Fractal detection of the first nonzero Lyapunov Quantity

Renato Huzak (Hasselt University, Belgium) 17 October 2022 (FRABDYN HRZZ PZS 3055)

Joint work with P. De Maesschalck, A. Janssens and G. Radunović A simple question in a planar slow-fast setting: we consider a Hopf point

$$\begin{cases} \dot{x} &= y - x^2 + x^3 h_1(x,\lambda) \\ \dot{y} &= \epsilon \big(b(\lambda) - x + x^2 h_2(x,\epsilon,\lambda) + y h_3(x,y,\epsilon,\lambda) \big), \end{cases}$$

where $b(\lambda_0) = 0$.

A simple question in a planar slow-fast setting: we consider a Hopf point

$$\begin{cases} \dot{x} &= y - x^2 + x^3 h_1(x,\lambda) \\ \dot{y} &= \epsilon \big(b(\lambda) - x + x^2 h_2(x,\epsilon,\lambda) + y h_3(x,y,\epsilon,\lambda) \big), \end{cases}$$

where $b(\lambda_0) = 0$. Can we intrinsically define the notion of codimension of the Hopf point (x, y) = (0, 0)? A simple question in a planar slow-fast setting: we consider a Hopf point

$$\begin{cases} \dot{x} &= y - x^2 + x^3 h_1(x,\lambda) \\ \dot{y} &= \epsilon \big(b(\lambda) - x + x^2 h_2(x,\epsilon,\lambda) + y h_3(x,y,\epsilon,\lambda) \big), \end{cases}$$

where $b(\lambda_0) = 0$. Can we intrinsically define the notion of codimension of the Hopf point (x, y) = (0, 0)? Yes 1. Traditional definition of codimension [Dumortier,Roussarie,2009] $h_2 = h_3 = 0$ (a classical Liénard system)

 $\begin{cases} \dot{x} = y - x^2 + x^3 h_1(x,\lambda) \\ \dot{y} = \epsilon (b(\lambda) - x + x^2 h_2(x,\epsilon,\lambda) + y h_3(x,y,\epsilon,\lambda)) \end{cases}$

1. Traditional definition of codimension [Dumortier, Roussarie, 2009] $h_2 = h_3 = 0$ (a classical Liénard system)

 $\begin{cases} \dot{x} = y - x^2 + x^3 h_1(x, \lambda) \\ \dot{y} = \epsilon \left(b(\lambda) - x + x^2 h_2(x, \epsilon, \lambda) + y h_3(x, y, \epsilon, \lambda) \right) \\ - - - - > \begin{cases} \dot{x} = y - x^2 + x^3 h_1(x, \lambda) \\ \dot{y} = \epsilon \left(b(\lambda) - x \right) \end{cases}$ The Hopf point has codimension $j + 1 \ge 1$ if $h_1(x, \lambda_0) + h_1(-x, \lambda_0) = \alpha x^{2j} + O(x^{2j+2}), \quad \alpha \ne 0. \end{cases}$

ANDRONOV-HOPF (OR CODIM. 1 HOPF) $\begin{cases} \dot{x} = -wy + p(x, y, \theta) \\ \dot{y} = wx + 2(x, y, \theta) \end{cases}$ · $\lambda_{\pm}(\mu) = \alpha(\mu) \pm i \beta(\mu)$ · dm d/p)/p=0 = 0 (transversality) · l1:= 1/16 (Pxxx + Pxyy + 2xxy + 2494) $\begin{array}{c} -\frac{1}{16w} \left(2 \times y \left(2 \times x + 2yy \right) - P_{xy} \left(P_{xx} + P_{yy} \right) \right) \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) \neq 0 \\ + P_{xx} \left(2 \times x - P_{yy} 2yy \right) = 0 \\ + P_$ the first lyap. coeff. ⇒ Falimit cycle (\mathcal{O})

use complex coordinates->compute the normal form->use polar coordinates->l1
 Lyapunov Coefficients for Degenerate Hopf Bifurcations
 Y. A. Kuznetsov, 1999->the second Lyapunov coeff.

