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A simple question in a planar slow-fast setting: we consider a
Hopf point{

ẋ = y − x2 + x3h1(x , λ)
ẏ = ε

(
b(λ)− x + x2h2(x , ε, λ) + yh3(x , y , ε, λ)

)
,

where b(λ0) = 0.

Can we intrinsically de�ne the notion of codimension of the
Hopf point (x , y) = (0, 0)? Yes
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1. Traditional de�nition of codimension
[Dumortier,Roussarie,2009] h2 = h3 = 0 (a classical Liénard
system){
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)
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ẏ = ε

(
b(λ)− x

)
The Hopf point has codimension j + 1 ≥ 1 if

h1(x , λ0) + h1(−x , λ0) = αx2j + O(x2j+2), α 6= 0.
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ẏ = ε

(
b(λ)− x

)
The Hopf point has codimension j + 1 ≥ 1 if

h1(x , λ0) + h1(−x , λ0) = αx2j + O(x2j+2), α 6= 0.





- use complex coordinates�>compute the normal
form�>use polar coordinates�>l1

Lyapunov Coe�cients for Degenerate Hopf Bifurcations

- Y. A. Kuznetsov, 1999->the second Lyapunov coe�.

- J. Sotomayor, L. F. Mello and D. C. Braga, 2007->the
third and fourth Lyapunov coe�cients

- the long expressions for these coe�cients have been
obtained with the software MATHEMATICA

- A. Gasull and J. Torregrosa, 2001->algorithmic
procedures to write the expressions for the Lyapunov
coe�cients

- DeMaesschalck, Doan, Wynen, 2021->the criticality of
the Hopf bifurcation without normal forms

- Use a fractal approach instead of the di�erential approach
to �nd the codimension!
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2. Our goal is to de�ne the notion of fractal codimension of a
Hopf point

Xε,λ = X0,λ + εQλ + O(ε2)

1. Di�erential interface �> 2. Fractal interface
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Box dimension (see Falconer,Lapidus,Tricot,. . . ):

- Let δ > 0 and δ ∼ 0

- U(δ)=the δ-neighborhood of a bounded U ⊂ R
(sometimes called the Minkowski sausage)

- |U(δ)|=the Lebesgue measure of U(δ)

- the lower box dimension:

dimBU = lim inf
δ→0

(
1− ln |U(δ)|

ln δ

)

- the upper box dimension:

dimBU = lim sup
δ→0

(
1− ln |U(δ)|

ln δ

)

- dimBU=the box dimension of U
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- The box dimension measures the density of U

- The bigger the box dimension of the sequence, the higher
the density of the sequence (�>more limit cycles can be
born)

Figure: The box dimension of U .
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Example



De�ne a fractal sequence U0 = {y0, y1, y2, . . . } → 0!



Compute the Minkowski (or box) dimension of U0!

dimBU0 = lim
k→∞

ln k

− ln(yk − yk+1)
(Cahen-type formula)

dimBU0 = lim
k→∞

1

1− ln yk
ln k

(Borel rarefaction index of U0)

or

dimBU0 = lim
k→∞

(
1−

ln
(
k(yk − yk+1) + yk

)
ln
( yk−yk+1

2

) )
(tail and nucleus)

dimB U0 can take the following discrete set of values:
1

3
, 3
5
, 5
7
, . . . , 1.

�Zubrinic,Zupanovic, 2007,2008
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Fractal codimension:
If dimB U0 < 1, we say that the Hopf point has �nite fractal
codimension j + 1 ≥ 1 where

j =
3 dimB U0 − 1

2(1− dimB U0)
∈ N0.

If dimB U0 = 1, then we say that the fractal codimension is
in�nite.



Xε,λ = X0,λ + εQλ + O(ε2)

X0,λ has a set of non-isolated singularities Sλ for each λ ∼ λ0.

A slow fast Hopf point is intrinsically de�ned!! (see [De
Maesschalck,Dumortier,Roussarie,2021])
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The slow divergence integral

I (p̃, p̄) :=

∫ ω(p̄)

α(p̃)

divX0,λ0dx

f (x , λ0)
= 0, x ′ = f (x , λ0)
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Theorem

Consider a smooth slow-fast system Xε,λ. Let S be a fractal

sequence de�ned above. Then dimB S exists and

dimB S ∈ {
2j + 1

2j + 3
| j ∈ N0} ∪ {1}.

Furthermore, the Minkowski dimension of S is a coordinate

free notion which does not depend on the choice of the section

σ, the �rst element p0 of the sequence (pk)k≥0 from S, and
the metric on M .



De�nition

If dimB S < 1, we say that the contact point p for λ = λ0 has
�nite fractal codimension j + 1 ≥ 1 where

j =
3 dimB S − 1

2(1− dimB S)
∈ N0.

