elmabsout, 2003) the authors proved that g can be rewritten as an372

integral of a positive continuous function for 0 < r′ < 1. Using that g(1/r′) = (r′)3g(r′), we also373

obtain that g(r′) > 0, when r′ > 1. Thus, Vzz(Lmj ) < 0.374

�375



STABILITY OF EQUILIBRIUM POINTS IN THE SPATIAL RESTRICTED N+1-BODY PROBLEM WITH MANEV POTENTIAL19

Therefore, the eigenvalues ±λ3 associated to the vertical stability of the equilibrium points Lpi376

and Lmj , with i = 1, 2, 3 and j = 1, 2 are pure imaginary.377

To study of the planar stability we will use the same technique introduced by Bang and Elmab-378

sout in [9]. For ease of reading we will use notations similar to them.379

We write the polynomial p̄ in (36) as

p̄(λ) = λ4 + 2(1−A)λ2 + (A+ 1)2 − |B|2,
where A = 1

2 (Vxx + Vyy) and (A + 1)2 − |B|2 = VxxVyy + Vxx − V 2
xy + Vyy + 1. Note that the380

eigenvalues of the linearized system will be pure imaginary, if and only if, the roots of the previous381

polynomial are non-positive. This condition is equivalent to382

(42)
l1 = |B|2 − 4A > 0,
l2 = 1−A > 0,
l3 = 1 +A− |B| > 0.

383

Next, we separate the study for the equilibria on the x-axis, Lpi and the equilibria on the384

bisector Lmk .385

4.2.1. Planar stability of the equilibrium points Lpj . We consider the points Lpj , j = 1, 2, 3. From
(29), we have that

x̄j −
1

∆

(
β

(
1

x̄2
j

− 2e

x̄3
j

)
+

n∑
l=1

x̄j − xl
((x̄j − xl)2 + y2

l )3/2

)
= 0.

As in [9] we will write A and B in complex coordinates, that is,386

(43)

A =
1

2∆

n∑
j=1

1

|w0 − ωj |3
+

β

2∆

1

|w0|3
− 2eβ

∆

1

|w0|4

B =
3

2∆

n∑
j=1

1

|w0 − ωj |3
w0 − ωj
w0 − ωj

+
3β

2∆

1

|w0|3
w0

w0
− 4eβ

∆

1

|w0|4
w0

w0
,

387

with w0 = x̄l, l = 1, 2, 3, ωj = 1
ρe
iϕj and ϕj = 2πj/n, j = 1, . . . , n.388

Lemma 4.2. For each β > 0,389

(1) If e < e0 and x = w0 ∈ ( 1
ρ ,+∞) (equilibrium solution), B(x = ω0) = |B(x = ω0)|.390

(2) If e ≤ 0 or e→ 0+ and x = w0 ∈ (0, 1
ρ ), B(x = ω0) = |B(x = ω0)|.391

Proof. B(x) admits a symmetry when changing x → 1/x, so we can assume x = 1
ρs . Thus,

B(x) =
3

2∆

n∑
j=1

1

|x− ωj |3
x− ωj
x− ωj

+
3β

2∆

1

|x|3
− 4eβ

∆

1

|x|4
x

x
which is equivalent to

B

(
1

ρs

)
=

3ρ3s3

2∆

n∑
j=1

1− sω̄j
1− sω̄−j

(
1 + s2 − 2s cos

(
2πj

n

))−3/2

+
3βρ3

2∆
s3 − 4eβρ4

∆
s4,

with ω̄j = e
i 2πj
n . We introduce the notation

{f(u)}n =
1

n

n∑
j=1

f

(
2πj

n

)

B

(
1

ρs

)
=

3nρ3s3

2∆

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

+
3βρ3

2∆
s3 − 4eβρ4

∆
s4
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Note that the equation (29) (using s = 1/(ρx)) is equivalent to392

(44) s3 = 2eρs4 +
∆

βρ3
− n

β
s3hn(s),393

then394

B =
3nρ3s3

2∆

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

+ 3
2 −

4eβρ4

∆ s4 − 3n
2∆s

3hn(s)

=
3nρ3s3

2∆

[{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

− hn(s)

]
+ 3

2 −
4eβρ4

∆ s4.