Lyapunov Coefficients for Degenerate Hopf Bifurcations

- Y. A. Kuznetsov, 1999->the second Lyapunov coeff.
- J. Sotomayor, L. F. Mello and D. C. Braga, 2007->the third and fourth Lyapunov coefficients
- the long expressions for these coefficients have been obtained with the software MATHEMATICA

Lyapunov Coefficients for Degenerate Hopf Bifurcations

- Y. A. Kuznetsov, 1999->the second Lyapunov coeff.
- J. Sotomayor, L. F. Mello and D. C. Braga, 2007->the third and fourth Lyapunov coefficients
- the long expressions for these coefficients have been obtained with the software MATHEMATICA
- A. Gasull and J. Torregrosa, 2001->algorithmic procedures to write the expressions for the Lyapunov coefficients

Lyapunov Coefficients for Degenerate Hopf Bifurcations

- Y. A. Kuznetsov, 1999->the second Lyapunov coeff.
- J. Sotomayor, L. F. Mello and D. C. Braga, 2007->the third and fourth Lyapunov coefficients
- the long expressions for these coefficients have been obtained with the software MATHEMATICA
- A. Gasull and J. Torregrosa, 2001->algorithmic procedures to write the expressions for the Lyapunov coefficients
- DeMaesschalck, Doan, Wynen, 2021->the criticality of the Hopf bifurcation without normal forms
- Use a fractal approach instead of the differential approach to find the codimension!

2. Our goal is to define the notion of fractal codimension of a Hopf point

$$X_{\epsilon,\lambda} = X_{0,\lambda} + \epsilon \, Q_\lambda + O(\epsilon^2)$$

2. Our goal is to define the notion of fractal codimension of a Hopf point

 $X_{\epsilon,\lambda} = X_{0,\lambda} + \epsilon Q_{\lambda} + O(\epsilon^2)^{-1}$

1. Differential interface \rightarrow 2. Fractal interface

Box dimension (see Falconer, Lapidus, Tricot, . . .): - Let $\delta > 0$ and $\delta \sim 0$

- Let $\delta > 0$ and $\delta \sim 0$
- U(δ)=the δ-neighborhood of a bounded U ⊂ ℝ (sometimes called the Minkowski sausage)

- Let $\delta > 0$ and $\delta \sim 0$
- U(δ)=the δ-neighborhood of a bounded U ⊂ ℝ (sometimes called the Minkowski sausage)
- $|U(\delta)|$ =the Lebesgue measure of $U(\delta)$

- Let $\delta > 0$ and $\delta \sim 0$
- $U(\delta)$ =the δ -neighborhood of a bounded $U \subset \mathbb{R}$ (sometimes called the Minkowski sausage)
- $|U(\delta)|$ =the Lebesgue measure of $U(\delta)$
- the lower box dimension:

$$\underline{\dim}_{B} U = \liminf_{\delta \to 0} \left(1 - \frac{\ln |U(\delta)|}{\ln \delta} \right)$$

- Let $\delta > 0$ and $\delta \sim 0$
- U(δ)=the δ-neighborhood of a bounded U ⊂ ℝ (sometimes called the Minkowski sausage)
- $|U(\delta)|$ =the Lebesgue measure of $U(\delta)$
- the lower box dimension:

$$\underline{\dim}_{B} U = \liminf_{\delta \to 0} \left(1 - \frac{\ln |U(\delta)|}{\ln \delta} \right)$$

- the upper box dimension:

$$\overline{\dim}_{B} U = \limsup_{\delta \to 0} \left(1 - \frac{\ln |U(\delta)|}{\ln \delta} \right)$$

- Let $\delta > 0$ and $\delta \sim 0$
- U(δ)=the δ-neighborhood of a bounded U ⊂ ℝ (sometimes called the Minkowski sausage)
- $|U(\delta)|$ =the Lebesgue measure of $U(\delta)$
- the lower box dimension:

$$\underline{\dim}_{B} U = \liminf_{\delta \to 0} \left(1 - \frac{\ln |U(\delta)|}{\ln \delta} \right)$$

- the upper box dimension:

$$\overline{\dim}_{B} U = \limsup_{\delta \to 0} \left(1 - \frac{\ln |U(\delta)|}{\ln \delta} \right)$$

- dim_BU=the box dimension of U

- The box dimension measures the density of U

- The box dimension measures the density of U
- The bigger the box dimension of the sequence, the higher the density of the sequence (->more limit cycles can be born)

- The box dimension measures the density of U
- The bigger the box dimension of the sequence, the higher the density of the sequence (->more limit cycles can be born)

Figure: The Box dimension of U.

- The box dimension measures the density of U
- The bigger the box dimension of the sequence, the higher the density of the sequence (->more limit cycles can be born)

Figure: The Box dimension of U.

