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STABILITY OF EQUILIBRIUM POINTS IN THE SPATIAL RESTRICTED
N +1-BODY PROBLEM WITH MANEV POTENTIAL

MAURICIO ASCENCIO, ESTHER BARRABES, JOSEP M. CORS, AND CLAUDIO VIDAL

ABSTRACT. We study the dynamics of an infinitesimal mass under the gravitational attraction
of N — 1 primaries arranged in a planar ring configuration plus the influence of the central mass
with a Manev potential (—1/r + e/r?), e # 0, where e is a parameter related to the oblaticity
or radiation source (according to the sign of the parameter e). Specifically, we investigate the
relative equilibria of the infinitesimal mass and their linear stability as functions the parameter
e and the mass parameter (3, the ratio of mass of the central body to the mass of one of N — 1
remaining bodies. We also prove the nonexistence of binary collisions between the central body
and the infinitesimal mass.
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1. INTRODUCTION

The two body problem with a quasi-homogeneous potential of the form —(a/r — e/r?), where
r is the distance between the two bodies, and a, e are real constants, was considered by Newton
in his work Philosophiae Naturalis Principia Mathematica (Book I, Article IX, Proposition XLIV,
Theorem XIV, Corollary 2). One of the reasons to add the term e/r? to the gravitational attraction
(—a/r) was the impossibility to explain the Moon’s apsidal motion within the framework of the
inverse-square force law, although the model was abandoned in favor of the classical Newtonian
potential. Manev in 1924, [15], proposed a similar corrective term in order to maintain classical
mechanics and offering at the same time good explanations of the observed phenomena as in the
relativity theory. For instance, when a is positive and e is negative, the corrective term is good
enough to explain the perihelion advance of Mercury.

In this work we consider the motion in a three-dimensional space of an infinitesimal mass P
under the gravitational attraction of N = n+ 1 point masses, Py, P;, i = 1,...,n called primaries.
We assume that the potential generated by the primary Py is a Manev potential (—1/r + e/r?),
with parameter e, and that the gravitational attraction due to P;, i = 1,...,n is Newtonian —1/r.
We also shall assume that the n-primaries P; (i = 1,...,n) are in a n-gon configuration, that is,
the bodies P;, i« = 1,...,n have the same mass m; = m, for all i = 1,...,n, and are located
symmetrically with respect to the central body Py, of mass mg = #m, which is at the center of
mass of the system. Py will also be called the central body, and P;, i = 1,...,n the peripherals, as
in the Maxwell ring model. In an inertial reference system the peripheral bodies move in a circular
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orbit around Py with angular velocity w. This problem will be called Maxwell’s ring restricted
(N + 1)-body problem with Manev potential or shortly, Manev R(N + 1)BP.

The case e = 0, shortly, the classical Maxwell model was considered by Scherees in [19] several
aspects of the dynamcis were studied, such as , Hill stability, invariant transformations, equilibrium
points and their stability, and periodic orbits. After that, Kalvouridis in [14] for the planar case
formulate the general equations of motion and studied the stationary solutions and the zero-velocity
contours for various values of n.

We emphasize that the parameter e € R models several problems, for example, when the central
body of the ring is no longer spherical, but an ellipsoid of revolution (spheroid). According to [11],
[12] the parameter e is associated with flattening, in natural bodies like planets, the spheroid is
flattened e < 0, but also we can think of artificial bodies and assume they are prolates, in that case
e > 0. In general, this fact is seen more used in potentials of the Schwarzschild type (A4/r — e/r3,
introduced in 1998 by Mioc and Savinski in [17]). We consider that the central body is a source of
radiation, repulsive if e > 0 and attractive if e < 0, and then the effect of radiation can be modeled
in a similar way to the flattened ellipsoid (see, for example, [13]).

In Fakis and Kalvouridis [11] (2013) the authors study numerically some aspects of the dynamics
of a small body under the action of Maxwell-type N-body system with a spheroidal central body.
As for example, the equilibrium locations and their parametric dependence, as well as the zero-
velocity curves and surfaces for the planar motion, and the evolution of the Hill’s regions. The
non-sphericity of the central body is described by a Manev potential, as presented in this work.
See also Elipe et al. [12] (2007), Arribas et al. [4] (2003) and Arribas et al. [5] (2007). In Alavi
and Razmi [1] (2015), such a correction term in a Newtonian potential, with e > 0 (that represents
a repulsive centripetal force), is used in disk galaxies evolution. Also, in Mioc and Stoica [16]
(1997) the Manev-type potential is considered in the frame of a two-body problem. The spatial
restricted four body problem (case n = 2) with repulsive Manev potential (e > 0) was studied from
an analytical point of view in [10]. For the planar case and n = 7, a particular numerical study
on the number of equilibria and the bifurcations that depend on the Manev parameter is made
in [3]. We found that in [12] was studied the existence of some symmetric periodic solutions in
the planar case using numerical methods. For the spatial case with general n, an analytical study
of the existence of periodic solution families around the central body and far from the primaries
was studied by Ascencio and Vidal. In [6] the authors proved the existence of symmetric periodic
solutions. Then, in [7] they proved the existence of periodic solutions (not necessarily symmetric),
where they also guaranteed the existence of KAM tori that enclosed them.

The main purpose of this paper is to study important aspects of the dynamics of the spatial
restricted (N + 1)-body problem with repulsive or attractive Manev potential from an analytical
point of view, for any quantity of peripherals n. Initially, we characterize the symmetries of the
associated Hamiltonian function. On the other hand, for the repulsive case, that is, e > 0 we prove
that, due to the repulsive force emanating from the central body, it is not possible to have a binary
collision between the infinitesimal mass and the central body in the Manev R(N + 1)BP. We prove
that any equilibrium point must lie on the lines of symmetries of the regular polygon formed by
the peripheral bodies, or on the z-axis. Using this information we are able to determine the type
of equilibrium points and the number of them as functions of the parameters § and e. Bifurcation
parameters are characterized. After that, several general results concerning the type of stability of
each equilibria are proved analytically.

The paper is organized as follows: in Section 2 we point out the equation of motions, the
admissible values of the Manev parameter e, and the symmetries. We also prove the nonexistence
of binary collisions between the central body and one of the infinitesimal mass. Section 3 is devoted
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to the observe that any planar equilibrium point must lie on the symmetries lines of the regular
polygon formed by the peripherals. Using this information we are able to determine the type of
equilibrium points and the number of them as function of the parameters § and e. Bifurcation
parameters are characterized. In Section 4 the linear stability of each equilibrium point is given.
Finally, in Section 6 we introduce some technical lemmas that are necessary for the proof of our
results.

2. STATEMENT OF THE PROBLEM AND MAIN FEATURES

In this section we derive the equations of motion of the Manev R(N + 1)BP as follows. Consider
N+1 bodies, P;, with positive masses m;, in an inertial frame moving under their mutual Newtonian
gravitational attraction, plus a Manev perturbation coming from body FPy. The potential generated
by the N + 1 bodies is given by

& v= Y Z|gm°m]

0<i<j<N lla: — g5l 90 — g4|*

where ¢; is the position of P;,; i =0,1,..., N, G is the Gaussian constant of gravitation and B is
the corrective coefficient corresponding to Manev potential.