Let B1 =

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

− hn(s),

B1 =

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2
− 1− seiu

(1− seiu)3/2(1− se−iu)3/2

}
n

= s

{
e−iu(1− seiu)

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

= s

{
e−iu

1

(1− se−iu)2(1− se−iu)1/2(1− seiu)1/2

}
n

Using the expansion 1
(1−z)1/2 =

∑∞
k=1 akz

k, with ak > 0, we obtain then

B1 = s

{
e−iu

∞∑
k=0

(k + 1)ske−iku
∞∑
k=0

aks
ke−iku

∞∑
k=0

aks
keiku

}
n

=

{ ∞∑
p=0

{P (eiu, e−iu)sp}n

}
,

where P (eiu, e−iu) is polynomial with positive coefficients. Then B1 > 0, thus B > 0, when
0 < s < 1, for all 0 < e < e0. In the case when e < 0, we consider, again

B(x) =
3nρ3s3

2∆

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

+
3βρ3

2∆
s3 − 4eβρ4

∆
s4,

where the term {
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

is positive, the proof is similar to the proof B1 > 0. Then B > 0, when s ∈ (0,+∞) − {1} and395

e < 0. Note that if e→ 0+, B > 0, thus, for continuity on e, we have that for values of e close to396

0, B > 0, when s > 1. �397

The following technical lemma will be used later, the proof can be seen in [9].398

Lemma 4.3. For every s ∈ (0,+∞)− {1},{
3

1 + s2e2iu − 2seiu

(1 + s2 − 2s cosu)5/2
− 1

(1 + s2 − 2s cosu)3/2
− 2

1− seiu

(1 + s2 − 2s cosu)3/2

}
n

> 0

Now we see what is the stability characteristic of the equilibrium point Lp1 .399

Proposition 4.2. For each β and e admissible, Lp1 is unstable.400
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Proof. Using Lemma 4.2, that is, |B| = B and the equation (44), that is,

1 =
β

∆
s3 +

ns3

∆
hn(s)− 2βe

∆
s4,

then

|B| −A− 1 = B −A− 1

= nρ3s3

2∆

{
3 1+s2e2iu−2seiu

(1+s2−2s cosu)5/2
− 1

(1+s2−2s cosu)3/2
− 2 1−seiu

(1+s2−2s cosu)3/2

}
n

+ 3βρ3

2∆ s3 − 4eβρ4

∆ s4 − βρ3

2∆ s3 + 2eβρ4

∆ s4 − β
∆ρ3 s

3 + 2βeρ4

∆ s4

= nρ3s3

2∆

{
3 1+s2e2iu−2seiu

(1+s2−2s cosu)5/2
− 1

(1+s2−2s cosu)3/2
− 2 1−seiu

(1+s2−2s cosu)3/2

}
n

Now, using Lemma 4.3 is obtained that |B| − A − 1 > 0, thus l3 < 0. Therefore there must be a401

root of the characteristic polynomial p̄(λ) with a non-zero real part. Thus, Lp1 is unstable. �402

Proposition 4.3. For each β and e ≤ 0, Lp2 is unstable.403

Proof. Using Lemma 4.2 and Lemma 4.3 the result is obtained in a similar form as in Proposition404

4.2. �405

Proposition 4.4. For each β > 0 and 0 < e < e∗ < 3e0
4 , with e∗ bifurcation parameter (as in406

Theorem 3.4), Lp2 (x2 ∈ (x∗, 1/ρ), with x∗ as in Lemma 6.4) is unstable.407

Proof. Remember, from Lemma 4.2

B =
3nρ3s3

2∆
s

{
e−iu

1

(1− se−iu)2(1− se−iu)1/2(1− seiu)1/2

}
n

+
3

2
− 4eβρ4

∆
s4.

Notice that x∗ < x < 1/ρ is equivalent to 1 < s < s∗, with s∗ = 1/(ρx∗) = (3∆/(2βe))1/4/ρ,408

then 3
2 −

4eβρ4

∆ s4 > 0. Thus, B > 0. To prove that l3 < 0, proceed in a similar way to the proof of409

Proposition 4.2. �410

4.2.2. Planar stability of the equilibrium points Lmj . The equilibrium points on the straight line411

y = tan(π/n)x in the complex variable are of the form Lmj = reiπ/n, with j = 1, 2. Recall that412

these equilibrium points satisfies the equation413

(45) ∆r3 − β +
2eβ

r
−

n∑
j=1

1− 1
ρr cos( 2πj

n + π
n )