 $\begin{array}{l} x = y - F(x) \\ \dot{y} = -\varepsilon x \end{array}$ $, F(x) = x^{2} + O(x^{3})$ $(\bar{1}) z = 0$ $\frac{1}{\sum_{k=1}^{n}} \frac{dx}{dt} = -\frac{x}{F'(k)}$ 3) entry-exit relation $\frac{x_{\text{exit}}}{F(x)}^{2} dx = 0 \quad x_{\text{exit}} < 0$ Xentry

Define a fractal sequence $U_0 = \{y_0, y_1, y_2, \dots\} \rightarrow 0!$

Compute the Minkowski (or box) dimension of U_0 !

or

 $\dim_B U_0 = \lim_{k \to \infty} \frac{\ln k}{-\ln(y_k - y_{k+1})}$ (Cahen-type formula)

 $\dim_B U_0 = \lim_{k o \infty} rac{1}{1 - rac{\ln y_k}{\ln k}}$ (Borel rarefaction index of U_0)

$\dim_B U_0 = \lim_{k \to \infty} \left(1 - \frac{\ln\left(k(y_k - y_{k+1}) + y_k\right)}{\ln\left(\frac{y_k - y_{k+1}}{2}\right)} \right) \text{ (tail and nucleus)}$

Compute the Minkowski (or box) dimension of U_0 !

or

 $\dim_B U_0 = \lim_{k \to \infty} \frac{\ln k}{-\ln(y_k - y_{k+1})}$ (Cahen-type formula)

 $\dim_B U_0 = \lim_{k \to \infty} \frac{1}{1 - \frac{\ln y_k}{\ln k}}$ (Borel rarefaction index of U_0)

$\dim_B U_0 = \lim_{k o \infty} \left(1 - rac{\ln\left(k(y_k - y_{k+1}) + y_k ight)}{\ln\left(rac{y_k - y_{k+1}}{2} ight)} ight)$ (tail and nucleus)

 $\overline{\dim_B U_0}$ can take the following discrete set of values: $\frac{1}{3}, \frac{3}{5}, \frac{5}{7}, \dots, 1$.

Compute the Minkowski (or box) dimension of U_0 !

or

 $\dim_B U_0 = \lim_{k \to \infty} \frac{\ln k}{-\ln(y_k - y_{k+1})}$ (Cahen-type formula)

 $\dim_B U_0 = \lim_{k \to \infty} \frac{1}{1 - \frac{\ln y_k}{\ln k}}$ (Borel rarefaction index of U_0)

 $\dim_B U_0 = \lim_{k \to \infty} \left(1 - \frac{\ln\left(k(y_k - y_{k+1}) + y_k\right)}{\ln\left(\frac{y_k - y_{k+1}}{2}\right)} \right) \text{ (tail and nucleus)}$

dim_{*B*} U_0 can take the following discrete set of values: $\frac{1}{3}, \frac{3}{5}, \frac{5}{7}, \dots, 1$. -Zubrinic, Zupanovic, 2007,2008 Fractal codimension: If dim_B $U_0 < 1$, we say that the Hopf point has finite fractal codimension $j + 1 \ge 1$ where

$$j=rac{3\operatorname{\mathsf{dim}}_BU_0-1}{2(1-\operatorname{\mathsf{dim}}_BU_0)}\in\mathbb{N}_0.$$

If dim_B $U_0 = 1$, then we say that the fractal codimension is infinite.

$\overline{X_{\epsilon,\lambda}} = X_{0,\lambda} + \epsilon Q_{\lambda} + O(\epsilon^2)$

$X_{0,\lambda}$ has a set of non-isolated singularities S_λ for each $\lambda\sim\lambda_0$.

$\overline{X_{\epsilon,\lambda}} = X_{0,\lambda} + \epsilon Q_{\lambda} + O(\epsilon^2)$

$X_{0,\lambda}$ has a set of non-isolated singularities S_{λ} for each $\lambda \sim \lambda_0$.