If we consider that the particle P = Py with position ¢ = gy is small, my =~ 0, so that its
influence on the other bodies can be neglected, the equations of motion of a restricted N + 1-body
problem are

= 2Gm;B(q; —
io Z<gmj S ).

llgo — g; llg0 — g;
n
. Gm;(q; — g 2GmoB(q0 — ¢
G = Z ]( J ) ( )

(2) ————3 —— 0 i=1,...,n,
i Mai =gl llao — ail|
n
i = Z gm;(gj —q)  2GmoB(g0 — q)
= lla—gll® llg — goll*

where N = n + 1. The first n 4+ 1 equations correspond to the motion of the primaries and are
uncoupled, in the sense that they can be solved independently from the last one. The last one
corresponds to the motion of the infinitesimal particle, and in order to solve it a solution of the
first n + 1 equations is required.

We impose the following solution for the primaries. We place Py, called central primary, at the
origin and the remaining bodies, called peripherals, P;, i = 1,...,n, with equal masses m; = m,
i =1,...,n, at the vertices of a regular polygon with center at Py, and moving around it, in a
plane, with constant angular velocity w. Then

2W(J 1)

3) gj(t) = de™"e’ ,i=1...n,

where d is the radius of the polygon. Substituting into the first n 4+ 1 equations in (2), and
introducing the mass parameter 5 = mg/m, we obtain the following two algebraic equations

n 62-271'(]'—1) 2Bei2w(j71)
(4) 0 = de™'gm| ) —Fm———Q0— |
=1
n s2wG-1)
Tw Tw 62 " -1 /8 QBﬁ
(5) —w?de™’ = Gmde™" ZT_$+ 7
J

Jj=2
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15 where d; = ||¢1 — g¢;|| is the distance between the peripherals P, and P;, with j = 2,.

Pn -2

FIGURE 1. The “ring” configuration of the n + 1 primaries, where ¢ = 27/n, d is
the radius of the ring and a the side of the regular polygon, related by (6).

. . . e . [2m(i—1)
106 On one hand, using trigonometric identities it is not difficult to see that Z?:l B 0, so

107 equation (4) is satisfied trivially. On the other hand, using the geometry of the configuration (see
108 Figure 1) we have that

a a 2a T
6 d=—2 % g -2y ('—17),
s (6) 2sin(w/n)  p T sin (7 )n
110 where a is the side of the regular polygon and p = 2sin(7/n). Substituting (6) into (5) and defining
11 e = B/a, the Manev parameter, we have that

21r(J 1)
—1 Bp 2Bep*
2 (7) = fgmz +gm m—s—
113 Clearly, using the symmetry of the configuration and (6)
n iZW(Jfl)
n —1
114 Ry ZGT = 0,
=2 i
n 2m(j—1) n )
e =1 —p sin“(mw/n)
R —_— = — _—
e ; e a’ ;sin((j —1)n/n)

116 We define

sin?(7/n)
— sin[(i — 1)(7/n)]’

]
\E

uz  (8)
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FIGURE 2. Evolution of eg, defined in (11), as a function of the mass ratio 3 for
different values of n (log scale).

so that equation (7) writes

or equivalently

gm 1
(9) PERE N
where
(10) A = p(A+ Bp® —2Bep?).

Therefore the configurations were n bodies are at the vertices of a regular polygon, rotating
with constant angular velocity, plus a mass with a Manev potential at the center is solution of the
n + 1-body problem provided that equation (9) is satisfied. Equation (9) can be interpreted as
generalized third Kepler law.

Notice that, from (9), A must always be positive, which gives an upper bound on the Manev
parameter e.

Definition 2.1. For each fized integer n > 2 and mass ratio 8 > 0, the admissible values of the
Manev parameter e are the values such that
A+ Bp?

(11) e < ey = 25;)3 s

where A is given in (8).

In Figure 2 we see the evolution of ey as a function of § for different values of n. Clearly, the
greater the number of peripherals, the greater the curve eg(). Thus, if the Manev parameter is
big, either the mass ratio 8 is small or the number of peripherals is big enough.

Introducing the Manev parameter e and the mass ratio 2 in the last equation of system (2), the
motion of the infinitesimal particle P is given by

N B [ 2ha  ~d¢i—4
(12) q:gm<—r3q+ - g+ = |
0 = T

0
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where ¢;(t) are given in (3), r;(t) is the distance between P and the ith primary, and parameters
G, m, B, e, a must satisfy equation (9). By scaling distances by ¢ = £, i =0,...,n, ¢* = 1

a’ a

and time by t* = wt, and using the identity (9) we obtain the equations of the restricted Manev
problem in the inertial frame (for simplicity we drop the * notation)

L1 Bg | 2689  \~4—4
13 (- 3 .
(13) 1= A ( s e P r3

2

Notice that, with the reescaling, the peripherals are located in an n-gon of side 1 with radius 1/p
and rotating periodically with period 2.

We change to a rotating system Ozxyz, that rotates with angular velocity equal to 1, so that the
peripherals are contained in the plane z = 0 at fixed positions (z;,y;,0), where

1 2w(y —1 1 2w(j — 1
(14) ZTj = —cos <7T(])>, y; = —sin <7T(j)>, ji=1,...,n.
P n p n

Then, the motion of the infinitesimal particle in the rotating system (see Figure 3) is described by
the following system of second-order differential equations:

T—2y =Qq,
(15) J+2& =8y,
z =Q,,
where Q¢ = %—?,
1
(16) Q(‘T7y7 Z) = i(xz + yz) + V(I7y7 Z)
1 1 e "1
( ) (a:,y,z) A B(,,,O 7’8) +Z7~j ’
Jj=1
and
(18) ro = (2% +y* +22)1/2, ry = |[(x —mj,)2 + (y —yj)2 +z2]1/2, j=1,...,n.

These equations are the same as in [11].

FIGURE 3. The configuration of the problem. P is the small body and P;, i =
0,1,2,...,n are the primaries.
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The phase space associated to system (15) (as a first order differential system) is

M = {(x,y7z,:b,y7z’) e (R*\ {(0,0,0), (zi,9:,0) :i = 1,...,n)}) x R3}.

We remark that the problem has two invariant subspaces: the subspace z = Z = 0, named Planar
Manev R(N+1)BP, and the z-axis, named Rectilinear Manev R(N+1)BP.
Next, we highlight some main properties of the model.

2.1. Rotation and symmetries. The system (15) admits the following rotation

(19) R: (z,y,2,%,9,2) = (cos(¢)x —sin(¢)y, sin(y)z — cos(¥)y, z,
cos(¢)& — sin(1))g, sin(h)& + cos(¥)y, 2),
with 1) = 27/n. In the next section we will see that the use of previous rotation will simplify the

study of the equilibrium points.
In addition, the system (15) admits the following time reversal symmetries:

Sl : (x7y7’z73’77’ya27t) — ($7 —-Y,—z, —5%2'/727—75)7

(20) S? : (x7yaz7jjay727t) — (.’II, —Y,z, _1’797—27_75)7

for all n, and

S3 : (xvyaz7ivyaé7t) (—ZE,y, _Zaj7_ya27_t)7
(21) DY, 20) 2% 7Y 2
S4 : (x,y,z,x,y,z,t) 7 (7xayazaxa —-Y,—z, 7t)7

for n even. They have been used to prove the existence of comet and Hill periodic orbits around
the primaries (see [6]).