(1 + 1
(ρr)2 −

2
ρr cos( 2πj

n + π
n ))3/2

= 0.414

Note that equation (45) (using s = 1
ρr ) is equivalent to415

(46)
Λ

ρ2
+ β − 2βeρ− βs3 + 2eβρs4 − s3hn(s, π/n) = 0,416

with hn(s, π/n) =
∑n
j=1

1− s cos
(

2πj
n + π

n

)
(1 + s2 − 2s cos

(
2πj
n + π

n

)
)3/2

. If we divide the equation (46) by β and417

make β tend to infinity, it is clear that for large β, s tends to 1 or s tend to s̄, where s̄ satisfies the418

equation 2ρe − 1 + (2ρe − 1)s + (2ρe − 1)s2 + 2ρes3 = 0, the second case happens only if e > 0.419

From the equation (46) is obtained420

(47) β =
s3hn(π/n, s)− Λ

ρ2

1− s3 − 2eρ(1− s4)
,421
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and422

(48) 1 =
ρ3

∆
(βs3 + s3hn(s, π/n)− 2βeρs4).423

Equations (47) and (48) will be used later.424

To study planar linear stability, we can use what was seen in the previous section, that is, we425

can analyse the values l1, l2, l3 over the equilibria Lmi . For this, we must calculate A and B426

defined in the previous section.427

A =
1

2∆

n∑
j=1

1

|w0 − ωj |3
+

β

2∆

1

|w0|3
− 2eβ

∆

1

|w0|4

=
ρ3s3

2∆

n∑
j=1

1(
1 + s2 − 2s cos

(
2πj

n
+
π

n

))3/2
+
βρ3

2∆
s3 − 2eβρ4

∆
s4

=
ρ3s3

2∆(1− s3 − 2eρ(1− s4))

×

 n∑
j=1

1− s4 cos( 2πj
n + π

n )− 2eρ(1− s4)− 4eρs4(1− s cos( 2πj
n + π

n ))

(1 + s2 − 2s cos( 2πj
n + π

n ))3/2
− (1− 4ρes)

Λ

ρ2

,
B =

3

2∆

n∑
j=1

1

|w0 − ωj |3
w0 − ωj
w0 − ωj

+
3β

2∆

1

|w0|3
3

2∆

n∑
j=1

1

|w0 − ωj |3
w0 − ωj
w0 − ωj

+
3β

2∆

1

|w0|3
w0

w0
− 4eβ

∆

1

|w0|4
w0

w0
− 4eβ

∆

1

|w0|4
w0

w0

=
3ρ3s3

2∆
e
i2π
n

n∑
j=1

1− 2s cos( 2πj
n + π

n ) + s2 cos( 4πj
n + 2π

n )

(1 + s2 − 2s cos( 2πj
n + π

n ))5/2
+

3βρ3

2∆
e
i2π
n s3 − 4eβρ4

∆
e
i2π
n s4.

Proposition 4.5. If β is sufficiently large and 1
8ρ < e < 3

8ρ , then Lm1 is linearly stable.428

Proof. Note that if, s tend to 1−, then by (47) β is sufficiently large, and so e0 tends to e0 = 1
2ρ .

On the other hand,

|B| =

∣∣∣∣∣∣3ρ
3s3

2∆

n∑
j=1

1− 2s cos( 2πj
n + π

n ) + s2 cos( 4πj
n + π

n )

(1 + s2 − 2s cos( 2πj
n + π

n ))5/2
+

3βρ3

2∆
s3 − 4eβρ4

∆
s4

∣∣∣∣∣∣ .
If s tends to 1− and e < 3

8ρ , then the argument inside || is positive. Substituting relation (47) in429

l2 and l3, we obtain430

431

l2 = 1−A

=
βρ3s3

2∆
+
ρ3s3

2∆

n∑
j=1

1− 2s cos
(

(2j+1)π
n

)
(

2− 2 cos
(

(2j+1)π
n

))3/2
,432

l3 = A+ 1− |B|

=
ρ3s3

2∆

n∑
j=1

 3− 2s cos
(

(2j+1)π
n

)
(1 + s2 − 2s cos

(
(2j+1)π

n

)
)3/2
−

3− 6s cos
(

(2j+1)π
n

)
− 3s2 cos

(
(4j+2)π

n

)
(1 + s2 − 2s cos

(
(2j+1)π

n

)
)5/2

 ,
433

434
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Thus, when s tends to 1−435