A slow fast Hopf point is intrinsically defined!! (see [De Maesschalck,Dumortier,Roussarie,2021])

The slow divergence integral

$$I(ilde{
ho},ar{
ho}):=\int_{lpha(ilde{
ho})}^{\omega(ar{
ho})}rac{{
m div}\,X_{0,\lambda_0}dx}{f(x,\lambda_0)}=0, \ \ x'=f(x,\lambda_0)$$

The slow divergence integral

$$I(ilde{
ho},ar{
ho}):=\int_{lpha(ilde{
ho})}^{\omega(ar{
ho})}rac{{
m div}\,X_{0,\lambda_0}dx}{f(x,\lambda_0)}=0, \ \ x'=f(x,\lambda_0)$$

Assumption We assume that $I(\tilde{p}, \tilde{p}) \neq 0$

Assumption We assume that $I(\tilde{p}, \tilde{p}) \neq 0$ $I(p_{k+1}, p_k) = 0$ or $I(p_k, p_{k+1}) = 0$ Assumption We assume that $I(\tilde{p}, \tilde{p}) \neq 0$ $I(p_{k+1}, p_k) = 0$ or $I(p_k, p_{k+1}) = 0$ $S = \{p_k \mid k \ge 0\}$

Theorem Consider a smooth slow-fast system $X_{\epsilon,\lambda}$. Let S be a fractal sequence defined above. Then dim_B S exists and

$$\dim_B \mathcal{S} \in \{\frac{2j+1}{2j+3} \mid j \in \mathbb{N}_0\} \cup \{1\}.$$

Furthermore, the Minkowski dimension of S is a coordinate free notion which does not depend on the choice of the section σ , the first element p_0 of the sequence $(p_k)_{k\geq 0}$ from S, and the metric on M.

Definition If dim_B S < 1, we say that the contact point p for $\lambda = \lambda_0$ has finite fractal codimension $j + 1 \ge 1$ where

$$j = rac{3 \dim_B \mathcal{S} - 1}{2(1 - \dim_B \mathcal{S})} \in \mathbb{N}_0.$$

If dim_B S = 1, then we say that the fractal codimension of p is infinite.

Definition If dim_B S < 1, we say that the contact point p for $\lambda = \lambda_0$ has finite fractal codimension $j + 1 \ge 1$ where

$$j = rac{3 \dim_B \mathcal{S} - 1}{2(1 - \dim_B \mathcal{S})} \in \mathbb{N}_0.$$

If dim_B S = 1, then we say that the fractal codimension of p is infinite.

Theorem

Consider a smooth slow-fast family $X_{\epsilon,\lambda} = X_{0,\lambda} + \epsilon Q_{\lambda} + O(\epsilon^2)$ that has a slow-fast Hopf point p at λ_0 .

- 1. If the fractal codimension of p is equal to 1, then $\operatorname{Cycl}(X_{\epsilon,\lambda}, p) \leq 1.$
- 2. If p has finite fractal codimension $j + 1 \ge 1$ and of Liénard type, then $Cycl(X_{\epsilon,\lambda}, p)$ is finite and bounded by j + 1.

3. If $X_{\epsilon,\lambda}$ is analytic on an analytic surface M, then $\operatorname{Cycl}(X_{\epsilon,\lambda}, p)$ is finite. Moreover, if p has finite fractal codimension $j + 1 \ge 1$, then $\operatorname{Cycl}(X_{\epsilon,\lambda}, p) \le j + 1$.

Theorem

Consider a smooth slow-fast family $X_{\epsilon,\lambda} = X_{0,\lambda} + \epsilon Q_{\lambda} + O(\epsilon^2)$ that has a slow-fast Hopf point p at λ_0 .

- 1. If the fractal codimension of p is equal to 1, then $\operatorname{Cycl}(X_{\epsilon,\lambda},p) \leq 1.$
- 2. If p has finite fractal codimension $j + 1 \ge 1$ and of Liénard type, then $Cycl(X_{\epsilon,\lambda}, p)$ is finite and bounded by j + 1.
- 3. If $X_{\epsilon,\lambda}$ is analytic on an analytic surface M, then $\operatorname{Cycl}(X_{\epsilon,\lambda}, p)$ is finite. Moreover, if p has finite fractal codimension $j + 1 \ge 1$, then $\operatorname{Cycl}(X_{\epsilon,\lambda}, p) \le j + 1$.

a generalization of [Dumortier, Roussarie, 2009]

The notion of fractal codimension can be defined for any contact point when the contact order $c_{\lambda_0}(p)$ of p is even, the singularity order $s_{\lambda_0}(p)$ of p is odd and p has finite slow divergence, i.e. $s_{\lambda_0}(p) \le 2(n_{\lambda_0}(p) - 1)$.