2.2. Jacobi constant. Similarly to the classical circular restricted three-body problem, the system
(15) possesses the first integral, known as Jacobi constant, given by

(22) C =20z, y, z) — (&2 + 5% + 22).

Using the above first integral, we can prove that in the repulsive case, it is not possible to have
a binary collision between the infinitesimal mass and the central body in the Manev R(N + 1)BP.
This is consequence of the following result.

Theorem 2.1. For each integer n > 2, 3 > 0 and an admissible e > 0, a solution of the restricted
Manev R(N+1)BP (15) must satisfy

lim inf ro(¢) > 0,

t—Foo
where 13 = x? + y? + 22.

Proof. Consider «(t) a solution of (15). Then by (22), there exists a constant C' € R such that
C(vy(t)) = C V t. Suppose that liminf;, . ro(t) = 0 (analogously when ¢ — —o0). Then, using
(17), there exists a sequence t, — + oo such that

lim C(y(tn)) = —oo,

n—oo

which is a contradiction. O
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3. EQUILIBRIUM POINTS

The equilibrium points of the Manev R(N+1)BP (15) correspond to the points (x,y, z,0,0,0) €
M such that

1 1 2e - x—xi-
U CREIE W o I
1 1 2e - y—yi_
2 — - — 0
(23) N 6(7% Té)y+i_1 3 ;
1 2 "1
z 5(3—4>+Zs =0
To 0 im1 3 |

Since any equilibrium point is determined by the position (z,y, z) of the infinitesimal mass, from
now we represent them only by the position vector.
In the following result we characterize the location of the equilibrium points.

Theorem 3.1. Consider the Manev R(N+1)BP (15) for a fizted n > 2, 8 > 0 and an admissible
e. The equilibrium points in the z = 0 plane lie on the lines y = tan(%)x, i=1,...,n. In the
spatial case z # 0, for e > 0 the equilibrium points are located on the z-axis, while for e < 0 there
are no equilibrium points.

Proof. For n = 2, the result is already proved in [10]. Then, we consider n > 3.
We first consider the planar case z = 0. The equations of the equilibrium points given in (23)
are reduced to

r+V, =0,

(24) y+V, =0,

where V is given in (17). The system (24) implies

n
(25) Wi —aVy =0, — Y WV _g
i=1 T
where z; and y; are given in (14). Denote by ¢; = w, i = 1,...,n. Introducing polar
coordinates x = —r cosf, y = rsind, for a fixed r > 0 the equation (25) can be written as F/(6) =0
where

"L sin(0 4 ¢;)  sin(6) — sin(0 + ;1)
plo) =y, S0 E2) _snl0) 5 sl i)

3
1 i—1 Tit1

i=1
where r? = r? 4 2rcos(f + ¢;) + 1. Notice that if we consider r; as a function of 6, then r;(0) =
r1(0 4+ ;). Therefore, F'(§) can be written as

n—1

F(0) = f(0) + Z f(0+4T),

with f(0) = S:?((g)) and T = 2%. In this way, F(6) satisfies the hypothesis of Lemma 6.1 (see
s

Appendix 6), and F'(f) = 0 if and only if § = =%, k € Z, which completes the proof in the case
z=0.
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Next we consider z # 0. In this case the system (23) can be rewritten as

n

AQ$ = - %7
i=1 1
(26) Y

i=1 "1
. 1 1 2 "1 ,
w1thQ:1—A<6<rg—rg>+ZT3>.Slncez;éO,theanlandwehavethat

=1 1

1 2 1
ﬁ(—)—l— E — =0.
rs g — r3
Clearly, this equation does not have solution if e < 0, so there are not equilibrium points on the

z-axis when e < 0.
When e > 0, system (26) is reduced to

Azx
(27) 121

Ay :—Z%.

Using first Lemma 6.2 we have that if y # 0 both sides of the second equation in (27) have different
sign, so we have a contradiction and y = 0. Then, introducing y = 0 in the first equation, and
using Lemma 6.3 we have that if x # 0 both sides of the equation have different sign, so again we
have a contradiction. Therefore, x = 0 and the equilibrium points with z # 0 must be located on
the z-axis. This completes the proof. O

[
|
L &

Notice that the lines y = tan(%) z, 1 =1,...,n, are lines of symmetry of the configuration of
the primaries, and using the rotational symmetry (19) it is enough to study the localization and
number of equilibrium points on the half lines R and £ defined bellow (see Figure 4). Analogously,
by symmetry with respect the plane z = 0, it is also enough to study the spatial equilibria for
z > 0.

Definition 3.1. We denote by R and L the half lines on the z = 0 plane:
R = {y=2z=0,z>0},
L = {z=0,y=tan(r/n)z,z > 0}.
We also denote Ry ={y=2z=0,2>1/p} and Re ={y=2=0,0<z < 1/p}.

Notice that R contains one peripheral at (1/p,0), whereas L is the bisector between the lines
containing P, and P,. We study separately the number and location of equilibrium points on R
and L, see Figure 4.

Definition 3.2. The equilibrium points that lie on R and L are denoted by L,, and L,, respectively,
and the equilibrium points on the z-axis, with z > 0 by L.
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FIGURE 4. It is enough to study the equilibrium points on R and £ (see Defi-
nition 3.1). All the other equilibrium points are obtained applying rotations of
angle 27 /n. The dotted circles indicates the location of the peripherals.

3.1. Equilibrium points on the z-axis with ¢ > 0. From (23) an equilibrium point on the
positive z-axis is a solution z > 0 of

1 2e n
28) 35 %)+ wpiapn =°

The following result shows the existence of only one equilibrium point on the z-axis with z > 0
and gives a bound on its location.

Theorem 3.2. Consider the Manev R(N+1)BP (15) for a fized n > 2, > 0 and an admis-
sible e > 0. Then there exists a unique equilibrium point on the positive z-azis, L, = (0,0, z).
Furthermore, 0 < zZ < 2e.

Proof. Consider the auxiliary functions

1 2
e =5 (5-5) ) =

From (28) an equilibrium point on the positive z axis is a solution of the equation hi(z) = ha(z).
On one hand, we have that lim, ,o+ hi(z) = —o0, hi1(z) < 0 and hj(z) > 0 for 0 < z < 2e, and
hi(z) > 0 for z > 2e. On the other hand, h2(z) < 0 and h5(z) > 0 for z > 0 (see Figure 5). Then,
it is straightforward that there exists a unique positive solution of (28) located in (0, 2e). O

Proposition 3.1. Let L, = (0,0,2), z = Z(e, B8), be the equilibrium point given in Theorem 3.2.
Then,

lim z=0, lim z=0, and lim Zz = 2e.
e—0t B—0t B—~+o00
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hi(z)

FIGURE 5. Graphics associated to the functions h; and hs (see Theorem 3.2).
The intersection of the curves show the existence of the equilibrium on the z-axis.

Moreover Z is an increasing function of 3 and e, and z = 2e + O(e3) for all 3.

Proof. The first limit is obtained from the upper and lower bounds of Z. To obtain the second
limit, notice that using (28), we can write (for any fixed value of €) § as a function of Z as

nzt

(2e = 2)(1/p* + 22)3/>

Using Taylor expansion we get 8 = %24 + O(2°). The third limit is obtained directly dividing
equation (28) by 3.