436

l1 =
3ρ3

2∆

n∑
j=1

1− 2 cos
(

(2j+1)π
n

)
+ cos

(
(4j+2)π

n

)
(2− 2 cos

(
(2j+1)π

n

)
)5/2

+
βρ3

∆

(
−1

2
+ 4eρ

)
> 0,437

l2 =
ρ3

2∆

β +

n∑
j=1

1− 2s cos
(

(2j+1)π
n

)
(

2− 2 cos
(

(2j+1)π
n

))3/2

 > 0,438

l3 ·
2∆

ρ3
=

n∑
j=1

(
cos
(

(2j+1)π
n

)
+ 3
)

csc2
(

(2j+1)π
2n

)
4

√
2− 2 cos

(
(2j+1)π

n

) > 0,439

since β is large enough. Finally, l1, l2 and l3 are all positive numbers when s → 1− (equivalently440

r → 1/ρ+) or when β sufficiently large. With these conditions Lm1 is linearly stable.441

�442

5. Concluding remarks443

We have studied a spatial R(N + 1)BP where the gravitational attraction of the central body444

with mass m0 is given by a Manev potential −1/r + e/r2 with e 6= 0 and the other N − 1 bodies445

of masses equal to m = βm0 with Newtonian potential (−1/r), we call this model Spatial Manev446

R(N + 1)BP. The problem depends on three parameters, the number of peripherals n, the ratio of447

the mass of the central body to the mass of one of the peripherals, and the Manev parameter, e.448

One of the things we have proven when e > 0, is that due to the repulsive term emanating from449

the central body, it is not possible to have a binary collision between the body of infinitesimal mass450

and the central body, contrary to the case e < 0.451

In the present work we focus on studying the existence and stability of equilibrium points. In452

the first place we have proved that the equilibria exist on the z axis and on the axes of symmetry453

of the regular polygon formed by the peripherals when z = 0. A notable property is that on the454

z axis, there are two equilibrium points when e > 0, both unstable. By the Lyapunov Center455

Theorem, there exists a family of periodic orbits that lives on the z-axis in that case.456

On the lines Rj = {z = 0, y = tan(2π(j − 1)/n)x, x > 0}, j = 1, . . . , n, there are 2n or 3n457

equilibrium points when n ≤ 472, all unstable independent of the values of the parameters. And458

on the lines Lj = {z = 0, y = tan(π(2j − 1)/n)x, x > 0}, j = 1, . . . , n at least 2n equilibria. n of459

them for some values of β and e are linearly stable. The different amounts of equilibria depend460

on the parameters β, e and n. The results regarding the study of stability, motivate us to study461

the invariant manifolds of these equilibrium points and the connections between them, in a future462

work.463

6. Appendix464

The following technical lemma characterizes the roots of a particular type of function (see its465

proof in [2]).466

Lemma 6.1. Let T be a positive constant, n a natural number, and467

(49) F (p) = f(p) +

n−1∑
j=1

f(p+ jT )468
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where f is a function such that469

i) f(p+ nT ) = f(p),470

ii) f(p) = 0, if and only if, p = knT
2 , for all k ∈ Z,471

iii) f(−p) = −f(p).472

Then F (p) = 0, if and only if, p = kT
2 , k ∈ Z.473

Lemma 6.2. Let

F (x, y, z) =

n∑
i=1

yi
r3
i

,

where r2
i = (x − xi)2 + (y − yi)2 + z2, (xi, yi) defined in (14). Then, if y > 0, F (x, y, z) > 0,474

whereas if y < 0 then F (x, y, z) < 0.475

Proof. Using yi = sin(ϕi)/ρ, we write F as

F (x, y, z) =
1

ρ

bn+1
2 c∑
i=2

sin(ϕi)

(
1

r3
i

− 1

r3
n+2−i

)
.

Notice that sin(ϕi) > 0 for i = 2, . . . , bn+1
2 c. It is not difficult to see that when y > 0 ri < rn+2−i,476

whereas when y < 0, ri > rn+2−i for all i = 2, . . . , bn+1
2 c. This concludes the proof. �477

Lemma 6.3. Let

F (x, z) =

n∑
i=1

xi
r3
i

,

where r2
i = (x − xi)2 + y2

i + z2, (xi, yi) defined in (14). Then, if x > 0, F (x, z) > 0, whereas if478

x < 0 then F (x, z) < 0.479

Proof. Using trigonometric identities, for any θ we have

sin(θ) cos(ϕi) = sin(ϕi + θ)− cos θ sin(ϕi).