The notion of fractal codimension can be defined for any contact point when the contact order $c_{\lambda_0}(p)$ of p is even, the singularity order $s_{\lambda_0}(p)$ of p is odd and p has finite slow divergence, i.e. $s_{\lambda_0}(p) \leq 2(n_{\lambda_0}(p) - 1)$. (Huzak,2017), (Huzak,Vlah,2018), (Crnkovic,Huzak,Vlah,2021), (Dimitrovic, Huzak, Vlah, Zupanovic, 2021), (Huzak, Vlah, Zubrinic,Zupanovic,2022)

 $\begin{cases} \overline{\dot{x}} = \overline{y - f(x, \lambda)} \\ \dot{y} = \epsilon \left(g(x, \epsilon, \lambda) + (y - f(x, \lambda)) h(x, y, \epsilon, \lambda) \right), \end{cases}$

where f, g, h are smooth, $f(0, \lambda_0) = \frac{\partial f}{\partial x}(0, \lambda_0) = 0$

 $\begin{cases} \dot{x} = y - f(x, \lambda) \\ \dot{y} = \epsilon \left(g(x, \epsilon, \lambda) + (y - f(x, \lambda)) h(x, y, \epsilon, \lambda) \right), \end{cases}$

where f, g, h are smooth, $f(0, \lambda_0) = \frac{\partial f}{\partial x}(0, \lambda_0) = 0$ The contact order $n \ge 2$ is the order at x = 0 of $f(x, \lambda_0)$

 $\begin{cases} \dot{x} = y - f(x, \lambda) \\ \dot{y} = \epsilon \left(g(x, \epsilon, \lambda) + (y - f(x, \lambda)) h(x, y, \epsilon, \lambda) \right), \end{cases}$

where f, g, h are smooth, $f(0, \lambda_0) = \frac{\partial f}{\partial x}(0, \lambda_0) = 0$ The contact order $n \ge 2$ is the order at x = 0 of $f(x, \lambda_0)$ The singularity order $m \ge 0$ is the order at x = 0 of $g(x, 0, \lambda_0)$.

 $\begin{cases} \dot{x} = y - f(x, \lambda) \\ \dot{y} = \epsilon \left(g(x, \epsilon, \lambda) + (y - f(x, \lambda)) h(x, y, \epsilon, \lambda) \right), \end{cases}$

where f, g, h are smooth, $f(0, \lambda_0) = \frac{\partial f}{\partial x}(0, \lambda_0) = 0$ The contact order $n \ge 2$ is the order at x = 0 of $f(x, \lambda_0)$ The singularity order $m \ge 0$ is the order at x = 0 of $g(x, 0, \lambda_0)$. We suppose that n and m are finite and write

 $f(x,\lambda_0)=x^n\tilde{f}(x)$

Calculating the Minkowski dimension in a normal form If $\tilde{f}(0) > 0$ (resp. $\tilde{f}(0) < 0$), then the smooth diffeomorphism $(x, y) \rightarrow (x\tilde{f}(x)^{\frac{1}{n}}, y)$ (resp. $(x, y) \rightarrow (-x(-\tilde{f}(x))^{\frac{1}{n}}, -y)$)

brings the system into

$$\begin{cases} \dot{x} = y - x^n \\ \dot{y} = \epsilon \left(g(x, \epsilon) + (y - x^n) h(x, y, \epsilon) \right), \end{cases}$$

upon multiplication by a smooth strictly positive function

Calculating the Minkowski dimension in a normal form If $\tilde{f}(0) > 0$ (resp. $\tilde{f}(0) < 0$), then the smooth diffeomorphism $(x, y) \rightarrow (x\tilde{f}(x)^{\frac{1}{n}}, y)$ (resp. $(x, y) \rightarrow (-x(-\tilde{f}(x))^{\frac{1}{n}}, -y)$)

brings the system into

$$\begin{cases} \dot{x} = y - x^n \\ \dot{y} = \epsilon \left(g(x, \epsilon) + (y - x^n) h(x, y, \epsilon) \right), \end{cases}$$

upon multiplication by a smooth strictly positive function

 $g(x,0)=g_mx^m+x^{m+1} ilde{g}(x)$ where $g_m=\pm 1$ and $ilde{g}$ is a smooth function.

Calculating the Minkowski dimension in a normal form Definition We say that the contact point p = (0,0) has finite (fractal) codimension i + 1 > 1 if

$$ilde{g}(x)+ ilde{g}(-x)=lpha x^{2j}+O(x^{2j+2}),\,\,lpha
eq 0.$$

If j with the above property does not exist, we say that the codimension is infinite.