For the monotonicity, notice that the function A; in the proof of Theorem 3.2 is decreasing in
the variables 8 and e, which implies that Z is increasing in § and e.

Finally, to prove that

8=

0z
lim — =2
e—0+ Oe
we introduce in equation (28) the variable u? = 1 + p?22 and the rational parametrization
s2—-1 s2+1
z= , U= , s>1
2s 2s

to obtain

B(s* +1)3(s? — deps — 1) +n(s? — 1)* = 0.
It is not difficult to see that the above equation has a unique solution for s > 1, 5 = 5(e, 8), which
satisfies 5§ < 2ep + /1 + 4e2p?. Deriving with respect e we have

from which the claim follows. O

Notice that 2e is a sharp bound when S is bigger or e is small. In Figure 6 we show the evolution
of the location of L, as a function of e for different values of 5 and n. As we have proved in the
previous proposition the curves are tangent to the line z = 2e.

Remark 3.1. In [10] was proved that min{e, e} < Z when n = 2. Straightforward argument
shows that it is also true for n = 3,4. As we can see at Figure 6 the lower bound fails for bigger
values of n.
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0.6

05

0.4

z 03

0.2

01t

FIGURE 6. Curves (e,z(e)) for e € (0,e0) (see Theorem 3.2) for different fixed
values of 8 =1,2,...,10 and n = 3 (left) and n = 10 (right). The dashed lines
correspond to the lines Z = e and z = 2e (see Proposition 3.1).

3.2. Equilibrium points on the half line R. From (23), an equilibrium point on the positive
z-axis must be a solution of

3, 2Pe T — xl

(29) Az + B = Z (x — z3) y2)3/%"
In order to solve the above equation we use the auxiliary functions
ﬁ
(30) filz) = Aa® + =— — 3,
and
- Xr — X
(31) f2 (SL’) - x2 )
D

defined for x > 0. It is clear that solving equation (29) is equivalent to solve fi(z) = fz(z) for
x> 0.

28e

Definition 3.3. For 0 < e < eg, let z* = z*(e) = <3A

) be the minimum of f1 given in (30).
Next result states the number of equilibrium points along Ry, that is, when x > 1/p at the right
hand side of the peripheral.

Theorem 3.3. For any fized value of n and 3 > 0:
(1) If 0 < e < e there exists at least one equilibrium point on Rq denoted by L,, = (Z1,0,0).
In addition, if n < 472 this equilibrium is unique. Moreover, T > max{1l/p, z*}, where *
s given in Definition 3.5.
(2) Ife <0, there exists exactly one equilibrium point on Rq, Ly, .

Proof. An equilibrium point on R; satisfies the equation fi(z) = f2(x). The existence of at least
one equilibrium point for any admissible 0 < e < ¢q follow observing that the curve fi(x) and f2(x)
intersect in at least one point for x > 1/p (see Figure ). This affirmative is consequence of Lemmas
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fi(z)

_—  fx)

(a) fi(l/p) <m (b) f1(1/p) >n () fil/p) >n

FIGURE 7. Examples of graphics associated to the function f; and fy (see Theo-
rem 3.3). The intersection of the curves show the existecne of equilibrium points
on the z-axis.

6.4 and 6.5. Using that f1(z*) < f1(1/p) < fa(x) for any x > 1/p, we obtain the lower bound for
Z1. The uniqueness follows observing that by Lemma 6.4 item (2).(iv) the function fi(1/p) is an
increasing function of n. Thus, by simple inspection we arrive that when n < 472 then f1(1/p) <n
(note that for n = 472 the respective value f1(1/p) = 471.956882), this guarantee the uniqueness
of the intersection point between the curves fi(z) and fa(x) for > 1/p (see Figure 7). O

Proposition 3.2. For any f > 0 and admissible e, let L,, be the equilibrium point given in
Theorem 3.3. Then:
(1) lime—yo 1 is finite;
(2) limg_0 %1 = T1,, where T1, does not depend on e and L,, coincides with the equilibrium
of the Mazwell’s Ring R(N+1)BP with equal masses;
(3) there exists an admissible value of e, such that the equilibrium point L,, = (Z1,,0,0) for
all B > 0.

Proof. When e — 0, we can write the equation fi(x) = fa(x) as

p(A + Bp°) x_xl)
g 3_1+722 CETASTE

which clearly has one solution for > 1/p (using Lemma 6.5).
When 5 — 0 the equation fi(z) = fa(z) transforms into

x—xl
pAz? —x2z ).)3/2'

,I—ZE

Thus, the equilibrium point (Z1,, 0, 0) commdes with the equilibrium of the restricted (N +1)-body
problem (see [9], case mo = 0, the authors called him Ry).

For the last statement, recall that Z; is the only positive solution of the equation (29). This
equation can be written as

2<pr_i((m_(j)—f‘:)y )3/2> +i<p4 (/1)—26)1; —x+2e) —0.

Substituting = Z;, in the above equation, the first term vanishes and we get that

1
p4 (p — 26) 1‘10 Z1, +2e =0.
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Solving for e,

which is an admissible value.

In Figure 8, we show the variation of the coordinate z; of the equilibrium point L, for several
values of B and n. We can see the intersection point Z;,. The approximate value of e for which

I1, (0?73, + pT1,+1) 1

e =
2(1+ pa1,) (1 + p227)

Ei;;a

L,, = (Z1,,0,0) for some values of n are given in Table 1.

p1

3
15 =1
T p=10
s p=100
p=1000
05
o . . n N n 0
005 01 015 02 e 025 03 035 04 0.45 o1 02 03 04 e 05 06 0.7 08
(a) n=3 (b)yn=>5
5 200
180
4 160
140
p=10
3 / S [3=1000
. / = 7 ’ g0
A 7 100 B=10
2| p=100 &
p=1000 ©
1 40 +
20
° Y r } 2 y ; ° 1'0 EIU i;D 4'0 SIO EID 7ID 2;0 9‘0 10C
05 1 15 2 25 3 35 4
e e
(c) n=10 (d) n =500

O

FIGURE 8. Variation of the coordinate z; of the equilibrium point L,, as a func-

tion of e for n = 3,5, 10, 500.

[n [ 32 | ¢ |
3 1.1799984049 | 0.27099478169
5 1.4548950111 | 0.36616775409
10 | 2.5629997052 | 0.50888405339
500 | 101.8255392116 | 0.59920105662

TABLE 1. The approximate value of e for which z; = z;,, see Proposition 3.2.
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Next result states the number of equilibrium points along R, that is, when 0 < 2 < 1/p at the
left hand side of the peripheral.

Theorem 3.4. For any B > 0, there exists a value e* = e*(8) > 0 such that the number of
equilibrium points along the R is

(1) 0 Zf@ € (6*,60),

(2) 1ife=ce",

(3) 2if0<e<e”,

(4) 1ife<O.

Furthermore, e* < 3eg/4, where eg is given in (11).

Proof. We are looking for solutions of fi(x) = fa(x) for 0 <z < 1/p.

First, we consider 0 < e < eg. On one hand, from Lemma 6.4, f; has a unique minimum at
x* = a*(e), and z*(e) > 1/p and fi(x*(e)) > 0 for e > 3ep/4. Using Lemma 6.5, f5 is negative, so
for e > 3ep/4 the two functions do not intersect.