If dimB S = 1, then we say that the fractal codimension of p is
in�nite.
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Theorem

Consider a smooth slow-fast family Xε,λ = X0,λ + εQλ + O(ε2)
that has a slow-fast Hopf point p at λ0.

1. If the fractal codimension of p is equal to 1, then
Cycl(Xε,λ, p) ≤ 1.

2. If p has �nite fractal codimension j + 1 ≥ 1 and of Liénard

type, then Cycl(Xε,λ, p) is �nite and bounded by j + 1.

3. If Xε,λ is analytic on an analytic surface M , then

Cycl(Xε,λ, p) is �nite. Moreover, if p has �nite fractal

codimension j + 1 ≥ 1, then Cycl(Xε,λ, p) ≤ j + 1.

a generalization of [Dumortier,Roussarie,2009]
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The notion of fractal codimension can be de�ned for any
contact point when the contact order cλ0(p) of p is even, the
singularity order sλ0(p) of p is odd and p has �nite slow
divergence, i.e. sλ0(p) ≤ 2(nλ0(p)− 1).

(Huzak,2017), (Huzak,Vlah,2018),
(Crnkovic,Huzak,Vlah,2021), (Dimitrovic, Huzak, Vlah,
Zupanovic, 2021), (Huzak, Vlah, Zubrinic,Zupanovic,2022)
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Calculating the Minkowski dimension in a normal form for
C∞-equivalence{

ẋ = y − f (x , λ)
ẏ = ε (g(x , ε, λ) + (y − f (x , λ)) h(x , y , ε, λ)) ,

where f , g , h are smooth, f (0, λ0) = ∂f
∂x

(0, λ0) = 0

The contact order n ≥ 2 is the order at x = 0 of f (x , λ0)
The singularity order m ≥ 0 is the order at x = 0 of
g(x , 0, λ0).
We suppose that n and m are �nite and write

f (x , λ0) = xn f̃ (x)
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Calculating the Minkowski dimension in a normal form
If f̃ (0) > 0 (resp. f̃ (0) < 0), then the smooth di�eomorphism

(x , y)→ (x f̃ (x)
1

n , y)
(
resp. (x , y)→ (−x(−f̃ (x))

1

n ,−y)
)

brings the system into{
ẋ = y − xn

ẏ = ε (g(x , ε) + (y − xn) h(x , y , ε)) ,

upon multiplication by a smooth strictly positive function

g(x , 0) = gmx
m + xm+1g̃(x)

where gm = ±1 and g̃ is a smooth function.
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Calculating the Minkowski dimension in a normal form

De�nition

We say that the contact point p = (0, 0) has �nite (fractal)
codimension j + 1 ≥ 1 if

g̃(x) + g̃(−x) = αx2j + O(x2j+2), α 6= 0.

If j with the above property does not exist, we say that the
codimension is in�nite.

Finite slow divergence: m ≤ 2(n − 1).

I (y , ỹ) = −
∫ ỹ1/n

−y1/n

1

g(x , 0)
(nxn−1)2dx
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w(y0) α(y0)

α(y1) ω(y1)

α(y2)

α(y1) ω(y1)

ω(y2)

y0

y1

y2

σ

y0

y1

y2

σ

(a) (b)

Figure: A fractal sequence starting at (0, y0) defined

near the contact point (x , y) = (0, 0) where

α(y) = {(−y1/n, y)} is the α-limit of the fast orbit

through y ∈ σ and ω(y) = {(y1/n, y)} is the ω-limit of the

same orbit. (a) We use I (yk+1, yk) = 0 to generate

(yk)k≥0 . (b) We use I (yk , yk+1) = 0 to generate (yk)k≥0 .



Theorem

Suppose that the normal form has �nite fractal codimension

j + 1 ≥ 1. Then S is Minkowski nondegenerate and

dimB S =
2j + 1

n + 2j + 1
∈]0, 1[.

Moreover, when the codimension is in�nite, we have

dimB S = 1. The results do not depend on the choice of the

initial point y0 ∈]0, y ∗[.



The Minkowski dimension is invariant under bi-Lip. maps



The slow divergence integral is invariant under C∞-equivalence



A two-stroke oscillator{
ẋ = y(δ − y)
ẏ = (−x + αy) · (δ − y)− ε

(
β − γx

)
,

where α, β, γ, δ > 0 and ε ≥ 0 is the singular perturbation
parameter.

Following Wechselberger (2020), we deal with a slow-fast Hopf
point (in a non-standard form) at p = (αδ, δ), for β = αγδ.
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# Iter ỹ0 α δ γ β Theo. Value Results

1000 1.1 1 1 1 1 1

3
= 0.3333... 0.335137

1000 1.1 1 1 10 10 1

3
= 0.3333... 0.335137

1000 1.1 2 1 1 2 1

3
= 0.3333... 0.324280

1000 10.1 5 10 1 50 1

3
= 0.3333... 0.331570

Table: Numerical results for the two-stroke oscillator.



Thank you!