Calculating the Minkowski dimension in a normal form Definition We say that the contact point p = (0,0) has finite (fractal) codimension i + 1 > 1 if

$$ilde{g}(x)+ ilde{g}(-x)=lpha x^{2j}+O(x^{2j+2}), \ lpha
eq 0.$$

If j with the above property does not exist, we say that the codimension is infinite.

Finite slow divergence: $m \leq 2(n-1)$.

$$I(y,\tilde{y}) = -\int_{-y^{1/n}}^{\tilde{y}^{1/n}} \frac{1}{g(x,0)} (nx^{n-1})^2 dx$$

Figure: A fractal sequence starting at $(0, y_0)$ defined near the contact point (x, y) = (0, 0) where $\alpha(y) = \{(-y^{1/n}, y)\}$ is the α -limit of the fast orbit through $y \in \sigma$ and $\omega(y) = \{(y^{1/n}, y)\}$ is the ω -limit of the same orbit. (a) We use $I(y_{k+1}, y_k) = 0$ to generate $(y_k)_{k>0}$. (B) We use $I(y_k, y_{k+1}) = 0$ to generate $(y_k)_{k>0}$.

Theorem Suppose that the normal form has finite fractal codimension $j + 1 \ge 1$. Then S is Minkowski nondegenerate and

$$\dim_B \mathcal{S} = \frac{2j+1}{n+2j+1} \in]0,1[.$$

Moreover, when the codimension is infinite, we have $\dim_B S = 1$. The results do not depend on the choice of the initial point $y_0 \in]0, y^*[$.

The Minkowski dimension is invariant under bi-Lip. maps

· F: A S R > R is a bi-Lipschitz map (] K1, K2 > O such that & 11x-y11 \$ 11F(x)-F(y)11\$ < K2 11x-gll, tx, y EA) $\Rightarrow \dim_{\mathcal{R}} A = \dim_{\mathcal{R}} F(A), \dim_{\mathcal{B}} A = \dim_{\mathcal{B}} F(A)$

The slow divergence integral is invariant under C^{∞} -equivalence

(x=y-F(x))) y=-ex $\dot{x} = \frac{5}{2}\dot{y} - 5F(\ddot{x})$ $\overline{x}=5x$ $\dot{y} = -\frac{2}{5}\varepsilon \bar{x}$ y=24 y=F(x) X=1 X=2 x=5 x=10 $(1, F(1)) \rightarrow (2, F(2))$ $(5,2F(h)) \rightarrow (10,2F(2))$ = SDT^e

A two-stroke oscillator

$$\begin{cases} \dot{x} = y(\delta - y) \\ \dot{y} = (-x + \alpha y) \cdot (\delta - y) - \epsilon (\beta - \gamma x) \end{cases}$$

where $\alpha,\beta,\gamma,\delta>0$ and $\epsilon\geq 0$ is the singular perturbation parameter.

A two-stroke oscillator

$$\begin{cases} \dot{x} = y(\delta - y) \\ \dot{y} = (-x + \alpha y) \cdot (\delta - y) - \epsilon (\beta - \gamma x) \end{cases}$$

where $\alpha, \beta, \gamma, \delta > 0$ and $\epsilon \ge 0$ is the singular perturbation parameter. Following Wechselberger (2020), we deal with a slow-fast Hopf point (in a non-standard form) at $p = (\alpha \delta, \delta)$, for $\beta = \alpha \gamma \delta$.

$$\dim_B U_0 = \lim_{k \to \infty} \frac{\ln k}{-\ln(y_k - y_{k+1})}$$
 (Cahen-type formula)

 $\dim_B U_0 = \lim_{k \to \infty} \frac{1}{1 - \frac{\ln y_k}{\ln k}}$ (Borel rarefaction index of U_0)

or

$$\dim_B U_0 = \lim_{k \to \infty} \left(1 - \frac{\ln\left(k(y_k - y_{k+1}) + y_k\right)}{\ln\left(\frac{y_k - y_{k+1}}{2}\right)} \right) \text{ (tail and nucleus)}$$

# Iter	\tilde{y}_0	α	δ	γ	β	Theo. Value	Results
1000	1.1	1	1	1	1	$\frac{1}{3} = 0.3333$	0.335137
1000	1.1	1	1	10	10	$\frac{1}{3} = 0.3333$	0.335137
1000	1.1	2	1	1	2	$\frac{1}{3} = 0.3333$	0.324280
1000	10.1	5	10	1	50	$\frac{1}{3} = 0.3333$	0.331570

Table: Numerical results for the two-stroke oscillator.

Thank you!