On the other hand, also using Lemma 6.4, lim._,o f1(2*(e)) = —p, so that for small values of
e, fi(x*) < fa(x*) and the two functions intersect twice. Therefore, by continuity, there exists a
value of e such that f; and f> coincide tangentially only once for 0 < z < 1/p.

In the case e < 0, again from Lemmas 6.4 and 6.5, f; is an increasing function from —oo or
—n/p? when e < 0, or e = 0, respectively at z = 0, to co at x tend to oo and f, decreases from
f2(0) =0 to —oco at @ = 1/p. Clearly, fi and f> intersect at only one point. O

Definition 3.4. For the values of e € (—o0, e*] we denote the equilibrium points L,, = (Z;,0,0),
i =2,3, where 0 < T3 < Ty < 1/p, and the equality holds when e = e* or e < 0.

From the proof of Theorem 3.4 it follows easily the next result.

Proposition 3.3. For any fized value of n, for any B, let e* and x* be as in Theorem 3.4 and
Definition 3.3, respectively. Then, for any e < e*, the equilibrium point Ly, satisfies that 0 < T3 <
T*.

In Figure 9 we can see the variation of e* for different values of n (left) and the regions where
there are 0 and 2 equilibria, and the bifurcation curve e = e*, where there is only one equilibrium
(right).

3.3. Equilibrium points on half line £. We will use complex coordinates to write the equilib-
rium points on the straight line y = tan(w/n)z, that is L,, = re’™/™. From the first two equations
of (23) taking x = rcos(m/n) and y = rsin(7/n), multiplying the second equation by the imagi-
nary unit, then adding the two equations, the imaginary part vanishes and the real part gives the
equation

2§ &y 1-Leos(24 )
(32) AT3_ﬁ+T_Z 1 P B n n :O

(L+ Gz — = cos(3L + 1))/

Jj=1

Theorem 3.5. For any fized value of n, for any B > 0 and admissible e, consider the half line £
and C the circumference containing the peripherals.

(1) If 0 < e < eq, there exist at least two equilibrium points on L. One of them is inside the
circumference C and the other is outside of C.
(2) Ife <0, there exists at least one equilibrium point on L. It is outside the circumference C.
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100 T T T T ‘
04 1 e
— K
n = 500 0as |l J
10 b E |
6 03f N~ e =€ i
T 1 0 equilibria 1
n =10
n — 5 oz o 1
nN=9,_4 1 equilibrium
"
o hL =3 015 c=e ]
all 2 equilibria |
/
X X ) ) 0.05 N N B
oot 0 200 400 ﬁ 600 800 1000 50 100 150 200 /B 250 300 350 400

FIGURE 9. Left: variation of the function e = e*(3), for different values of n,
see Theorem 3.4. Right: regions in the (f,e)-plane with different number of
equilibrium points for n = 3.

Proof. The proof follows directly from Lemma 6.6. In the case e > 0, the left-hand side function
from equation (32) has a parabolic behaviour with a negative value at r = 1/p, so at least must
have two zeros, each one at each side of C.

For e < 0, the function has one change of sign with a negative value at r = 1/p, so at least has
one zero for r > 1/p. O

Definition 3.5. In the case 0 < e < ey, we denote the equilibrium points L,,, and L., located
outside and inside C, respectively.

4. LINEAR STABILITY OF THE EQUILIBRIUM SOLUTIONS

We study the linear stability of the equilibrium points L, and L¢, £ € {p;,ms}, j = 1,2,3,
k = 1,2, through the analysis of the eigenvalues of the differential matrix of the vector field of the
system (15), given by:

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Vay 1+Vyy Vye =2 00
7 V= V.. 0 0 0
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338 where
~1 "1 1 3 8e " (x — xj)?
Viw = — = — S — = |z +3 e
A B(ro >+ =1 IRV 5(7‘8 rS)z + Z o ’
j=1"J j=1 J
1 3 8e (z ) —y5)
ny*Z 5(7‘8 7”8)xy+32 5 ;
j=1 J
z 3 8e T—T
Vrz = x 3 J s
s G) R
330 (34) =
-1 1 2 "1 1 3 8e " (y —y;)?
v ﬁ( - >+ =+ = B(—) >+3 2,
WA rs o org = rj A o 6 ; rj5
z 3 8e "y Y;
Vie =R B(T% r8)y+3z Pl
j=1
~1 1 2 1 22 3 8e 1
Vo= [B(=- Sl |8(5-%)+3> =
A 6(7’3 r§)+2r3 A 6(7"8 7"8>+ Zr?
=117 j=11
340 Since V. = V,,, = 0 for all the equilibrium points, we can separate the planar and the vertical
341 stability. The characteristic polynomial associated to matrix (33) is
32 (35) p(N) = (N2 = V..)p(N),
343 where
3 (36) PA) = A+ (2= Vo = Vi )N + 1+ Vao + Vyy + Vi Vi — V2.
345 Therefore, the vertical stability of all the equilibrium points is given by the eigenvalues
a6 (37) +A3 =+ V..,

347 and the planar stability is given by the solutions of p(A) = 0.
348 Next we study separately the point L, and the planar equilibria.

ss9  4.1. Stability of the equilibrium point L.. Consider the equilibrium point L, = (0,0, 2), given
350 in Theorem 3.2. Using the fact that zZ must satisfy the relation (28), it is not difficult to see that

wa(LZ) = Vacz(LZ) = Vyz (Lz) =0,

36(2e — %)
Vaa(Lz) = Vyy(L2) = s
1 (38) (L2) wy(L2) 20A (22 N p%) .
Vir(Le) = g D (32— 8¢ — 227

AP + )2
352 Proposition 4.1. For each integer n > 2, 8 > 0 and an admissible e > 0, the eigenvalues

353 associated to the the equilibrium point L, are A3 = +wi, w > 0, and A1 = a + bi, A1, =M1, — A1,
336 a>0, b>0.

Proof. Using (35), (37) and (38) the eigenvalues of the matrix in (33) are +A3 = ++/V,.(L,) and
the solutions of
PN = At = (27 = 2M + (1 +9)%,
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where v = V., (L,) > 0.
On one hand, using the fact that z < 2e (see Theorem 3.2), we have that

37 — 2ep?z? — 8e < 37 — 8e < e — 8e = —2e < 0.

Therefore, V,.(L,) < 0 and two of the eigenvalues are pure imaginary.
On the other hand, the solutions of p(\) = 0 are

M o=v—1+2i/7.
This completes the proof. O

Therefore, the equilibrium point L, is of type center x complex saddle, and it is unstable.

4.2. Stability of planar equilibrium points. Consider the equilibrium points L¢, & € {p;, my},
j=1,2,3 and k = 1,2 (see Theorems 3.3, 3.4 and 3.5 respectively). Recall that

VM(LE) = VyZ(Lﬁ) =0,
and
1 1 2 "1
Vee(Le) = =< - — I —
(Le) A 'B(rg’ r§)+2r3
Jj=1"1
As we have seen, we can study separately the vertical stability and the planar stability. Using
(37), for the vertical stability it is enough to study the sign of V., (Lg).
Lemma 4.1. For each integer n > 2, > 0 and an admissible e, V,,(L¢) < 0.