Considering θ = 2π
n , we write F as480

(50) F (x, z) =
1

sin(θ)

n∑
i=1

sin(ϕi+1)

r3
i

− cot(θ)

n∑
i=1

sin(ϕi)

r3
i

.481

Note that
∑n
i=1

sin(ϕi)
r3i

= 0, so the equation (50) is rewritten as482

(51) F (x, z) =

n∑
i=1

sin(ϕi+1)

r3
i

=
1

ρ sin(θ)

bn−1
2 c∑
i=1

sin(ϕi+1)

(
1

r3
n−i
− 1

r3
i

)
.483

If x > 0, we claim that ri ≤ rn−i (see Figure 10), for all i = 1, . . . , bn−1
2 c and n ≥ 3 (in the case

n = 2 is evident). In effect,

ri ≤ rn−i ⇔ cos(ϕn−i) < cos(ϕi), ∀i = 1, . . . , bn− 1

2
c.

484

Note that cos(ϕn−i) = cos(ϕi + 4π
n ), also cos(ϕi) is a decreasing function in [0, π] for all i =485

1, . . . , bn−1
2 c, therefore cos(ϕn−i) < cos(ϕi), ∀i = 1, . . . , bn−1

2 c is true. So, ri ≤ rn−i, for all486

i = 1, . . . , bn−1
2 c. Now 1

r3n−i
− 1

r3i
< 0, therefore F (x, z) > 0. On the contrary, if we assume487

x < 0, ri ≥ rn−i, for all i = 1, . . . , bn−1
2 c it is easy to check with the same above argument, then488

1
r3n−i

− 1
r3i
> 0, therefore F (x, z) < 0. �489
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Figure 10. Distance between the small particle in position (x, y, z) and the pe-
ripheries Pi and Pn−i, respectively.

Some properties of the function f1, defined in (30) we will resume them in the next Lemma.490

Lemma 6.4. For any fixed value of β > 0 and e admissible, the function f1(x), x > 0, defined in491

(30) has the following properties:492

(1) Case e ≤ 0.493

(i) f1(x) is an increasing function.494

(ii) lim
x→+∞

f1(x) = +∞ and lim
x→0+

f1(x) = −∞.495

(iv) f1(0) = −β, when e = 0.496

(2) Case 0 < e < e0.497

(i) It has only one critical point, which is a minimum, at498

(52) x∗ = x∗(e) =

(
2βe

3∆

)1/4

,499

where e0 is given in (11).500

(ii) x∗(e) is an increasing function of e and x∗(3e0/4) = 1/ρ.501

(iii) f1(x∗(e)) = 4∆1/4
(

2βe
3

)3/4

− β as a function of e has only one critical point, which502

is a maximum, at 3e0/4.503

(iv) f1(1/ρ) =
1

4

n∑
i=2

1

sin
(
π(i−1)
n

) =
Λ

ρ2
, is an increasing function in n.504

Proof. The proof of complete part 1 and the proof of part 2- i), 2- ii) and 2-ii) are straightforward505

calculations. For part iv), we will just prove that h(n) = f1(1/ρ) is an increasing function.506

Consider the case where n is even; the odd case is similar. Then

h(n) =
1

4

n−1∑
j=1

1

sin
(
πj
n

) =
1

4

2

n
2−1∑
j=1

1

sin
(
πj
n

) + 1

 ,

h(n+ 1) =
1

4

n∑
j=1

1

sin
(
πj
n+1

) =
1

4

2

n
2∑
j=1

1

sin
(
πj
n+1

)
 .

Now,

h(n+ 1)− h(n) =
1

4

2

n
2−1∑
j=1

 1

sin
(
πj
n+1

) − 1

sin
(
πj
n

)
+

2

sin
(

nπ
2(n+1)

) − 1

 .
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Since 1

sin( πj
n+1 )
− 1

sin(πjn )
> 0, for all j = 1, . . . , n2 −1 and 2

sin( nπ
2(n+1) )

−1 > 0, then h(n+1)−h(n) > 0.507

Therefore, h(n) is an increasing function in n. �508

Now, some properties of the function f2, defined in (31), we summarise them in the next Lemma.509

Lemma 6.5. The function f2(x), x > 0, defined in (31) has the following properties:510

(1) f2(x) > 0, when x > 1/ρ and f2(x) < 0, when x ∈ (0, 1
ρ ), and in both cases f2 is decreasing.511

(2) lim
x→∞

f2(x) = n, lim
x→ 1

ρ
+
f2(x) = +∞, lim

x→ 1
ρ
−
f2(x) = −∞ and lim

x→0+
f2(x) = 0.512

Proof. The proof of the item 2 and the first two properties of item 1 are easy to verify, using513

straightforward calculations. For the last two properties we will use the results of Bang and514