Proof. When e <0 it is clear that V,,(L¢) < 0.
Consider now 0 < e < eg. For L,, = (&;,0,0), we use the equations of the equilibrium points
(29) to write

1 1 <& cos( L)
39 Viz(Lp,) = —— | A+ — -7 —
(39) (Lp,) A PT; ; (2 + p% _ %008(2%]))3/2

Now using Lemma 6.3, the sum in the above equation is positive and the proof is completed.
For L,,, , we use the equations of the equilibrium points (32). For each k, we write L,,, = re'n
(being r different for each k). Then we have that

1 1 2 2 1
Vee(Lim, N 3 1 ;
W) =% ( r4>5+§<r2+;—¥cos<2?+z>3/2
(40) !
_ 1 A—i—izn: COS(22J+Z)
AT S e k- TG )P

Let v’ = rp and

n

/ cos(% +7)
(41) o0 =2 (1) +1— 20" cos(22L + £))3/2

j=1
Lemma 3 in [8] (Bang and Elmabsout, 2003) the authors proved that g can be rewritten as an
integral of a positive continuous function for 0 < r’ < 1. Using that g(1/r") = (r')3g(r'), we also
obtain that g(r’) > 0, when r* > 1. Thus, V..(Ly,,) <O0.

O
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Therefore, the eigenvalues £\3 associated to the vertical stability of the equilibrium points L,,
and L, ;, with i = 1,2,3 and j = 1,2 are pure imaginary.
To study of the planar stability we will use the same technique introduced by Bang and Elmab-
sout in [9]. For ease of reading we will use notations similar to them.
We write the polynomial p in (36) as
PN = At +2(1 - AN+ (A+1)* — |BJ?,
where A = $(Vaw 4+ V) and (A +1)2 — B = Voo Vyy + Vaw — V2, + Vyy + 1. Note that the
eigenvalues of the linearized system will be pure imaginary, if and only if, the roots of the previous
polynomial are non-positive. This condition is equivalent to
Iy, =|B|>?—-4A>0,
(42) lo, =1-A>0,
Ils =1+A—|B|>0.
Next, we separate the study for the equilibria on the z-axis, L,, and the equilibria on the
bisector Ly, .

4.2.1. Planar stability of the equilibrium points L, . We consider the points L, , j = 1,2,3. From

(29), we have that
_ 1 1 2 - T
A\l s 5 | =0.
Ti™ A (ﬁ (xf xi) +l§:; (@ — 21)? Jrylz)s/2>

As in [9] we will write A and B in complex coordinates, that is,

1 & 1 g 1 2ef 1
A =— el il

2A;|w0—wj|3 TR TwelP T A Jwol
43 o
) poodyn 1 wmew 391w 4l 1w
2A e |U)0—w]'|3 wo — Wy 2A\w0\3% A |w0|4W0’

with wog =24, 1 =1,2,3, w; = %ei“"j and ¢; =2mj/n, j=1,...,n.

Lemma 4.2. For each 8 > 0,
(1) Ife<eg and x = wy € (%, +00) (equilibrium solution), B(x = wy) = |B(z = wp)].
(2) Ife<0 ore— 0" and x = wy € (0, %), B(z = wp) = |B(x = wp)|.

Proof. B(x) admits a symmetry when changing x — 1/x, so we can assume x = ,le Thus,

r—w; 38 1 def 1 x

3 1
B = — _— _— —
(z) 2A jz::l |z — w;]? z —w; + 2A 23 A |z]*Z

1 3033 <n 1 — sw; 215\ \ "% 3Bp ,  deBp
Bl—)= i (1442_9 <m) 3 4

which is equivalent to

i 2mj

with @; = e = . We introduce the notation

B 1 _ 3np3s’ 1 — sei® n 38p3 & 4efp* g
ps 2A (1 —sei)(1 — set™)3/2(1 —se~)3/2 [~ 2A A
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Note that the equation (29) (using s = 1/(pz)) is equivalent to

A n
i 53:26 S4+7_753h7 S),
then
3np3s3 1 — gei )
B = ; - - 3 _ 4eBp” 4 3n3hn
2A { (1 —se™)(1— SQW)S/‘2(1 — se—iw)3/2 }n +3 A S x5 hn(s)
3np°s 1 — se o
- : "y — . 3 _ deBpt 4
24 H (1 — se~)(1 — set)3/2(1 — se~iw)3/2 }n (5)} + 3 s
1 — set
Let By = ' ' _ b (s),
o { (1 — se~)(1 — sei)3/2(1 — se~iu)3/2 }n (s)

B = 1 —se B 1 sett
1 = (1 — seﬂ'u)(l _ Sez‘u)B/Z(l _ Sefiu)S/Z (1 _ 56m)3/2(1 _ Sefiu)g/z .
e " (1 — se™)
s ; . N
(1 —se™)(1 — set™)3/2(1 — se~i)3/2 |
1

—iu

Ssq€

(1 — se~)2(1 — se~iu)1/2(] — geiu)l/2 }n

Using the expansion = z)1/2 Zk 1 apz®, with a; > 0, we obtain then

By =s {e_i“ Z(k + 1)ske_ik“ Z apste Z akskeik“} {Z{P _1“ )sP}n }
k=0 k=0

k=0

n

where P(e™,e~™) is polynomial with positive coefficients. Then B; > 0, thus B > 0, when
0<s<1,forall 0 <e< ey Inthe case when e < 0, we consider, again
3np3s3 1 — seit 38p 5 deBp* 4
4 - . 5% — 5
2A (1 —se=)(1 — set)3/2(1 — se—)3/2 |~ 2A A ’

B(z) =

where the term
1 — sei®
(1 — se~iu)(1 — seiv)3/2(1 — se~iu)3/2 |
is positive, the proof is similar to the proof By > 0. Then B > 0, when s € (0,+00) — {1} and

e < 0. Note that if e — 07, B > 0, thus, for continuity on e, we have that for values of e close to
0, B >0, when s > 1. O

The following technical lemma will be used later, the proof can be seen in [9].

Lemma 4.3. For every s € (0,400) — {1},

3 1+ s2e2i — 25t 1 9 1 — set* -0
(1+s2—2scosu)®?2 (14 52— 2scosu)3/2 (1 + 52 — 2scosu)3/?

Now we see what is the stability characteristic of the equilibrium point L, .

Proposition 4.2. For each B and e admissible, Ly, is unstable.
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Proof. Using Lemma 4.2, that is, | B| = B and the equation (44), that is,

1= 53+—h() e
A AT
then
Bl—A—1 —=B—A—1
_ np383 3 14526 —2ge' _ 1 _ 1—se’
- 2A (1-‘,—32 2€cosu)5/2 (H—s2 23cosu)3/2 (1+‘32 2€cosu)3/2 n
36/) 4eﬁp gt — Bp 2eﬁp B 2[360

+ 2A s3 + st Apss + st
_ np 53 3 1+5262‘“—256 _ 1 _ 1—se’
- 2A (14s2—2s cosu)?/? (14+s2—2scosu)3/2 (l—l-s2 2‘scosu)"/2 n

Now, using Lemma 4.3 is obtained that |[B] — A — 1 > 0, thus I3 < 0. Therefore there must be a
root of the characteristic polynomial p(\) with a non-zero real part. Thus, L,, is unstable. O

Proposition 4.3. For each B and e <0, Ly, is unstable.

Proof. Using Lemma 4.2 and Lemma 4.3 the result is obtained in a similar form as in Proposition
4.2. O

Proposition 4.4. For each > 0 and 0 < e < e* < %, with e* bifurcation parameter (as in
Theorem 3.4), Ly, (x2 € (z*,1/p), with z* as in Lemma 6.4) is unstable.

Proof. Remember, from Lemma 4.2

2 A

B 3npts’ 1 } 3 deBpt ,

oA ° {e (1 — se~)2(1 — se~iu)1/2(1 — sein)l/2 st
Notice that z* < z < 1/p is equivalent to 1 < s < s*, with s* = 1/(pz*) = (3A/(28¢))*/*/p,

then % — %34 > (0. Thus, B > 0. To prove that I3 < 0, proceed in a similar way to the proof of
Proposition 4.2. O

4.2.2. Planar stability of the equilibrium points Ly,,. The equilibrium points on the straight line
y = tan(m/n)z in the complex variable are of the form L,,, = re!™/" with j = 1,2. Recall that
these equilibrium points satisfies the equation

1- —cos(zm +7)

2e3 _
(45) ﬁ+——z - Zoon(T 4 2 ))3/2_0
1

Note that equation (45) (using s = -=) is equivalent to

pr
A
(46) ﬁ + B —2Bep — [383 + 265;)84 — 53hn(5,7r/n) =0,

27g s
with hy(s,m/n) = 320, L= scos (5 2+ »)
(14 52 —2scos (2L + I))3/2
make 8 tend to infinity, it is clear that for large [3 , s tends to 1 or s tend to s, where § satisfies the
equation 2pe — 1+ (2pe — 1)s + (2pe — 1)s% + 2pes® = 0, the second case happens only if e > 0.
From the equation (46) is obtained

. If we divide the equation (46) by 8 and

$3h,(7/n,8) — p%

4 =
(47) 1—83—2ep(1—s%)’
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and
(48) 1= %S(ﬁs?’ + 8%h, (s, 7/n) — 2Beps?).

Equations (47) and (48) will be used later.

To study planar linear stability, we can use what was seen in the previous section, that is, we
can analyse the values Iy, l, I3 over the equilibria L,,,. For this, we must calculate A and B
defined in the previous section.

1 B 1 2B 1

A = — _— _—
2A Z |w0 — wj|3 + 2A |w0|3 A |w0\4
_ p383 n 1 +6L 3 2eﬁp4s4
2A — 2§ w 3/2 2A A
7= <1+82—2$cos(+>>
n n
_ p’s’
©2A(1 — 83— 2ep(1 — s4))
1—stcos(ZEL + T) — 2ep(1 — %) — deps?(1 — scos(2EL + T)) A
% Z 2 2mj 3/2 — (1 —dpes) 5 |
= (1+ 52 —2scos(=L 4 I))3/ p
wo — Wy Wy — Wj
B = _—
2A;|w0—w3|3w0—w4 2A\w0\32AZ|w0—w]|3wo—w]
38 1 wog 4epf 1 wo 4e 1 wo
2A [wolPwy A |wolfwg A |’Wo|4 Wo
30353 ix o 1 —25co8(Z2L 4 T) - s2cos(M2L + 2T) 3848 e . defp
= A en 3 77 T0\5/2 —+ ZAenS — A en §°.
2 J=1 (1 + 54 — 25 COS(T + 5))

Proposition 4.5. If § is sufficiently large and 5 <e<s3, , then L,,, is linearly stable.

Proof. Note that if, s tend to 17, then by (47) 3 is sufﬁciently large, and so ey tends to ey = ﬁ.
On the other hand,

30353 o= 1 — 2scos(ZEL + T) + s2cos(1ZL 4+ ) 343 B 4eBpt A

2A = (14 s2 —25003(% + I))5/2 9A A

|B| =

If s tends to 1~ and e < 8%, then the argument inside || is positive. Substituting relation (47) in
lo and l3, we obtain

Iy =1-A
ﬁp pPsd n 1 — 2scos (W)
Jj=1 (2—2(:05 (W))wz’
ls =A+1—|B|
W 3—23005(@) 3 — 65 cos (W)_ggcos (@)

2A =\ (1+ 52 — 2scos ((2j21)w))3/2 (1+ 52 — 25 cos ((2j1+11)7r))5/2
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Thus, when s tends to 1~

(2j+1)m (45+2)7

30 n 1—200s<]T)+cos( - ) 5/)3(
2 = (2 — 2 cos ((23':1)#))5/2 A

1 — 2scos <(2j+1)ﬂ>

>0,
j=1 (2 — 2cos < 2J+1)”)

oA n (cos ((2j:1)7r> )csc (( J+1)7")
T3
P j=1 4\/2 2 cos ((2j+1) )

since ( is large enough. Finally, [1, l2 and [3 are all positive numbers when s — 1~ (equivalently
r — 1/p™) or when § sufficiently large. With these conditions L,,, is linearly stable.

O

5. CONCLUDING REMARKS

We have studied a spatial R(IN 4+ 1)BP where the gravitational attraction of the central body
with mass mg is given by a Manev potential —1/r + e/r? with e # 0 and the other N — 1 bodies
of masses equal to m = fmg with Newtonian potential (—1/r), we call this model Spatial Manev
R(N + 1)BP. The problem depends on three parameters, the number of peripherals n, the ratio of
the mass of the central body to the mass of one of the peripherals, and the Manev parameter, e.
One of the things we have proven when e > 0, is that due to the repulsive term emanating from
the central body, it is not possible to have a binary collision between the body of infinitesimal mass
and the central body, contrary to the case e < 0.

In the present work we focus on studying the existence and stability of equilibrium points. In
the first place we have proved that the equilibria exist on the z axis and on the axes of symmetry
of the regular polygon formed by the peripherals when z = 0. A notable property is that on the
z axis, there are two equilibrium points when e > 0, both unstable. By the Lyapunov Center
Theorem, there exists a family of periodic orbits that lives on the z-axis in that case.

On the lines R; = {z = 0,y = tan(27(j — 1)/n)z,x > 0}, j = 1,...,n, there are 2n or 3n
equilibrium points when n < 472, all unstable independent of the values of the parameters. And
on the lines £; = {z = 0,y = tan(n(2j — 1)/n)z,z > 0}, j = 1,...,n at least 2n equilibria. n of
them for some values of 8 and e are linearly stable. The different amounts of equilibria depend
on the parameters 3, e and n. The results regarding the study of stability, motivate us to study
the invariant manifolds of these equilibrium points and the connections between them, in a future
work.

6. APPENDIX

The following technical lemma characterizes the roots of a particular type of function (see its
proof in [2]).
Lemma 6.1. Let T be a positive constant, n a natural number, and

n—1

(49) F(p)=f(p)+ > _ flp+iT)

Jj=1
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where f is a function such that

i) f(p+nT) = f(p),
i) f(p) =0, if and only if, p = k”TT, for all k € Z,

iii) f(—=p) = —f(p).
Then F(p) =0, if and only if, p = %, keZ.

Lemma 6.2. Let "
Yi
.’t Y, %) = E 737
’L

i=1
where r? = (x — x;)* + (y — vi)? + 22, (2i,y;) defined in (14). Then, if y > 0, F(z,y,2) > 0,
whereas if y < 0 then F(z,y,z) < 0.