Elmabsout (2004) in [9] and Moeckel and Simo (1995) in [18]. Now, using that xi = 1
ρ cos(ϕi) and515

yi = 1
ρ sin(ϕi), with ϕi = 2π(i−1)

n , for i = 1, . . . , n, now516

(53) f2(x) = x2
n∑
i=1

x− 1
ρ cos(ϕi)

((x2 − 2x
ρ cos(ϕi) + 1

ρ2 )3/2
= (ρx)2

n∑
i=1

ρx− cos(ϕ)

((ρx)2 − 2xρ cos(ϕi) + 1)3/2
.517

Making the change of variable t =
1

ρx
, we obtain518

(54) f2(t) =

n∑
i=1

1− t cos(ϕi)

(t2 − 2t cos(ϕi) + 1)3/2
.519

We need to see that f2(t) is increasing for t ∈ (0, 1) and f2(t) is increasing for t > 1. In order to520

[9], we notice that f(t) = (tV (t))′, where521

(55) V (t) =

n∑
i=1

1

(t2 − 2t cos(ϕi) + 1)1/2
.522

For 0 < t < 1, V (t) is a series in t with all its Taylor coefficients are positive (see [18]). So V and523

all its derivatives are positive. So, f ′2(t) = V (t) + tV ′(t) > 0. Then f2(t) is an increasing function524

for 0 < t < 1. Using that f2(t) = − 1
t2V

′(1/t), then f ′2(t) = 2
t3V

′( 1
t ) + 1

t4V
′′(t), it follows that f2525

is increasing for t > 1. �526

Some properties of the function h defined in (32) are listed in the next lemma.527

Lemma 6.6. For any fixed value of β > 0 and e admissible, the function h(r), defined

h(r) = ∆r3 − β +
2eβ

r
−

n∑
j=1

1− 1
ρr cos( 2πj

n + π
n )

(1 + 1
(ρr)2 −

2
ρr cos( 2πj

n + π
n ))3/2

has the following properties.528

(1) Case e ≤ 0.529

(i) lim
r→+∞

h(r) = +∞530

(ii) lim
r→0+

h(r) = −∞, when e < 0.531

(iii) lim
r→0+

h(r) = −β, when e = 0.532

(iv) h
(

1
ρ

)
< 0.533

(2) Case 0 < e < e0.534

(i) lim
r→+∞

h(r) = +∞.535
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(ii) lim
r→0+

h(r) = +∞.536

(iii) h
(

1
ρ

)
< 0.537

Proof. The proof of the case e ≤ 0 part 1-i), 1-ii) and 1-ii) and the case e < 0 and part 2-i), 2-ii)538

are straightforward calculations. On the other hand,539

(56)

h
(

1
ρ

)
=

Λ

ρ2
−

n∑
j=1

1− cos
(
π
n + 2πj

n

)
(2− 2 cos

(
π
n + 2πj

n

)
)

=
1

4

n−1∑
j=1

1

sin
(
πj
n

) − n∑
j=1

1− cos
(
π
n + 2πj

n

)
(2− 2 cos

(
π
n + 2πj

n

)
)
.

540

Let’s define h1(n) =
1

4

n−1∑
j=1

1

sin
(
πj
n

) and h2(n) =

n∑
j=1

1− cos
(
π
n + 2πj

n

)
(2− 2 cos

(
π
n + 2πj

n

)
)
. Then,541

h
(

1
ρ

)
= h1(n)− h2(n) = 2h1(n)− (h2(n) + h1(n))

= 2(h1(n)− h1(2n)) < 0,

because h1(n) is increasing function with respect to n according to Lemma 6.4. �542
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[18] Moeckel, R., Simó, C. Bifurcation of spatial central configurations from planar ones. SIAM J. Math. Anal. 26577

4, 978–998, 1995.578

[19] Scheeres, D.J. On symmetric central congurations with application to satellite motion about rings. PhD Thesis,579

The University of Michigan, 1992.580


	1. Introduction
	2. Statement of the problem and main features
	2.1. Rotation and symmetries
	2.2. Jacobi constant

	3. Equilibrium points
	3.1. Equilibrium points on the z-axis with e>0.
	3.2. Equilibrium points on the half line R
	3.3. Equilibrium points on half line L

	4. Linear Stability of the equilibrium solutions
	4.1. Stability of the equilibrium point Lz
	4.2. Stability of planar equilibrium points

	5. Concluding remarks
	6. Appendix
	References