Proof. Using y; = sin(y;)/p, we write F as
24

Fw,y,2) = % sin(p;) (13 - 31) .

reoor

i=2 1 n+2—1
Notice that sin(p;) > 0 fori=2,..., L"“J It is not difficult to see that when y > 0 r; < rpyo_y,
whereas when y < 0, r; > rpyo_; foralli =2, ... L"HJ This concludes the proof. O

Lemma 6.3. Let N
where 12 = (z — x;)% + y? + 22, (24, ;) defined in ( ) Then, if x > 0, F(z,z) > 0, whereas if
x <0 then F(z,z) <0.

Proof. Using trigonometric identities, for any 6 we have

sw\&

sin(6) cos(p;) = sin(p; + ) — cos O sin(p;).

Considering 0 = <& we write I as
(50) Flo,2) = — Z sin(vist) _ o4 p) Z sin(e:)
’ sin(6) r? : r3
i=1 ? i=1 ?
Note that Y, bmfif‘) = 0, so the equation (50) is rewritten as
(51) Fz,z) = Zn: sin(eir1) _ Z L 1
A=l T T e & eI )
If > 0, we claim that r; < r,_; (see Figure 10), foralli=1,... L7J and n > 3 (in the case
n = 2 is evident). In effect,
. n—1

ri <rp—y & cos(pn—i) <cos(p;), Vi=1,...,| 5 1.

Note that cos(pn—i) = cos(p; + 2F), also cos(p;) is a decreasing function in [0,7] for all i =
1,...,|%5%], therefore cos(pn—;) < cos(p;), Vi = 1,...,|%5*] is true. So, r; < 7y, for all
i =1,..., ”glj Now 7,31 - — r% < 0, therefore F(x,z) > 0. On the contrary, if we assume
r<0,r; >rp g, foralli=1,..., L"T_lj it is easy to check with the same above argument, then

T

s— — —5 > 0, therefore F(z, z) < 0. -

n—i
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FIGURE 10. Distance between the small particle in position (x,y, z) and the pe-
ripheries P; and P, _;, respectively.

490 Some properties of the function f;, defined in (30) we will resume them in the next Lemma.

401 Lemma 6.4. For any fized value of § > 0 and e admissible, the function fi(x), x > 0, defined in
2 (30) has the following properties:

4

©

493 (1) Casee<O.
404 (1) fi(z) is an increasing function.
495 (ii) zll)rfoo fi(z) = 400 and mlgng fi(z) = —o0.
496 (iv) f1(0) = =3, when e = 0.
497 (2) Case 0 < e < ep.
498 (i) It has only one critical point, which is a minimum, at

1/4

2
w (52) o = 2 (e) = (;f;) ,
500 where eq is given in (11).
501 (ii) z*(e) is an increasing function of e and x*(3eg/4) = 1/p.
3/4
502 (iii) fi(z*(e)) = 4AY/* (%) — B as a function of e has only one critical point, which
503 is a maximum, at 3eq/4.
_ 1< 1 Ao , o

504 (iv) f1(1/p) =~ Z —————— = —5, i5 an increasing function in n.

S (D) v

505 Proof. The proof of complete part 1 and the proof of part 2- i), 2- ii) and 2-ii) are straightforward
so6  calculations. For part iv), we will just prove that h(n) = f1(1/p) is an increasing function.
Consider the case where n is even; the odd case is similar. Then

1 1 1 : 1

h(n) = - — =—-12 —+1]1,

AP Sy ) & ey
1 & 1 1 El 1

hin+1) == =-12
4 j=1 sin (n”—Jfl) 4 j=1 sin (%)
Now,
T 1 1 2
h(n+1)—h(n) == |2 - + -1
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Since — >0, forallj=1,...,2—1and ——2_——1> 0, then h(n+1)—h(n) > 0.
Sn(n+1) Sln( ) bln(2(7L+1))
Therefore, h(n) is an increasing function in n. O

Now, some properties of the function fo, defined in (31), we summarise them in the next Lemma.

Lemma 6.5. The function fo(x), x > 0, defined in (31) has the following properties:
(1) fa(z) >0, whenx > 1/p and fo(x) < 0, when z € (0, %), and in both cases fa is decreasing.
(2) lim fo(x) =n, lm fa(z) =400, lim fo(x) = —oc0 and lim fa(x) =0.
T—>00 $*>1+ z—0t

1 PR
Proof. The proof of the item 2 and the first two properties of item 1 are easy to verify, using
straightforward calculations. For the last two properties we will use the results of Bang and
Elmabsout (2004) in [9] and Moeckel and Simo (1995) in [18]. Now, using that z; = %cos(goi) and
yi = %Sin(cpi), with ¢; = w, fori=1,...,n, now

" x — L cos(p;)

n
53 = 22 p — (pz)? px — cos(yp) .
(53) fa(z) == ; (e — Zcos(py) + )72 ; ~ 2zpcos(p;) + 1)3/2

1
Making the change of variable { = —, we obtain
x

n

1 —tcos(yp;
(54) flt) = Z; (2 — 2t cos(soi()ﬁ) 132

We need to see that fo(¢) is increasing for ¢ € (0,1) and f2(t) is increasing for ¢ > 1. In order to
[9], we notice that f(¢) = (tV (t))’, where

1
(55) V0= 2 et 7

For 0 <t <1, V(t) is a series in t with all its Taylor coefficients are positive (see [18]). So V and
all its derlvatlves are positive. So, f2( )=V(t) +tV'(¢t) > 0. Then fo(¢) is an increasing function
for 0 < ¢ < 1. Using that fo(t) = —%V'(1/t), then f5(t) = ZV'(3) + V" (t), it follows that fs
is increasing for ¢t > 1. O

Some properties of the function h defined in (32) are listed in the next lemma.
Lemma 6.6. For any fized value of § > 0 and e admissible, the function h(r), defined

_L 2nj 4 ow
hr) = A ﬁ—&-@—z 1— = cos(2 4+ T)

ﬂWJ%mWH»WQ

has the following properties.
(1) Casee<0.
(i) lm h(r)=4o00

r——+o0

(ii) lim h(r) = —oo, when e < 0.
r—0t+

(iii) lim h(r) = —p8, when e = 0.
r—0+

. 1

(iv) h (;) < 0.

(2) Case0<e<ep.

(i) lim h(r) = +oo.

r——4o0
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(ii) Tl_i>r(I)l+ h(r) = +oc.
(iii) & (%) <0.

Proof. The proof of the case e < 0 part 1-i), 1-ii) and 1-ii) and the case e < 0 and part 2-i), 2-ii)
are straightforward calculations. On the other hand,

A - l—cos(ﬁ—i—zi
TOREE L T
P p? ;(2—2(:05(%4—2%))
(56) 717171 1 7& 1 —cos (T + 222)
4 = sin (%) =1 (2—2cos (& +2%2)
12 1 " 1—cos (T4 2
Let’s define hy(n) = 1 > i (Lnj) and ha(n) :; cos (& + =) . Then,

’ = Q(hl(’ﬂ,) — hl(Qn)) <0,

because hi(n) is increasing function with respect to n according to Lemma 6.4. g
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